
IJSART - Volume 5 Issue 2 –FEBRUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 471 www.ijsart.com

A Data Replication Using HQFR In Cloud Data

Center

Dr.N.Murali
1
, Mr.J.Noorul Ameen

2
, Ms.B.Abarnadevi

3
, Ms.K.Vinothini

4

Department of Computer Science And Engineering
 1 Professor, E.G.S.Pillay Engineering College, Nagapattinam, Tamilnadu, India.

 2 Assistant Professor, E.G.S.Pillay Engineering College, Nagapattinam, Tamilnadu, India.
 3,4 E.G.S.Pillay Engineering College, Nagapattinam, Tamilnadu, India.

Abstract- Cloud computing is a large scale parallel and

distributed computing system. It consists of a collection of

inter connected and virtualized computing resources that are

managed to be one or more unified computing resources. The

aim of the survey is an automated analysis or interpretation of

ongoing events in data replication system in cloud. However,

replica management systems usually need to migrate and

create a large number of data replicas over time between and

within data centers, incurring a large overhead in terms of

network load and availability. The performance of these

published works is analyzed efficiently with the evaluation

metrics such as Throughput, Execution time, Storage

utilization, Replica number, Network usage, Replication cost,

Recovery time and Hit ratio. Higher throughput value

indicates that the proposed approach achieves better result.

To support such type of applications continuously performing

data replication on the basis of QoS requirements of the

corresponding application. For performing such type of data

replication developing an algorithm using some concepts of

HQFR [High QoS First Replication] algorithm. Along with

the QoS requirement main goal is to minimize data

replication cost. So developing another algorithm which is

inspired from MCMF [Minimum Cost Maximum Flow]

algorithm. At the end will propose an efficient scheme for

data replication on the basis of QoS requirement.

Keywords- Cloud storage, Data availability, Data migration,

Replica management

I. INTRODUCTION

Cloud computing is a technology that utilizes the

internet and central remote servers to provide adaptable

services for its users. The integration product between the

traditional computing models such as distributed computing,

virtualization and the developing network technology was

termed as cloud computing. The computing, platform, storage

and service resource pools can be realized, which are abstract,

dynamic extending and manageable based on the above

computing model. It gives clients with most adaptable services

in a clear manner and with less expensive and most powerful

processors. The IT systems sent to satisfy their business

functionalities and to provide good Quality of Service (QoS)

parameters such as availability, scalability and performance.

Performance of a software system is one of the most important

QoS parameter used for client satisfaction. If for any

application that fulfills all business requirements but fail to

satisfy the performance quality, it leads to greater

dissatisfaction of software application end users. After the

introduction of cloud, clients are opting for cloud based

infrastructure in order to provide infrastructure needs of high

performing software applications and this is true even for

applications based on data replication strategies. Data

replication is a technique of creating identical copies of data

(files, databases, etc.) in geographically distributed sites. Data

replication is a general and simple approach to achieve these

goals. It has been widely used in many areas, such as the

Internet, peer to peer systems, and distributed databases. With

reference to Replication strategies, replica optimization is one

of the performance enhancement techniques for software

system.

A dynamic data replication with placement algorithm

strategy to enhance the performance of software system . Here

use dynamic data replication using popularity degree and

replica factor and placement algorithm.

Proposed approach consists of three phases:

1) Selecting Replica using PD,

2) Creating replica using RF and

 3) Placing replica.

In the first phase; find the file to be replicated by

calculating popularity degree (PD). In the second phase;

create replicas with the help of popularity degree and replica

factor (RF) in the third phase; place these replicas to the

suitable location. Thus the simulation results shows that by

using proposed approach it provides users with a system that

has higher data availabilities, lower data transmission delays,

and less bandwidth consumption for data access. The main

contributions are summarized as follows:

 The compute popularity degree to find the files needed to

replicate.

IJSART - Volume 5 Issue 2 –FEBRUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 472 www.ijsart.com

 And calculate replica factor to find the exact file to replicate

and to create the replicas.

 Finally to place the replicas in a suitable location placement

algorithm is used.

