Optimum Selection of Contracts In A Supply Chain

Mr. B. Vijaya Prakash

Assistant Professor, Dept of Mechanical Engineering, Sri Shakthi Institute of Enginering and Technology, Coimbatore

Abstract- In supply chain management a supply contract specifies parameters governing the buyer-supplier relationship. In addition to making the terms of the buyersupplier relationship explicit, contracts have significant impact on the behaviour and performance of all stages in a supply chain. A supply chain contract should have the ability to increase the firm's profits and supply chain profits and offer incentives to the supplier to improve performance along key dimensions. This paper analyses the various supply chain contracts that improves the profit of the firm and the supply chain. In this paper the analysis is made on buyback, revenue sharing and quantity flexibility contracts to account the impact of these contracts in the supply chain.

Keywords- supply chain management, contracts, profit

I. INTRODUCTION

Optimal supply chain performance requires the execution of a precise set of actions. Unfortunately, those actions are not always in the best interest of the members in the supply chain, i.e., the supply chain members are primarily concerned with optimizing their own objectives, and that self serving focus often results in poor performance. However, optimal performance can be achieved if the firms coordinate by contracting on a set of transfer payments such that each firm's objective becomes aligned with the supply chain's objective.

The supply chain management paradigm asserts that when making decisions, the efficiency of the whole system should be taken into consideration. When decision making is decentralized, i.e. decisions are made by independent agents comprising the chain, optimization of system's total efficiency might be discordant with the agents incentives. Therefore, coordinating the agents' decisions becomes a major issue. By viewing a supply chain as nexus-of-contracts by Wang and Parlar (1994), i.e. a group of rational agents interacting with each other according to pre-specified rules, an improved supply chain management is achieved by designing appropriate contracts coordinating the agents' decisions. This is the main objective of research on coordinating contracts. Although contracts have been studied in law, economics, and marketing disciplines, their study in SCM takes a rather different approach.

Supply chain contract analysis distinguishes itself on the focus on operational details, requiring more explicit modeling of materials flows and complicating factors such as uncertainty in the supply or demand of products, forecasting and the possibility of revising those forecasts, constrained production capacity, and penalties for overtime and expediting" viewed Tsay et al., (1999). A contract specifies mechanisms for governing the interaction contingencies among agents. It manifests the exchange of promises regarding the actions which are to be done in time. Necessarily, contracts must be enforceable, i.e. the agent's refrainment from fulfilling their promises should be ruled out (or made highly improbable). For a contract to be enforceable, its terms (the mutual promises), should be verifiable by an enforcing body. However, the verifiability of contract's terms is dependent on the enforcing body. If a contract's terms are verifiable by a court of law, that contract would be a legal contract.

Supply chain contracts are not always required to be legal. Several papers in the literature consider contracts among independent agents that are divisions of the same company and a higher level manager can verify the rendition of lateral promised by Chen (1999); Lee and Whang (1999) and Zhang (2006). Nevertheless, the process of contract design should explicitly point out the verifying ability of the enforcing agent. Two approaches to verification are detectable in the literature: direct, and indirect. In direct verification, the conditions regarding the fulfillment of contract terms must be observed. In indirect verification, the aforementioned conditions may be inferred. In reality, the verification process is a mixture of the two approaches. An example of direct verification is the delivery of the ordered products from a supplier by a retailer. The retailer can observe, i.e. count, the number of products received. Indirect verifications are achieved when a certain action is considered to be necessary (or self-enforcing) for a rational agent. For example, a manufacturer can verify that if the market selling price is greater than the total production cost and salvage value, the retailer would satisfy market demand as much as it can. The study of supply chain contracts is an interdisciplinary research area.

Introduction to Supply Chain Contracts

"Supply Chain Management deals with the management of material, information and financial flows in a network consisting of vendors, manufacturers, distributors, and customers" aver Anupindi and Bassok (1997). Exchange of flows can be regarded as a routine transaction, occurring between any pair of suppliers and buyers in the network. Ideally, the quantity and pricing decisions in the supply chain, as shown in Fig. 1, would be made by a single decision maker who has all information at hand. Researchers in Supply Chain Management generally refer to this situation as the centralized or integrated supply chain and call it as the single decision maker of the integrated firm. Similarly, a supply chain is called decentralized if the network consists of multiple decision makers having different information and incentives. The decentralized supply chain or in other words, is inefficient, since the total expected profit of the decentralized supply chain is smaller than the expected profit of the centralized supply chain. To enable coordination, the supply chain resorts to contracts. In general, the goal is to write contracts that induce coordination through appropriate provisions for information and incentives such that supply chain performance will be optimized. This type of approach recurs in a broad range of settings. Cachon (2003) reviewed the respective research on supply chain contracts.

An important objective of supply chain contracts is system wide performance improvement. Another motive that is pursued by entering into supply chain contracts is sharing the risk arising from the uncertainty in the supply chain, the notion of risk should be handled with care, given that the firms are assumed to be risk neutral. Due to globalization and outsourcing, decentralized supply chains are prevalent today. Outsourcing of production, for example, automatically spreads decision rights among multiple decision makers. Even highly vertically integrated firms decentralize decision rights to set incentives and structure the flow of information.

To measure the performance of supply chains, coordination is an important assessment criterion. The terms network, channel or supply chain coordination all refer to the same situation. Anupindi and Bassok (1997) viewed "A single decision maker optimizes the network with the union of information that the various decision makers have". Decision makers are often reluctant to share private information regarding cost and demand, which may lead to suboptimal supply chain performance stated Corbett and Tang (1999) and Corbett et al., (2004). As each decision maker optimizes a private objective function, the local optima need not be globally optimal for the whole supply chain. This clearly is a case where locally optimal decisions of supplier and buyer do not optimize the global supply chain problem. Even if information received is asymmetry, lack of coordination and

lack of suboptimal supply chain performance may still occur. Coordination and supply chain performance is at risk as soon as there are multiple decision makers in the network who may have different private information and incentives.

