
IJSART - Volume 5 Issue 1 –JANUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 246 www.ijsart.com

 Denoising Document

Patel Ronakkumar J.1, Prof. Ajaykumar T. Shah2

Department of Computer Engineering
1 Alpha College of Engineering & Technology, Gujarat, India

2H.O.D, Alpha College of Engineering & Technology, Gujarat, India

Abstract- Optical Character Recognition (OCR) is the process

of getting typed or handwritten documents into a digitized

format. The motivation of converting to a digitized format is to

ensure security, accessibility, edit-ability and ease of searching

and sharing.

Also, digital documents don’t get dirty and cannot be ruined by

coffee stains. [2] Unfortunately, a lot of documents eager for

digitization are being held back. Coffee stains, faded sun spots,

dog-eared pages, and lot of wrinkles are keeping some printed

documents offline and in the past.

The image resulting from the scanning process may contain a

certain amount of noise. Depending on the resolution on the

scanner and the success of the applied technique for

thresholding, the characters may be smeared or broken. Some

of these defects, which may later cause poor recognition rates,

can be eliminated by using a pre-processor to smooth the

digitized characters.

Keywords- Denoising Document, Machine Learning, OCR,

Neural Network

I. INTRODUCTION

This Project “DENOISING DOCUMENT” is a pre-

processor program which will process the image input of OCR.

Denoising Document project provide the solution of

problem mentioned above. In this I train the machine learning

model by giving it noisy document portion and corresponding

clean document portion. To maximize the amount of training

data, instead of simply cropping, i could ”slide” a window

across the picture, and train on batches of windows. This also

allows us to clean documents of any size. At test time, I perform

the same sliding operation, ”clean” each windows, and stich

them together to reconstruct the clean version of the original

photo. For a pixel overlapped by different windows, i take the

average of the corresponding pixels in each window as the final

prediction.

Given a dataset of images of scanned text (synthetic

images) that are ”noisy” with stains and wrinkles, I propose to

clean up the noise and help with the digitization process.

Dataset:

Dataset Kaggle provided a dataset which consists of

two sets of images - train and test. These images contain various

styles of text, to which synthetic noise has been added to

simulate real-world, messy documents. The dirty images

contain stains as well as creased paper. The training set also

includes the cleaned up images of those found in the test file

(train cleaned) [2].

Original Image

Cleaned Image

II. LITERATURE REVIEW

There are many places where OCR can’t work

properly because of the noise to overcome this problem I train

the model according to previous data to predict the clean data

according to noisy data.

We divide the document portion to small pieces. This

pieces contain some pixels. To create this pieces we use sliding

operation.

At test time, we perform the same sliding operation,

”clean” each windows, and stich them together to reconstruct

IJSART - Volume 5 Issue 1 –JANUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 247 www.ijsart.com

the clean version of the original photo. For a pixel overlapped

by different windows, we take the average of the corresponding

pixels in each window as the final prediction. This also has an

”ensembling effect”.

 The main model that we use to denoise is an

autoencoder-like neural network.

𝑓0: 𝑅
30×30 → 𝑅30×30 given by,

𝑓𝜃 = 𝑓10𝑓2

where f1 is a convolutional encoder, f2 is a decoder

(feedforward or deconvolutional), and θ is the parameters

vector of f. f1 has the purpose of projecting the original image

into a new space of lower dimension, whereas f2 attempts to

restore the original image from this representation. A certain

degree of information will be lost in the process, which

hopefully is the noise we want to remove.

There is two methods which I can use to fulfil our

requirements.

Random Forest

Here I propose a purely machine learning technique

without any pre-processing whatsoever. The basic idea is to use

a random forest regressor model to predict the pixel intensity

based on neighbouring pixels.

Algorithm:

Pad out each image by an extra 2 pixels (i.e.) NxN

becomes (N +2)x(N +2).

Run a 3×3 sliding window on the image. Please note

that every pixel of the original image will at least become the

centre of the sliding window once.

Use all 9 pixels within the sliding window as

predictors for the pixel in the centre of the sliding window (i.e.)

All the pixels in the sliding window of the dirty image acts as a

feature to predict the centre pixel of the window for the cleaned

pixel.

Use a Random Forest regressor model to predict the

pixel brightness.

(a) Original Image (b) Cleaned Image

(c) Original Image (d) Cleaned Image

Figure 1: Using Random Forest a)

(a) Original Image (b) Cleaned Image

Figure 2: Using Random Forest b)

While this method succeeds in removing the stains [5],

it does not work very well with dog-ears and creases [4], in fact

random forest just makes it worse. It looks as if random forest

takes the stain and sprinkle it across the entire image so that the

stains are not concentrated in one particular spot but more

milder but widespread. This, as one can see from the cleaned

image, is not conducive for reading and thus will not help us in

our goal of converting to a digitized format for future use.

The RMSE score in Kaggle is 0.32492.

Challenges Faced

Fitting the training data to the model was gigantic task.

