
IJSART - Volume 5 Issue 2 –FEBRUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 398 www.ijsart.com

Reducing Size of Updates In Android Applications

Sethupathy.K 1, Geethamani G.S2

1Dept of Information Technology
2Associate Professor, Dept of Information Technology
1, 2 Hindusthan college of Arts and science, Coimbatore

Abstract- Android is an operating system for mobile devices
which is based on Linux Kernel and it is designed for
Smartphones, tablets and touch screen phones. Android is
developed by Open Handset Alliance and led by Google. It is
an open-source Operating System. There are millions of
applications which are developed in android and are released
in Android Market. New versions of the existing applications
are developed which overcomes the errors present in the
previous application. New versions come up in market in a
time span of less than week. In a newer version of existing
application is developed, entire application is not changed;
only a part of application which causes the error, is changed.
Major part of the application is the same. Whenever a newer
version of the existing application, which is released in market
is downloaded by the users then the entire application gets
downloaded. It includes re-downloading of the part of the
application which already exists in the phone. This increases
the network traffic which thereby increasing the load on the
cellular infrastructure. Instead of downloading the entire
application again, one can only download a patch of the
application which is updated. This patch is the difference
between the older version and the new version. The part of the
application which is changed, only that part can be
downloaded to reduce the network traffic. In this paper we
present technique for reducing the size of the application
updates on android platform by using DELTA (Delta
Encoding for Less Traffic for Applications) algorithm.

Keywords- Android, Delta encoding, Delta++ encoding.

I. INTRODUCTION

 Smartphone is a device which is similar to basic
mobile phone but has few added features. It has more
advanced computing capability than any other basic phone.
Smart phone has features like touch-screen, media player,
camera, GPS, web-browsing, Wi-Fi, motion, sensors, etc.

There are many mobile phone operating systems like
android, iOS, Symbian, Windows, Blackberry etc. Amongst
all the operating systems, Android is widely used. Android is
developed by Google and it is based in Linux kernel.

According to a survey done in July 2015, there are
1.6 billion android applications available for Smartphones in
Android market. Lakhs of applications are being downloaded
each day from the android market. These applications are
updated timely to remove errors if any and add new features.
New versions of the same application may be released in a
very less time gap of may be a week. Each time a new version
of the application is downloaded, entire application along with
the change is downloaded. This results in increasing the
network traffic and brings load on cellular infrastructure.
Mobile operators are spending lots of money to increase its
speed and accuracy.

Fig -1: System view of android application updating

1.1 Distribution of Android Application

In Android, APK stands for Application Package
File. APK is the file format used to install android applications
on Android operating system. APK files are based on JAR file
format which are used in Java applications. APK file contains
program bytecode, resources, assests, certificates and manifest
files.

Whenever a new version of an application is released,
its update is sent to end device. The end user downloads the
new version and it gets installed in place of previous
application. Simplicity is the main advantage of this method. It
is very easy to download an application and install it. It
requires no other operation is required. One of the major
drawbacks of this method is that, even a small change is done
in the new version; still the full new application has to be
downloaded. Entire application is downloaded even if only

IJSART - Volume 5 Issue 2 –FEBRUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 399 www.ijsart.com

few bytes are changed. This increases network traffic.
Network operators are constantly spending huge amount of
money to upgrade their speed and accuracy. Instead of
downloading entire application, only the difference between
the new application and the old application can be
downloaded. This method will reduce the network traffic as
the data to be downloaded is less in comparison with the
earlier method. This method is known as delta encoding
method. It has few shortcomings which are overcome by
DELTA++. [2]

II. OVERVIEW

There are 1.6 billion Android applications. These
applications may have some bugs or in some cases there is a
need to add new additional features. Therefore, new versions
of these applications keep on releasing. Sometimes, the time
gap between releases of two versions of same application is as
less as one week. When a new version of an application is
being downloaded whose older version is exists in the
smartphone, entire application gets downloaded. Due to this,
there is an increase in traffic and load on data center. To
decrease the size of the updates, Delta encoding is used.
Instead of downloading the entire application again, only the
difference between the two versions can be downloaded on the
smartphone.

Google developed Google Smart Application Update
using Delta Encoding Method. Smart Application Update was
successful is downloading the difference between the two
versions of the same application.