Early overviews on supply chain coordination with contracts were given by Whang (1995); Cachon (2003); Lariviere (1999) and Tsay et al., (1999). Similar approaches can be found in related fields of research like the Literature of Economics on vertical restraints by Mathewson and Winter (1984); Katz (1989) and the Marketing literature on Channel Coordination by Jeuland and Shugan (1983); Moorthy (1987). Tightly linked are the papers by Bergen et al., (1992) and Van Ackere (1993) who studied on agency relationships.

The problem of double marginalization is a prominent example of this phenomenon, first described by Spengler (1950) in the Literature of Economics. Tirole (1990) remarked that when operating independently, supplier and buyer will produce less than a vertically integrated monopolist, because they receive less than the total contribution margin at any given quantity.

Supply Chain Structure

A one-period supply chain model forms the basis for a wide range of supply chain analyses as described by Tsay et al., (1999).

The basic one period supply chain model (adopted from Tsay et al., 1999)

Two consecutive nodes of the supply chain referred here as supplier and buyer, as depicted in Figure 1, together with the material, information and financial flows involved. As shown in Fig. 1, the one-period framework, where the supplier produces or acquires a product at a constant unit cost of c and charges the buyer the wholesale or transfer payment w(Q) per delivery, where w(Q) may either be exogenous or a decision variable of one of the parties. On the other side, the buyer sells the product to the market at retail price r per unit. In reality, market demand D(r) is both price-sensitive and

uncertain. Although some models include both features, as it is common to fix either the order quantity or the retail price. In the Operations Research literature, the primary decision variable is the order quantity Q, the retail price is often assumed to be fixed and market demand is stochastic. In the literature of Economics and Marketing, the decision is primarily the retail price r. In the latter case, a common assumption is a deterministic, downward-sloping demand function. Moreover, most papers on supply chain contracts assume only a one-period problem, since the related models are often too complex to be tractable in a multi-period setting.

CONTRACTS FOR SUPPLY CHAIN PROFITS

Actions taken by the two parties in the supply chain often results in profits that are lower than what could be achieved if the supply chain were to coordinate its actions with a common objective of maximizing supply chain profits. In a contract in which the supplier specifies a fixed price and the buyer decides on the quantity to be purchased, the most common cause for suboptimal supply chain performance is double marginalization. The retailer makes its buying decision before demand is realized and thus bears all the demand uncertainty. If demand is less than the retailer's inventory, the retailer has to liquidate unsold product at a discount. Given uncertain demand, the retailer decides on the purchase quantity based on its margin and the cost of overstocking. The retailer's margin however, is lower than the contribution margin for the entire supply chain, whereas its cost of overstocking is higher than that of the entire supply chain. As a result, the retailer is conservative and aims for a lower level of product availability than is optimal for the supply chain.

To increase the overall profits, the supplier must design a contract that encourages the buyer to purchase more and increase the level of product availability. This requires the supplier to share in some of the buyer's uncertainty. Three contracts that increase overall profits by making the supplier share some of the buyer's demand uncertainty are (i) Buyback or returns contracts; (ii) Revenue sharing contracts; (iii) Quantity Flexibility contracts.

II. OBJECTIVES OF THE STUDY

The Objective of the study "Analysis of Supply Chain Contracts" are as follows:

- To study the characteristics of various supply chain contracts
- To analyze the effect of supply chain contract on firm's profit and total supply chain profits

- To analyze the impact of demand pattern on the performance of the supply chain contracts
- To study the influence of wholesale price on the order quantity under various demand patterns

III. METHODOLOGY

Selection of Contracts

A contract is an agreement between two or more competent persons or companies to perform or not to perform specific acts or services or to deliver merchandise. A contract may be oral or written. A purchase agreement when accepted by a supplier becomes a contract. The products for the contracts may include items such as steel rods, cement, video CDs, music CDs, software, newspapers, magazines, books and products dealing with multiple retailers. Among the various types of contracts available the investigator selected Buyback contract, Quantity flexibility contract and Revenue sharing contract. These contracts are selected particularly because they are capable of improving the supply chain coordination as referred by Cachon and Lariviere (2005).

Demand Pattern for the Study

The demand for a product item is not known and probabilistic distribution is used to calculate the demand. Normal distribution is used in this analysis. The demand pattern normally falls in three categories namely low, normal and high demand pattern. The mean and standard deviation of the weekly demand of the selected product for a period of three months each are calculated for a period of nine months. During the nine months of study, based on the weekly demands, the data collected and analyzed falls in three categories such as low demand pattern in which the mean and standard deviation is 900 and 250 respectively, normal demand pattern in which the mean and standard deviation is 1000 and 300 respectively and as high demand pattern in which the mean and standard deviation is 1500 and 400 respectively. Based on the results obtained the demand pattern for the selected product for the study is undertaken by the investigator as low, normal and high demand patterns.

Low Demand Pattern: From the weekly demand pattern the demand with mean 900 and standard deviation 250 is assumed to be normally distributed and is taken as low demand pattern for the study by the investigator.