Fig : 1.1 Cloud data center

II. OVERVIEW OF DATA REPLICATION SYSTEM

Replication is used to advance system availability (by

aiming traffic with a replica following a failure), prevent data

reduction (by recovering lost files from a replica), and along

with improve performance (by scattering load around multiple

reproductions and by means of making low-latency access

offered to users about the world). On the other hand, there are

usually diverse ways to replication. Synchronous replication

assures just about all copies are informed, but perhaps incurs

excessive latency on updates. In addition, availability may be

impacted in the event synchronously duplicated updates can't

accomplish although some people might replicas are usually

offline. Asynchronous replication excludes excessive write

latency (in accurate, making the item appropriate pertaining to

wide area replication) but permits replicas being stale. In

addition, data loss normally takes place in the event an update

is lost caused by breakdown just before it is usually replicated.

Fig : 2.1 Data replication system

III. FRAMEWORK

To introduce proposed replica placement solution,

provide in this Section a motivating example to highlight some

limitations of distributed storage systems. Let us consider a

cloud system composed of two data centers (DC1 and DC2)

located at different geographic regions and connected through

a backbone network. It use HQFR to manage the storage

distributed over the two data centers. It assume that have 4

partitions A, B, C and D with sizes 300 GB, 100 GB, 500 GB

and 200 GB, respectively. Each partition has 4 replicas that

are placed by the as unique as possible algorithm that strives

to increase data availability. The initial mapping of the

replicas across the infrastructure. For instance, the four

replicas of partition A (denoted by A1, A2, A3 and A4) are

distributed across the two data centers. The same applies to the

other partitions. When a new data center is added to the

infrastructure (i.e., DC3), replicas are relocated again

according to the as-unique-as-possible algorithm used by

HQFR [28]. The optimal locations of the replicas according to

the as-unique-as possible algorithm. During this relocation,

two issues could arise. Firstly, the amount of exchanged data

to create the replicas could be huge and could overload the

network. Secondly, the replicas that are not yet created or are

in the process of being created are unavailable, and thus

cannot process clients’ requests. Indeed, the management tool

that directs user requests to the appropriate locations of data

should have an updated view of all replica placements. In

HQFR, the new placement is used to direct clients’ requests,

even before the migration finishes. That is, the management

tool becomes oblivious to the old placement of replicas.

Therefore, some client requests may be directed to the new

placement, even if some replicas haven’t yet wholly arrived at

their final destination, thus negatively impacting availability.

Moreover, to ensure availability of data during migration, the

management tool limits the number of migrating replicas of

each data for a time interval. Indeed, a new placement of

replicas is computed after 1-hour delay to move only one

replica of each data in the respective interval, with the

assumption that the availability of replicas will be ensured

(i.e., all clients’ requests will be accommodated).

HQFR algorithm:

As the name indicates High QoS First Replication

algorithm. The main thing is that are considering the QoS

requirement from the aspect of request information and its

access time only. In HDFS the data is divided into 64MB data

blocks. The replication factor is two in HDFS. There are two

numbers of copies of data block other than the original one.

And that two copies are stored on different Data Nodes or

different data racks. And the Name Nodes keeps track of all

the replicas other than original copy and the mounted on

different data racks to avoid rack failure.

IJSART - Volume 5 Issue 2 –FEBRUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 473 www.ijsart.com

IV. EXPERIMENTAL RESULT

 As the name indicates the applications with high

QoS should be replicated first. According to knowledge the

high QoS application have stricter requirements in the

response time of a data access time than the normal

applications. High QoS requirement application should take

precedence over the low QoS requirement application to

perform data replication. To sort all the applications according

to their QoS requirement in a way, the application with high

QoS should come first and then the lower one. If the data

replication space is limited then first stores the data replicas of

high QoS applications. When the high QoS application reads a

corrupted data replica , its QoS requirements can be supported

continuously by retrieving the data replica from high

performance node.

While processing these replication request have to

find the qualified node’s list which helps to satisfy the QoS

requirements of the appropriate application while running. The

QoS requirement is given in the form of access time of that

data block which is requested by an application. Note that

while finding qualified node it should satisfy two conditions:

The requested node Ri and its qualified node Qj should not be

mounted in the same rack. It should belong two different

racks.

Rack(Ri) ≠ Rack(Qj)

Where Rack() is the function to determine in which

rack a node is located.