But there were few major disadvantage of Smart Application
Update

 Smart Application Update was not optimal.
 It created data traffic instead of reducing it.
 Its encoding was at Android Application Package

(APK) level only.

Delta Encoding Algorithm was named as DELTA++.
DELTA++ overcame all the disadvantages of Smart
Application Update. DELTA++ is a technique used to
dispatch the difference between two versions of same android
application. It unpacks Android Application Package and
compresses each element; hence there is a smaller patch to
download. DELTA++ was further refined and named as
Improved DELTA++. [4]

III. LITERATURE SURVEY

3.1 DELTA: Delta Encoding for Less Traffic for Apps

Data encoding method is also known as data
differencing method. It is an approach to transfer the
difference between two files rather than sending the file
themselves. It takes old file and new file as input to find
difference between two files. This difference is referred to as
patch. This patch is the difference between the two files and
patch is transferred. The implementation depends on the size
of patch, amount of memory and time required to construct the
patch. Two tools, UNIX bsdiff and bspatch were developed to
construct patches. The bsdiff is based on bzip2 compression
tool. The compression tool is an implementation of the
Burrows-Wheeler algorithm. This is an open-source
implementation. By taking into consideration the internal
structure of the executable files, bsdiff uses suffix sorting. By
considering internal structure, this method produces smaller
patch than any other algorithm. Courgette is the bsdiff tool
used for optimization and it is used to generate patches for
Google Chrome browser. Courgette decreases the size of patch
by considering the compiled application file. Disassembling is
used to find all the internal pointers. By this method, it is
possible to achieve 10 times smaller patch size. [1]

Fig -2: Delta Differencing and Compression

3.2 Delta++: Reducing the Size of Android Application
Updates

Google developed Google Smart Application Update
to reduce the size of the application update. It used It was
improved and was used to construct a patch of the application
installed on users device. These solutions were able to reduce
the size of the android application update, but were not
optimal. Delta encoding algorithm works on the Android
Application Package (APK) level only. It limits the possible
reduction of the android patch. To overcome the shortcomings
of Delta Encoding method and reduce the update traffic even
more, Delta was renewed and named as DELTA++.
DELTA++ reduces traffic more compared to Delta encoding
method. DELTA++ calculates the difference between the two
files. It constructs a patch, a newer version from the older
version. Content provider can update smartphone application
by transferring the difference between the older version and
newer version and then applying the delta patch locally on the
smartphone. DELTA++ unpacks the APK and compresses

IJSART - Volume 5 Issue 2 –FEBRUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 400 www.ijsart.com

each module. DELTA++ reduces size of update by 77%.
DELTA++ takes more time to deploy as it requires a more
complex application patch. [2]

3.3 An Algorithm for Differential File Comparison

Difference between two files is calculated by the
program diff. The program diff is designed such that it would
make efficient use of time and space and calculate the
difference between the two files. Time and space usage
depends upon the length of the file. The algorithm diff solves
longest subsequence and finds the line that does not change.
To obtain good performance, various techniques of hashing,
presorting into equivalence classes, dynamic storage allocation
and merging by binary search are used. [5]

3.4 Naive Differences of Executable Code

The android applications are updated frequently. As
security laws are breached and the speeds with which they are
exploited have made it necessary for the application to be
updated very frequently. Binary updates are more convenient
than source code updates. Distribution of pointers throughout
the files makes it difficult to produce patches. Earlier methods
depend upon file’s internal structure to produce a patch. Naïve
method produces small patches for any executable files. [6]

IV. ALGORITHM

DELTA stands for Delta Encoding for Less Traffic
for Applications. It is useful in reducing application update
traffic. DELTA is based on delta encoding tool, bsdiff and it
enables savings in data centers and mobile networks. A new
DELTA++ method is introduced and by implementing this,
further reduces the transmitted package size and attains greater
savings. Size of a patch computed using delta differencing
algorithm mainly depends on the total difference between two
files. Use of compression in files influences resulting patch
size. Suppose two files are slightly different but, their
compressed versions may have great difference on binary
level. This is due to the ways through which they are passed
during compression. Similarly happens in the case of APK
application package, too. It is basically a compressed archive
of all files belonging to an Android application. The concept
of DELTA++ is to calculate difference between the
application files of APK instead of compressed APK packages
themselves. Original DELTA method produces delta
difference of old version APK file of application with the new
version in the form of a patch. This delta patch is generated in
the server by using bsdiff delta encoding tool. The bspatch
tool is used to deploy the patch in the smart phone. DELTA
works similar to Google Smart Application Update and it will

not unpack the APK file. DELTA++ is improved on DELTA
by exploiting the specific structure of APK package and
decompressing it. Thus, this way a smaller sized patch is
produced. [2]