I initially tried partial fitting but the results obtained were just

random noises. The entire data-set had to be loaded

simultaneously to get at least a proper output. Also training the

model took around half an hour as I were unsure how to use

GPU for this computation. To facilitate easier understanding I

opted to go with IPython which is a very powerful interactive

python shell. This helped us in saving the trained models and

tracking variables without re-doing the entire thing.

Neural Network

I create a simple feed-forward neural network that de-

noises one pixel at a time. This neural network has one hidden

layer. Each layer contains a weight matrix W and a bias vector

b and computes the function:

https://ipython.org/

IJSART - Volume 5 Issue 1 –JANUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 248 www.ijsart.com

act(input ∗ W + b) where act is typically some sort of

sigmoid function.

The activation function of the input layer is the tanh

function, while the activation function for the hidden layer is

the clip function of Theano which clips the value based on the

given minimum and maximum value (i.e.)

Figure 3: Artificial Neural Network [6]

The hidden layer contains 10 neurons, the no. of

neurons for the input is 29 (which is the no. of feature vectors)

and output layers has one neuron which is the pixel brightness.

Before passing the images to the neural network, we

first calculate the features of the image. I consider neighbouring

pixels of the centre pixel using a 5x5 window as boundary as

features. So for each pixel I have a feature vector containing 25

feature points. Also I do some initial image processing on these

image and take the output as features for the neural network. I

use median blur with kernel size 5 and kernel size 25. Using the

Sobel operative I calculate the first and second derivative of the

images. For each pixel of the image, I have 4 image processing

outputs, the median blur with kernel size 5,the median blur with

kernel size 25,first Sobel derivative and second derivative.

These are then added to the already existing 25 feature points

making the total to 29 feature points for each pixel. The feature

vectors are combines together to create a feature matrix for the

image and given to the neural network.

Central Idea:

• Take a pixel from an image

• Calculate feature vector as mentioned above.

It contains a total of 29 feature points.

• This is the input to Neural Network Model.

• Output is the de-noised pixel (i.e.) the

intensity of the cleaned pixel.

I train the neural network using a naive gradient

descent learning algorithm with the entire data-set.

(a) Original Image (b) Cleaned Image

(c) Original Image (d) Cleaned Image

Figure 4: Neural Network a)

(a) Original Image (b) Cleaned Image

Figure 5: Neural Network b)

def

clip (x , minx ,maxx) : if (x < min) :

return minx

el if (x > max) :

 return maxx

return x

IJSART - Volume 5 Issue 1 –JANUARY 2019 ISSN [ONLINE]: 2395-1052

Page | 249 www.ijsart.com

As you can see from [4] and [5] the creases are pretty

much invisible to the eye while the stains are faded to the point

that only faint patches are visible.

The RMSE score in Kaggle is 0.03363.

Challenges Faced

I could not use the entire training data as our RAM was

too small for it. I used only half the training data for this

method. Ideally I should have trained this for at least 100

iterations(epochs) but due to low computational power i trained

it only for 10 iterations(epochs) which took around 20 minutes

in a GPU.

III. CONCLUSION

Comparing the results of all the methods listed I find

that ANN works the best. It removes the stains & crevices and

it is readable!! While the other methods remove stains, the text

is quite hard to decipher as it is blurred or the ink is too thin.

The RMSE values of the test data using our methods and the

original image are listed in the table below:

Methods/Score RMSE

(%)

Fixed

Thresholding

35.173%

Adaptive

Thresholding

42.228%

Canny Edge

(Dilation)

51.638%

Canny Edge

(Erotion)

36.547%

Median Blur 55.096%

Random

Forest Regressor

32.492%

Artificial

Neural Network

3.363%

Table 1: Table with methods and their RMSE scores

FUTURE WORK

The images that I were able to clean are images of

English texts. I plan on expanding this to cover texts in other

languages, figures, combination of both facts and figures.

I have a tentative plan to create an android application

that can remove stains and creases using the above mentioned

methods.

A recurrent neural network (RNN) is a class

of artificial neural network where connections between nodes

form a directed graph along a sequence. Unlike feedforward

neural networks, RNNs can use their internal state (memory) to

process sequences of inputs. This makes them applicable to

tasks such as unsegmented, connected handwriting

recognition or speech recognition. In my project I can use RNN

for handwriting reorganization and for predicting the missing

character or words if they are to noisy to clean and can’t clean

by my algorithm.

REFERENCES

[1] Colin blog. http://tinyurl.com/gnptby6.

[2] Kaggle - denoising dirty documents.

http://tinyurl.com/z4ukatx.

[3] Kaggle blog. http://tinyurl.com/gnedxjq.

[4] https://github.com/Perseus14/

[5] Colin blog. https://colinpriest.com/2015/09/07/ denoising-

dirty-documents-part-6/.

[6] Kaggle - denoising dirty documents.

http://tinyurl.com/z4ukatx.

[7] Glosser.ca. Artificial neural network.

https://commons.wikimedia.org/w/

index.php?curid=24913461.

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Feedforward_neural_networks
https://en.wikipedia.org/wiki/Feedforward_neural_networks
https://en.wikipedia.org/wiki/Handwriting_recognition
https://en.wikipedia.org/wiki/Handwriting_recognition
https://en.wikipedia.org/wiki/Speech_recognition