Normal Demand Pattern: From the weekly demand pattern the demand with mean 1000 and standard deviation 300 is

assumed to be normally distributed and is taken as low demand pattern for the study

High Demand Pattern: For the high demand pattern study, mean with1500 and standard deviation 400 is assumed to be normally distributed from the weekly demand pattern for the study

Parameters Used for the Study

3371

The following parameters which are used in the analysis

·c	= wholesale price/unit
w,	= Production cost/unit
's '	= Salvage value/unit
<i>'S_M'</i>	= Salvage value for the manufacturer
<i>'C_o'</i>	= cost of overstocking by one unit
<i>'C_u'</i>	= cost of under stocking by one unit
<i>'</i> b'	= buyback price/unit
ʻp '	= Retail price/unit
'f'	= fraction of revenue shared by retailer with supplier
S_{R}	= Salvage value of leftover units by retailer/unit
<i>`Q`</i>	= upper limit of demand in units
<i>'q</i> '	= lower limit of demand in units
Ъ,	= Demand in units
'ERP'	= Expected Retailer Profit
'ESP'	= Expected Supplier Profit
'ESCP'	= Supply Chain Profit
'μ'	= Mean
'σ'	= Standard Deviation
'csl'	= Cycle Service Level

Cycle service level is the probability that the demand during the season will be at or below order quantity '*O*'

At the optimal cycle service level '*csl*', the marginal contribution of purchasing an additional unit is zero. If the order quantity is raised from 'O' to 'O+1', the additional unit sells if demand is larger than 'O'. This occurs with probability 1-csl and results in a contribution of p-c

Analysis of Selected Three Contracts

The analysis of the selected three contracts is explained below:

Analysis of Buyback Contract

A buyback or return clause in a contract allows a retailer to return unsold inventory up to a specified amount, at an agreed upon price. The analysis of buyback contract starts with the calculation of expected retailer and supplier profit under low demand pattern, keeping the fixed wholesale price per unit, 'c' and varying the buyback price, 'b' for a given retailer price.

The corresponding cycle service level 'csl' is calculated using the formula as quoted by (Sunil Chopra, 2010)

```
Cycle service level = (p-c)/(p-s) = C_u/C_u+C_o ------(i)
Optimal order quantity = NORMINV (CSL, \mu, \delta) ------- (ii)
Expected profit for retailer is given by
ERP = (p-s)\muNORMDIST((O-\mu)/\delta,0,1,1)-(p-s)\deltaNORMDIST
((O-\mu)/\delta,0,1,0) -O(c-s)NORMDIST ((O,\mu,\delta,1) + O(p-c)
[1-NORMDIST((O,\mu,\delta,1)) ------ (iii)
```

Expected Overstock = $(O-\mu)$ NORMDIST $((O-\mu)/\delta, 0, 1, 1)$ + δ NORMDIST $((O-\mu)/\delta, 0, 1, 0)$ ------(iv) Expected profit for supplier = $O(c-v)-(b-Sm)^*exp$. Overstock at retailer ------ (v) Exp. Supply chain profit = Exp. retailer profit + Exp. Supplier Profit ------- (vi)

The analysis of low, normal and high demand pattern under buyback contract for wholesale price per unit, c = 3,4,5and 6 by varying the buyback prices for per cent change in expected retailer profit, expected supplier profit and order quantity are discussed in Tables I, II and III respectively under results and discussion.

Analysis of Revenue Sharing Contract

The Revenue sharing contract allows the manufacturer to charge the retailer a low wholesale price 'c' and shares a fraction 'f' of the retailer's revenue. Even if no returns are allowed, the lower wholesale price decreases the cost to the retailer in case of an overstock. The retailer thus increases the level of product availability resulting in higher profits for both the manufacturer and the retailer.

The manufacturer has a production cost v and the retailer charges a retail price p and can salvage any leftover units for S_R . The optimal order quantity '**O**' ordered by the retailer is evaluated using equation (vii) and equation (viii) and the cycle service level is calculated using equation (ix) as quoted by (Sunil Chopra, 2010).

Cost of under stocking = Cu = (1-f)*p - c)------ (vii) Cost of overstocking = $Co = c - S_R$ ------ (viii) Cycle service level = $C_u/C_u+C_o=[(1-f)(p-c)]/[(1-f)(p-S_R)]$ -(ix) Optimal order quantity = NORMINV (CSL, μ , δ) ------(x)

The manufacturer obtains the wholesale price c for each unit purchased by the retailer and a share of the revenue

for each unit sold by the retailer. The expected overstock at the retailer is obtained by using equation (xi)

Expected overstock at retailer = $(O-\mu)NORMDIST((O-\mu)/\delta,0,1,1) + \delta NORMDIST((O-\mu)/\delta,0,1,0)$ ------ (xi)

Expected retailer profit = $(1-f)*p*(O-exp. overstock at retailer) + (S_R*exp. overstock at retailer - c*O) ------ (xii)$

Exp. supply chain profit = Exp. supplier profit + Exp. retailer profit) ------- (xiii)

The variation in order quantity is also calculated. The analysis continues by changing the different values of wholesale price per unit, 'c' while keeping the fixed retailer price per unit, 'p' with the different revenue sharing fraction under low demand pattern. The percent change of expected retailer profit, supplier profit and order quantity are calculated.

The analysis of low, normal and high demand pattern under revenue sharing contract for wholesale price per unit, c= 3,4,5 and 6 by varying the buyback prices for per cent change in expected retailer profit, expected supplier profit and order quantity are discussed in Tables IV, V and VI respectively under results and discussion.