The DELTA++ method is divided into two parts:

 Patch Computation
 Patch Deployment

Patch computation is performed on the server side of
the data center. It needs to be done only once for patch version
of each application. Patch deployment is carried out on the
user smart phone and it is repeated when an application is
updated.

4.1 Procedures for the Patch

The procedure for DELTA++ patch is followed:

 Decompress the APK packages of old version and the
new one of an application.

 The manifest files of both are traversed to obtain

names, paths and SHA-1 hash digests of each file of
both APK packages.

 The files of new version are denoted as NEW (if the

file is present only in the new version, not in the old
version), UPDATED (if file is in both versions but
SHA-1 sums are different), SAME (if both versions
contain the file but deleted in the new version) or
DELETED (if old version contains the file but deleted
in the new one).

 Copy the latest version files marked as NEW into the

constructed patch.

 The latest version files marked as UPDATED are the
input of bsdiff delta encoding algorithm to determine
the difference of the old version with the new one.
The computed difference is now copied into the
constructed patch. In some cases, the difference of
small files may be greater than their individual sizes.
This is due to the overhead along with the creation of
delta file. Here, the new file is again marked as NEW
and it is copied into the patch.

 The files marked as SAME kept untouched.

IJSART - Volume 5 Issue 2 –FEBRUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 401 www.ijsart.com

 PatchManifest.xml file is created and it is included in
the patch. It acts as a description and includes
information about the application version that can be
updated using this patch. It also provides information
such as NEW files included in the patch and delta
differences determined between UPDATED files.
PatchManifest.xml file also contains information
about files marked as DELETED.

 In the final stage, the patch constructed is compressed

into a ZIP archive by using bzip2. Now, the
compressed patch can be sent to the Android device to
be deployed in it. [8]

 the new version in the form of a patch. This delta
patch is generated in the server by using bsdiff delta
encoding tool. The bspatch tool is used to deploy the
patch in the smart phone. DELTA works similar to
Google Smart Application Update and it will not
unpack the APK file. DELTA++ is improved on
DELTA by exploiting the specific structure of APK
package and decompressing it. Thus, this way a
smaller sized patch is produced. [2]

The DELTA++ method is divided into two parts:

 Patch Computation
 Patch Deployment

Patch computation is performed on the server side of
the data center. It needs to be done only once for patch version
of each application. Patch deployment is carried out on the
user smart phone and it is repeated when an application is
updated.

4.2 Deploying the Patch into an Android mobile
The steps to deploy DELTA++ patch in the Android device
are as follows:-

1. Decompress the received patch into any temporary
directory.

2. Application Info class is used to load APK package
of current version.

3. Delete all files that are not required from the old
version of application using the PatchManifest.xml
file included in the patch.

4. Apply all the differences in patch to the proper files
and updating them.

5. Copy all NEW files of patch into the old version of
application. Now, the old version of application
contains the same files of new version.

6. The APK package is created by compressing all files
into ZIP archive with .apk extension.

7. Finally, the Android Package Installer, the built-in
application is used to install the resulting APK
package thus completing update of application.

DELTA++ has been implemented as server side

software. It is responsible to construct patches and serve them
by request. An Android application is developed to deploy the
patches received and update the installed applications. [8]

V. ADVANTAGES OF DELTA ENCODING

DELTA was released before Google Smart
Application Update. DELTA algorithm could decrease the
size of application update. It could also reduce the network
traffic which saved the cellular network and data center.
DELTA was improved to create DELTA++ which enables
larger decrease in network traffic. Difference or diff is
calculated by DELTA++ and Google Smart Application
Update. Diff is the difference between two files which are
older version and the newer version. It is also known as patch.
By transferring the small patch, the content provider can
update a smart phone application.

The content provider can update a smart phone
application merely by transferring the diff. The diff is then
applied locally on the smart phone. However, DELTA++
unpacks the APK. Later, it compresses their individual
module, which was not done in Google Smart Application
Update.