 The total data replica access time from qualified node Qj to

request node Ri (T access(Ri,Qj))should be smaller than the

QoS requirement of running application in Ri which is Tqos. T

access (Ri,Qj) ≤ Tqos

After finding the qualified nodes by using these two

conditions the data block can store its one data replica in each

qualified nodes and the qualified nodes update their

replication space respectively.

V. REPLICATION COST

 A replica with high replication cost is not a suitable

candidate for replacement because if the grid site needs that

replica in the future, it should pay a high cost for replicating it

again, and this is not economical. Therefore, the RPV will be

greater if Replication Cost of that replica is high.

VI. CONCLUSION

Data replication has been widely adopted to improve

data availability and to reduce access time. However, replica

placement systems usually need to migrate and create a large

number of replicas between and within data centers, incurring

a large overhead in terms of network load and availability. In

this concept, proposed HQFR, an efficient Replica migration

scheme for distributed cloud Storage systems. HQFR

complements replica placement algorithms by efficiently

managing replica creation by minimizing the time needed to

copy data to the new replica location while avoiding network

congestion and ensuring the required availability of the data. It

strives to increase data availability, improve cloud system task

successful execution rate and minimize cloud system

bandwidth consumption. The performance is compared with

the existing system. From the experimental results, showed

that proposed technique outperforms than the existing

technique. An efficient scheme to solve the QoS aware

problem in data replication. First algorithm is inspired from

HQFR algorithm. This algorithm cannot give optimal solution

to the QoS aware problem. So proposed another algorithm

which gives optimal solution in polynomial time. This

algorithm also helps in achieving both the objectives of which

is minimization of replication cost and minimization of QoS

violated data replicas. In future, going to find out an efficient

energy optimization algorithm to energy consumption problem

of nodes while performing data replication in cloud computing

system.

IJSART - Volume 5 Issue 2 –FEBRUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 474 www.ijsart.com

REFERENCES

[1] S. Y. Ko, R. Morales, I. Gupta, “New worker-centric

scheduling strategies for data-intensive grid applications”,

In Proc.ACM/IFIP/USENIX Int’l Conference on

Middleware, pp. 121-142, 2007.

[2] W. Kong, Y. Lei and J. Ma, “Virtual machine resource

scheduling algorithm for cloud computing based on

auction mechanism”, Journal homepage, Vol. 127, No.

12, pp. 5099-5104, 2016.

[3] H. Lamehamedi,“Decentralized data management

framework for data grids”, PhD thesis, Faculty of

Rensselaer Polytechnic Institute, New- York, Vol. 23, No.

1, pp. 109-115, 2007.

[4] M. C. Lee, F. Y. Leu and Y. P. Chen, “PFRF adaptive

data replication algorithm based on star-topology data

grids: An”, Future Generation Computer Systems, Vol.

28, No. 7, pp. 1045-1057, 2012.

[5] L. Meyer, J. Annis, M. Wilde, M. Mattoso and I. Foster,

“Planning spatial workflows to optimize grid

performance”, In: Proc. ACM Symp. Applied Computing,

pp. 786-790, 2006.

[6] S. J. Pan and Q. Yang, “A survey on transfer learning”,

IEEE Transactions on Knowledge and Data Engineering,

Vol. 22, No. 10, pp. 1345-1359, 2010

[7] J. M. Perez, F. G. Carballeira, J. Carretero, A. Calderon

and J. Fernandez, “Branch replication scheme: a new

model for data replication in large scale data grids”,

Future Generation Computer Systems, Vol. 26, No. 1, pp.

12-20, 2010.

[8] M. Rabinovich, I. Rabinovich and R. Rajaraman,

“Dynamic replication on the internet”, Technical Report,

HA6177000–980305-01-TM, AT&T Labs, March 1998.

[9] H. Shen, “An efficient and adaptive decentralized file

replication algorithm in P2P file sharing systems”, IEEE

Transactions on Parallel and Distributed Systems, Vol.

21,No. 6, pp. 827-840, 2010.

[10] D.W. Sun, G.R. Chang, S.Gao, L.Z.Jin and X.W.Wang,

“Modeling a dynamic data replication strategy to increase

system availability in cloud computing environments”,

Journal of computer science and technology, Vol. 27, No.

2, pp. 256-272, 2012.