Analysis of Quantity Flexibility Contract

Under Quantity Flexibility contracts, the manufacturer allows the retailer to change the quantity ordered after observing the demand. If a retailer orders 'O' units, the manufacturer commits to providing $Q = (1+\alpha) O$ units, whereas the retailer is committed to buying at least $q = (1-\beta) O$ units. Both α and β are between 0 and 1. The retailer can purchase up to Q units, depending on the demand it observes. These contracts are similar to buyback contracts in that the manufacturer now bears some of the risk of having excess inventory. Because no returns are required, these contracts can be more effective than buyback contracts when the cost of returns is high. Quantity flexibility contracts increase the average amount the retailer purchases and may increase total supply chain profits.

The manufacturer incurs a production cost of v per unit and charges a wholesale price of c from the retailer. The retailer salvages any leftover units for S_R . The manufacturer salvages any leftover units for S_M . If retailer demand is normally distributed with a mean of μ and standard deviation of σ the various equations used to evaluate the contract given by the following equations as quoted by Sunil Chopra (2010).

Supplier is committed to produce $Q = (1+\alpha)^*O$ units - (xiv)

Retailer is committed to buy at least $q = (1-\beta)^*Q$ units --- (xv)

$$\begin{split} & \text{Expected quantity purchased by retailer is given by} \\ & Q_R = q \; F(q) + Q(1 - F(Q)) + \mu Fs[(Q - \mu)/\delta) - Fs((q - \mu)/\delta) - \delta[fs((Q - \mu)/\delta) - fs((q - \mu)/\delta)] & -----(xvi) \\ & \text{Expected quantity sold by the retailer is given by} \\ & D_R = Q \; [\; 1 - F(Q)] + \mu Fs((Q - \mu)/\delta) - \delta fs((q - \mu)/\delta & -----(xvii) \\ & \text{Expected overstock at manufacturer} = Q_R - D_R & -----(xvii) \\ & \text{Exp. retailer profit} = D_R * p + (Q_R - D_R) S_R - Q_R * c & --(xix) \\ & \text{Exp. manufacturer profit} = Q_R * c + (Q - Q_R)*S_M - Q*v - (xx) \end{split}$$

The variation in order quantity is also calculated. The analysis continues by changing the different values of wholesale price per unit, 'c' while keeping the fixed retailer price per unit, 'p' with the different flexibility constant under low demand pattern. The percent change of expected retailer profit, supplier profit and order quantity are calculated.

The analysis of low, normal and high demand pattern under quantity flexibility contract for wholesale price per unit, c = 3,4,5 and 6 by varying the buyback prices for per cent change in expected retailer profit, expected supplier profit and order quantity are discussed in Tables VII, VIII and IX respectively under results and discussion.

Analysis Within Contracts

The analysis within the three selected buyback, revenue sharing and quantity flexibility contracts is made by comparing within low, normal and high demand patterns for per cent change in expected retailer profit (% ERP), per cent change in expected supplier profit (% ESP) and per cent change in order quantity (% OQ) are analyzed for various wholesale price per unit, c = 3, 4, 5 and 6 is shown in Table X under result and discussions.

Analysis Between Contracts

The analysis is carried out between buyback, revenue sharing and quantity flexibility contracts for per cent change in expected retailer profit (% ERP), per cent change in expected supplier profit (% ESP) and per cent change in order quantity (% OQ) by varying wholesale prices per unit, c = 3, 4, 5 and 6 is shown in Table XI under result and discussions.

IV. RESULTS AND DISCUSSIONS

Analysis of Buyback Contract

The analysis of the buyback contract is made between low, normal and high demand patterns for different values of wholesale price per unit, 'c'.

ISSN [ONLINE]: 2395-1052

TABLE ILOW DEMAND PATTERN IN BUYBACK CONTRACT

										-			
2	in the rise in Ro. 10		Dag, Katal Textoria	e pett			Cap. Supp TOP	der profit			Supply of Factor	ais perfé 'is Re	
1	rina 19	з	4		٠	з	4		٠	з	4		٠
	0.00	3171	1923	100	122	2261	3022	3700	4222	2612	100	4000	4277
	0.22	3338	2047	124	122	2242	3060	3722	4220	2272	2027	4728	4472
	0.20	3208	2170	122	220	2226	3032	3730	6288	2726	2211	6827	4222
÷.	0.75	3883	2312	122	327	2204	3030	2722	4312	2207	2342	4931	4039
1	1.00	1000	2622	122	400	2122	3023	3760	4322	0010	2678	2060	4722
1	1.22	4000	2002	163	470	2122	3012	3766	6338	0223	2021	2123	4812
8	1.20	4212	2766	120	220	2130	3007	3765	6322	0007	2771	2271	4808
	1.72	4227	2822	120	860	2092	2000	3722	6300	0022	2020	2282	2000
	2.00	411	3112	104	722	2002	2226	3722	6320	0000	0070	2222	2105

TABLE II NORMAL DEMAND PATTERN IN BUYBACK CONTRACT

2 2 2	inder Sin Ro. 18		Dag. Kala "DR.P	lar profil 'in En.			Dep-Bage TELET	in peli h Ra			liveeti tä raon	ala profil Ta Ba	
- 10 - 10 - 10	rianti prim to Sau	з	4		•	з	4		٠	3	4		•
	0.00	3223	2127	1011	127	2229	3390	4120	4765	0022	2228	2130	4242
	0.22	3755	2276	1112	200	2212	2291	4122	4720	6222	2002	2266	4832
1	0.30	3200	2612	1212	-	2488	3391	4144	4747	6399	2009	2362	2032
2	0.72	4103	2200	1329	383	2421	3390	4120	4700	0224	2828	2422	2132
11	1.00	4320	2728	1666		2628	1111	4105	4790	0770	0112	2012	2222
	1.22	4220	2292	1282	229	2433	3324	4178	4812	0724	0279	2766	2342
1	1.30	4797	2071	1002	012	2606	3375	4190	4832	1201	8638	2002	2423
	1.72	2004	3222	1820	211	2369	3370	4200	4827	7632	0027	0022	2269
	2.00	2222	2622	1700	202	2328	3360	4200	4000	7000	0212	0172	2007

The result for low demand pattern in a buyback contract from Table I when wholesale price/unit, c = 3 and 4, reveal as the buyback price increases, the expected retailer profit and supply chain profit increases whereas the expected supplier profit decreases and when wholesale price/unit, c = 5 and 6 it shows that all the expected retailer profit, expected supplier profit and supply chain profit increases.