 It could reduce the update traffic.
 It is more optimal compared to other techniques. It

reduced network traffic to a greater extent compared
to other techniques.

 Cost efficient. [2].

VI. ANDROID APPLICATION UPDATING AND
DELTA ENCODING

Android Native Development Kit (NDK) ports

bspatch source code. Android 2.3.4 with API level 10 is
targeted by it. There were two jobs, creating patches and
applying patches. Software was developed for doing both
these jobs.

The new application update process can be described as
follows:

1. A patch is computed on server.
2. Patch is downloaded on Smartphone.

IJSART - Volume 5 Issue 2 –FEBRUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 402 www.ijsart.com

3. To obtain a new version of the installed application.
This was done by applying the downloaded patch on
the smart phone.

4. The new version of application is installed on the
Smartphone

5. Patch is deleted from the Smartphone. [1]

VII. CONCLUSIONS

Delta Encoding can be used in cross platform
applications for decreasing the size of application updates and
thus reducing mobile network traffic in Blackberry, iOS and
other mobile operating systems as well. Currently rsync
algorithm, which is a type of delta encoding, is used to
minimize network usage. rsync is typically used to
synchronize files and directories between two different
systems. Similar algorithms can be used for reducing the size
of application updates in different mobile operating systems.

REFERENCES

[1] Samteladze, N.; Christensen, K., DELTA: Delta encoding

for less traffic for apps, Local Computer Networks
(LCN), 2012 IEEE 37th Conference on, vol., no., pp.212,
215, 22-25 Oct. 2012

[2] Samteladze, Nikolai; Christensen, Ken, "DELTA++:
Reducing the Size of Android Application Updates,"
Internet Computing, IEEE, vol.18, no.2, pp.50, 57, Mar.-
Apr. 2014.3

[3] M. Burrows and D. J. Wheeler, “A block-sorting lossless
data compression algorithm”, SRC Research Report
124,Digital Corporation, May 10, 1994.

[4] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula
and D. Estrin, A first look at traffic on smart phones,
Proceedings of the 10th Annual Conference on Internet
Measurement, pp. 281- 287, 2010.

[5] J. W. Hunt and M. MacIlroy, “An algorithm for
differential file comparison”, scanned from Bell

[6] Laboratories Computing Science Technical Report 41
dated July 1976.
C. Percival, “Naive differences of executable code”, draft
paper dated 2003

[7] Shivender Singh, Anil K. Sarje, Manoj Misra “ClientSide
Counter Phishing Application using Adaptive Neuro-
Fuzzy Inference System” 978-0-7695-4850-0/12 © 2012
IEEE.

[8] Madhuresh Mishra, Gaurav, Anurag Jain “A Preventive
Anti-Phishing Technique using Code word” International
Journal of Computer Science and Information
Technologies, Vol. 3 (3) , 2012,4248 – 4250.

[9] Mahmoud Khonji, Youssef Iraqi, Andrew Jones
“Mitigation of Spear Phishing Attacks: A Content-Based

Authorship Identification Framework” 978-1-908320- 00-
1/11© 2011 IEEE.

[10] Maher Aburrous, M. A. Hossain, Fadi Thabatah, Keshav
Dahal “Intelligent Phishing Website Detection System
using Fuzzy Techniques”.

[11] V.Shreeram, M.Suban, P.Shanthi, K.Manjula,
“Antiphishing detection of phishing attacks using Genetic
Algorithm” 978-1-4244-7770-8/10/ ©2010 IEEE.

[12] Sadia Afroz, Rachel Greenstadt “PhishZoo: Detecting
Phishing Websites By Looking at Them”.

[13] Michael Atighetchi, Partha Pal “Attribute-based
Prevention of Phishing Attacks” 978-1-4673-2104-4/12/
©2012 IEEE.

[14] Huajun Huang, Junshan Tan, Lingxi Liu
“Countermeasure Techniques for Deceptive Phishing
Attack” 978-0-7695-3687-3/09 © 2009 IEEE.

[15] Shinta Nakayama and Hiroshi Yoshiura, Isao Echizen
“Preventing False Positives in Content-Based Phishing
Detection” 978-0-7695-3762-7/09 $26.00 © 2009 IEEE