The result for normal demand pattern in a buyback contract from Table II when wholesale price/unit, c = 3 and 4, reveal as the buyback price increases, the expected retailer profit and supply chain profit increases whereas the expected supplier profit decreases and when wholesale price/unit, c = 5 and 6 it shows that all the expected retailer profit, expected supplier profit and supply chain profit increases.

TABLE III HIGH DEMAND PATTERN IN BUYBACK CONTRACT

2 2	in Re. 10		Dag. Kata TER.P	ie perit is Sa			Dep Jage TELET	der prefit in Ra.			luceb e 'acr	ain profit 'in En.	
с. С	riante prim In Elec	з	4		۰	з	4		٠	з	4		٠
	0.00	2621	6636	3203	2024	2002	2220	3000	4122	1683	1226	7100	0017
	0.33	2002	4021	3103		2606	3281	3830	6620	1670	1282	1034	9711
1	0.30	4282	2011	2711	1000	2200	2022	4242	4000	1002	1222	0000	0221
÷.	0.75	6101	3383	2222	1212	3247	3969	4232	4001	7610	7176	0000	0017
1	1.00	3762	2002	1042	1104	3629	4301	6792	2062	1211	7100	0734	0210
Į.	1.22	3320	2492	1205			4011	2012	2102	1226	1010	0221	2027
4	1.20	2912	2013	1202	202	4323	4272	2170	2010	1207	0007	0221	2212
	1.72	2202	1029	820	212	4000	2122	2222	4228	1102	0101	0105	4800
	2.00	2621	1222		2024	2002	2220		4122	7483	0.001	2782	

The result for high demand pattern in a buyback contract from Table III when wholesale price/unit, c = 3 and 4, reveal as the buyback price increases, the expected retailer profit and supply chain profit increases whereas the expected supplier profit decreases and when wholesale price/unit, c = 5 and 6 it shows that all the expected retailer profit, expected supplier profit and supply chain profit increases.

Analysis of Revenue Sharing Contract

The analysis of the Revenue Sharing Contract is made between low, normal and high demand patterns for different values of wholesale price per unit, 'c'.

TABLE IV LOW DEMAND PATTERN IN REVENUE SHARING CONTRACT

na V	aller prim in Ro. 10		Cop. Kala 1987	ier profil 'in Ro.			Dage Bagg	der prefs in Ro.	•		Supply she "SCT"	in profit In Ea.	
	balanda prim Cin Ray	з	4		•	з	4		•	з	4	3	٠
	0.00		3202	1210	202	3765	2010	0100	7107	1000	1224	1010	1212
	0.33		2611	1005	316	3057	2021	0170	7133	1240	8432	7844	1007
	0.30	2247	2027	1927	427	3000	2021	0172	7100	8212	1041	8020	1200
١ē	0.75	0122	3324	1002	244	3861	2020	0000	7192	1710	1173	8201	1120
11	1.00	0000	4001	2107	007	3012	2017	0224	1221	10001	1105	\$350	1007
	1.22	0000	4242	2242	786	3275	2012	0232	1220	10400	8324	8287	-
1	1.20	7190	6007	2222	827	1222	2004	0000	1220	10736	1011	1111	1207
	1.72	1202		2728	1007	3691		0000	7310	11007	1000	1000	8377
	2.00												

The result for low demand pattern in a revenue sharing contract from Table IV when wholesale price/unit, c = 3, 4, 5 and 6 reveal as the revenue sharing fraction increases, expected supplier profit increases whereas expected retailer profit and supply chain profit decreases.

The result for normal demand pattern in a revenue sharing contract from Table V when wholesale price/unit, c = 3, 4, 5 and 6 reveal as the revenue sharing fraction increases, expected supplier profit increases whereas expected retailer profit and supply chain profit decreases.

TABLE V NORMAL DEMAND PATTERN IN REVENUE SHARING CONTRACT

A. A.	adar An San B		tig ta CD	alar yala 16 De			Le Le CD	iar pub h 2a			500 A	ah pah h 2a	
5. 5	den alte rites in Esc.												
	- 640	an.	440	-	254	210	1225	0	-	-	-	-	240
	638	2454	-	1540	362	2007	365	-	-	EDH.		72	700
á	- 640	105	-		-	845	0	-	-		750	201	7177
1.5	4.91	an	542	386	101	26.0	-	-	-	105	755	754	-
1	1.00		200		1227	8	-	125	201		-	756	-
1	1.28	361	365	145	-	465	105	101	155	-	100	2,27	-
· ·	1.00	an	200	1254	-	-	885	145	875		786	657	100
	1.11	2758	1782	-	-	846	2612	175	427	200	200	-	204
	200	200	1246		254	15	-	115	-	-	227	633	200

TABLE VI HIGH DEMAND PATTERN IN REVENUE SHARING CONTRACT

					U		1 111	nC.	L				
A.S.	alar An An A		tay tay Car	dar ynde Is Sa			tie te co	far ynh 142a			Methy of NGT	uh puh h Sa	
3	inada rita in Sau									4			
	- 640	an	7000	-	450	303		-	-	12707	12224	1004	1155
	6.0	80		80	1015	-	865	405	244	12725	12280	100	1001
	0.0	747	-	400	-	-	-	700	705	1264	12104	140	1150
	6.78	7.22	105	1077	2010	865	-	7000	ers.	12/02	12124	1107	
	120	670	9	-	-	-	200	-	ENC.	1240	1004	1142	1000
	128	-		334	ine.	-	77.0	540	175	12204	875	1150	1000
	1.00	-02	202	2200	:50	7277	-	1710	000	12234	1160	112/0	0004
	1.78	-	-	1755		705	-	-	-	1256	12466	10752	0427
	10	246	224	1211	452	86	-	-	-	100	1120	10.01	1154

The result for high demand pattern in a revenue sharing contract from Table VI when wholesale price/unit, c = 3, 4, 5 and 6 reveal as the revenue sharing fraction increases, expected supplier profit increases whereas expected retailer profit and supply chain profit decreases.

Analysis of Quantity Flexibility Contract

The analysis of the Quantity Flexibility Contract is made between low, normal and high demand patterns for different values of wholesale price per unit, 'c'.

TABLE VII LOW DEMAND PATTERN IN QUANTITY FLEXIBILITY CONTRACT

A. A.	alar An An A		tiş ta Cir	dar yeld Is 2a			Le Le CP	for pub 162a			Negiji i Kor	lain puilt In Se	
3	den alte rises in San		$\sim 10^{-1}$								(\mathbf{x})		
	- 640	-	100		-	210	20	a	-	-	-	-	-
	6.58	-	2016	-	-	-	1005	-	-	Elses	Elses	Elect	Elect
á	640	875	-	-	-	200		-00	100	22	22	22	22
5	6.9	-	-	-	-	1004	ñ.	275	-	754	754	754	73
	1.00	100	-	-	-	1070	-	170	-	753	753	753	753
	1.28	80	875	en	1227	1004	276	140	-	755	755	755	755
<u> </u>	140	633	1001	-	365	100	2710	304	452	750	750	750	750
	1.78	-	1004	-	100	1856	2756	2005	-	-	-	-	-
	200												

Page | 503

The result for low demand pattern in a quantity flexibility contract from Table VII when wholesale price/unit, c = 3, 4, 5 and 6 reveal as the flexibility constant increases, expected retailer profit slightly increases and supply chain profit decreases at lower flexibility constant values and tend to increase at the higher values of flexibility constant and the expected supplier profit decreases.

The result for normal demand pattern in a quantity flexibility contract from Table VIII when wholesale price/unit, c = 3 and 4, reveal as the flexibility constant increases, the expected retailer profit increases and supply chain profit decreases at lower flexibility constant values and tend to increase at the higher values of flexibility constant and the expected supplier profit decreases whereas when wholesale price/unit, c = 5 and 6 it shows that when the flexibility constant increases the expected retailer profit and supply chain profit increases and there is no change in expected supplier profit.

The result for high demand pattern in a quantity flexibility contract from Table IX when wholesale price/unit, c = 3, 4, 5 and 6 reveal as the flexibility constant increases, both the expected retailer profit and supply chain profit increases earlier and tend to decreases later and the expected supplier profit increases.

TABLE VIII NORMAL DEMAND PATTERN IN QUANTITY FLEXIBILITY CONTRACT

Ş			Dag. Kata TER.P	in perit 'n Re			Dage Bagg	in pair			iseeb e Her	ala perfit Ta Ra	
10	5 1 1	3	4		٠	з	٩		٠	з	4		•
	0.00	1127	2627	1000	3123	0012	3300	6282	4820	2312	1717	4000	7855
Ι.	0.33	1020	2280		3333	0101	3190	4244	6762	2248	8778	4000	1216
	0.30	822	2011	210	3211	6070	3143	6701	4241	2174	8723	4030	8821
1	0.72	240	2022	121	3827	8223	3000	6727	4912	2110	1127	4007	
	1.00	722	2007	622	4012	0070	3020	4838	4827	2002	8762	4022	
	1.22	020	2770	227	4000	0074	3029	(222	(111	2020		4017	1000
1	1.30	211	2004	627	4012	0017	3013	6821	-	2013		4000	1000
	1.72	383	2021	324	4002	0010	3003	6833	4000	2002		4004	2001
	2.00	200	2071	212		0000	2002	4070	2000	2001		4002	

TABLE IX
HIGH DEMAND PATTERN IN QUANTITY
FLEXIBILITY CONTRACT

y is	nder for So. 10		tay ta CD	aller profe Te Sa			Le Le CD	iar pub 142a			Antip A SCP	nin pulk In Sa	
3.5	rina 1 Sau												
	- 640	7124	175		2001	2.0	205	-0	ne	040	040	040	040
	6.58	7766	672	122		365	175	-	-	1004	1004	1004	1004
á	6.0	-	-			365	1005	1070	-	10705	10702	10702	10703
	4.9	-	677	101	-	2766	-	1120	-	1004	1004	100	100
	1.00		-	80	201	200	a.	-	7.85	100	1000	1000	1000
1	1.25	778	-	-	-	8	-	156	22	10717	127.7	127.7	127.7
· ·	1.00	265	80	-	2077	270	6422	100	202	1945	1040	10405	1040
	1.71	7105	147	-	367		-	100	201	1004	1214	1004	1214
	100		100		201	-	104		200			2004	

Analysis Within Contracts

The analysis within the three selected buyback, revenue sharing and quantity flexibility contracts is made by comparing within low, normal and high demand patterns for per cent change in expected retailer profit (% ERP), per cent change in expected supplier profit (% ESP) and per cent change in order quantity (% OQ) for different wholesale prices 'c' = 3, 4, 5 and 6 and the results are discussed in Table X as shown below:

TABLE X ANALYSIS WITHIN EACH CONTRACT FOR %ERP, %ESP AND % OQ

	Whole sale price.	BUYBACK CONTRACT			REV		RNG	OUANTITY FLOIDLITY CONTRACT			
Demand pattern	terin Ra	DRP .	8	ŝ	SP BP	6	8	SP BP	8	500	
Low	8	\$1.95	7.89	15	61.50	142.51	12.71	0.89	14.70	109.21	
	4	61.64	1.34	11	71.71	84.90	17.75	1.77	14.70	109.21	
	5	94.59	1.50		65.00	49.79	29.87	5.66	14.70	109.21	
		491.99	2.99		91.82	9.70	35.04	12.74	14.70	109.21	
Normal	9	\$1.95	8.01	16	61.69	199.54	19.59	2.19	19.59	109.21	
	4	61.64	0.67	12	72.21	80.65	19.07	8.69	8.04	101.14	
		94.59	2.16	10	65.55	39.50	29.02	19.29	0.04	97.21	
		491.99	9.72		4.48	4.48	59.09	25.60	8.29	94.91	
High	9	\$1.95	7.29	15	62.22	166.59	12.27	2.09	29.49	109.21	
	4	61.64	0.78	11	70.18	67.77	17.08	8.19	29.49	109.21	
		94.59	1.89		79.49	49.49	25.80	17.29	29.49	109.21	
		401.00	0.00	,	85.14	14.50	00.54	50.00	10.40	109.01	

KEY: %ERP – Per cent for Expected Retailer Profit, %ESP – Per cent for Expected Supplier

Profit, % OQ - per cent for Order Quantity

From Table X, it reveals that the per cent increase in expected retailer profit is more when wholesale price c = 6 during low, normal and high demand pattern when compared within buyback contract. It is also noted that the percent increase in expected retailer profit increases as the wholesale price 'c' increases. It reveals that the per cent increase in

expected supplier profit is more when wholesale price c = 3 at low, normal and high demand pattern when compared within buyback contract. It reveals that the per cent increase in order quantity is more when wholesale price c = 3 at low, normal and high demand pattern and decreases as the wholesale price 'c' increases when compared within buyback contract.

From Table X, it reveals that the per cent increase in retailer profit is more when wholesale price c = 6 at low and high demand pattern when compared within revenue sharing contract. It reveals that the per cent increase in expected supplier profit is more (144.53%) when wholesale price c = 3 at high demand pattern and less when wholesale price c = 6 at normal demand pattern when compared within revenue sharing contract. It is also revealed that the % change in expected supplier profit decreases as the wholesale price c increases. It shows that the percent change in order quantity for the revenue sharing contract increases as the wholesale price increases under all the three demand patterns when c = 6, when compared within revenue sharing contract.

From the Table X, it revealed that the per cent increase in expected retailer profit in a quantity flexibility contract increases as the wholesale price c increases under three demand patterns when compared within quantity flexibility contract. It revealed that the per cent increase in expected supplier profit in a quantity flexibility contract remains constant at low and high demand patterns whereas it decreases as the wholesale price c increases under normal demand pattern when compared within quantity flexibility contract. It revealed that the per cent increase in order quantity in a quantity flexibility contract remains constant at low and high demand patterns whereas it decreases in order quantity in a quantity flexibility contract remains constant at low and high demand patterns whereas it decreases as the wholesale price c increases under normal demand pattern when compared within quantity flexibility contract.

Analysis Between Contracts

The analysis is carried out between Buyback, Revenue Sharing and Quantity Flexibility contracts for low, normal and high demand patterns for per cent change in expected retailer profit (% ERP), per cent change in expected supplier profit (% ESP) and per cent change in order quantity (% OQ) for various wholesale prices c = 3, 4, 5 and 6 is discussed below in Table XI

TABLE XI ANALYSIS BETWEEN CONTRACTS FOR %ERP, %ESP AND % OQ

	Whole sale price	% ERP			% ESP			% OQ		
Demand pattern	er in Ra	BBC	RSC	QFC	BBC	RSC	QFC	BBC	RSC	QFC
Low	3	\$1.95	61.30	0.98	7.99	14251	14.70	15	12.71	10921
	4	61.84	71.71	1.77	1.34	84.30	14.70	11	17.75	10921
	5	94.59	85.00	5.88	1.50	43.79	14.70	0	26.87	10921
	6	491.96	91.82	12.74	2.96	9.70	14.70	8	35.04	10921
Normal	3	\$1.95	61.69	2.19	8.01	13854	13.53	16	13.59	10921
	4	61.84	72.21	8.83	0.87	80.65	9.04	12	19.07	10114
	5	94.59	85.53	16.28	2.16	39.30	0.04	10	29.02	97.21
	6	491.96	4.48	25.60	3.72	4.48	8.23	8	38.08	94.81
High	3	\$1.95	62.22	2.08	7.29	14453	29.49	15	12.27	10921
	4	61.84	70.19	8.19	0.79	87.77	29.49	11	17.09	10921
	s	94.59	79.49	17.23	1.93	49.49	29.49	8	25.80	10921
	6	491.96	85.14	32.00	3.28	14.59	32.00	7	33.54	10921

KEY: BBC – Buyback Contract, RSC – Revenue Sharing Contract, QFC - Quantity

Flexibility Contract, %ERP – Per cent for Expected Retailer Profit, %ESP – Per

cent for Expected Supplier Profit, % OQ – per cent for Order Quantity

From the Table XI, it revealed that the per cent increase in retailer profit of a buyback contract is more when compared to revenue sharing and quantity flexibility contract. It is also noted that the per cent increase in retailer profit when compared among three contracts is less for quantity flexibility contract.

From the Table XI, it revealed that the per cent increase in supplier profit of a revenue sharing contract is more when compared to buyback and quantity flexibility contract. It is also noted that the per cent increase in supplier profit when compared among three contracts is less for buyback contract.

From the Table XI, it revealed that the per cent increase in order quantity of a quantity flexibility contract is more when compared to revenue sharing and quantity flexibility contract. It is also noted that the per cent increase in order quantity when compared among three contracts is less for buyback contract.

V. CONCLUSION

The impact of three types of supply chain contracts on manufacturer, retailer and supply chain profit are analyzed. From the results obtained it is concluded that the buyback contract increases the profits of the supply chain and allows the manufacturer increases its own profits and it also encourages the retailer to increase the level of product availability. It is also concluded that in revenue sharing contract the profit of the supply chain is more compared to the profit obtained from buy back contract. It is also concluded that the quantity flexibility contract is very effective if a supplier is selling to multiple retailers with independent demand.

REFERENCES

- Anupindi, R., Bassok, Y., 2002. Supply contracts with quantity commitments and stochastic demand. In: Tayur, S., Ganeshan, R., Magazine, M. (Eds.), Quantitative Models for Supply Chain Management. Kluwer, USA, pp. 197–232.
- [2] Barnes-Schuster, D., Bassok, Y., Anupindi, R., 2002. Coordination and flexibility in supply contracts with options. Manufacturing and Service Operations Management 4, 171–207.
- [3] Bassok, Y., Anupindi, R., 1997. Analysis of supply contracts with total minimum commitment. IIE Transactions 29 (5), 373–381.
- [4] Bresnahan, T.F., Reiss, P.C., 1985. Dealer and manufacturer margins. Rand Journal of Economics 16, 253–268.
- [5] Cachon, G.P., 2003. Supply chain coordination with contracts. In: De Kok, A.G., Grave, S.C. (Eds.), Handbooks in Operations Research and Management Science 11: Supply Chain Management: Design Coordination and Operation. Elsevier, Amsterdam, pp. 229–340.
- [6] Cachon, G.P., Lariviere, M.A., 2005. Supply chain coordination with revenue sharing contracts: Strengths and limitations. Management Science 51, 30–44.
- [7] Corbett, C.J., de Groote, X., 2000. A supplier's optimal quantity discount policy under asymmetric information. Management Science 46(3), 444–450.
- [8] Corbett, C.J., Tang, C.S., 1999. Designing supply contracts: Contract type and information asymmetry. In: Tayur, S., Ganeshan, R., Magazine, M. (Eds.), Quantitative Models for Supply Chain Management. Kluwer Academic Publishers, Boston, pp. 270–297.
- [9] Crespo_Marquez, A., Blanchar, C., 2004. The procurement of strategic parts. Analysis of a portfolio of contracts with suppliers using a system dynamics simulation model. International Journal of Produc- tion Economics 88, 29–49.
- [10] Dana Jr., J.D., Spier, K.E., 2001. Revenue sharing and vertical control in the video rental industry. Journal of Industrial Economics 49 (3), 223–245.

- [11] Edlin, A.S., Hermalin, B.E., 2000. Contract renegotiation and options in agency problems. Journal of Law Economics and Organization 16, 395–423.
- [12] Gerchak, Y., Wang, Y., 2006. Revenue-sharing vs. wholesale-price contracts in assembly systems with random demand. Production and Operations Management 13 (1), 23–33.
- [13] Jeuland, AP., Shugan, SM., 1983. Managing channel profits. Marketing Science 2 (3), 239–272
- [14] Lariviere, M.A., 1999. Supply chain contracting and coordination with stochastic demand. In: Tayur, S., Ganeshan, R., Magazine, M.(Eds.), Quantitative Models for Supply Chain Management. Kluwer Academic Publishers, Boston, pp. 233–268.
- [15] Lariviere, M.A., Porteus, E.L., 2001. Selling to the newsvendor: An analysis of price-only contracts. Manufacturing and Service Operations Management 3 (4), 293–305.
- [16] Spengler, J.J., 1950. Vertical integration and antitrust policy. Journal of Political Economy 58, 347–352.
- [17] Taylor, T., 2002. Supply chain coordination under channel rebates with sales effort effect. Marketing Science 48, 992–1007.
- [18] Tsay, A.A., 1999. The quantity flexibility contract and supplier–customer incentives. Management Science 45 (10), 1339–1358.
- [19] Tsay, A.A., Lovejoy, W.S., 1999. Quantity flexibility contracts and supply chain performance. Manufacturing and Service Operations Management 1 (2), 89–111.
- [20] Tsay, A.A., Nahmias, S., Agrawal, N., 1999. Modeling supply chain contracts: A review. In: Tayur, S., Ganeshan, R., Magazine, M. (Eds.), Quantitative Models for Supply Chain Management. Kluwer Academic Publishers, Boston, pp. 270–297.
- [21] Tomlin, B., 2003. Capacity investments in supply chains: Sharing the gain rather than sharing the pain. Manufacturing and Service Operations Management 5, 317–333.
- [22] Wang, Q., Tsao, D., 2005. Supply contract with bidirectional options: the buyer's perspective. International Journal of Production Economics 104, 30– 52.