Study of Free Vibration Analysis of Rectangular Laminated Plate With Circular Cut-Out

Ashish Daksh¹ , Satyendra Dubey² , Y.K. Bajpai³

¹Student-M.Tech.(Structural Engineering)Department of Civil Engineering ²Asst.Professor-Department of Civil Engineering ³ Professor- Head Department Civil Engineering 1, 2, 3 Gyan Ganga Institute of of Technology and Science, Jabalpur

Abstract- Composite materials are made from the combination of two or more materials with different chemical and physical properties, which when combined give a new material with enhanced material properties. Our study is concerned with the analysis of free vibration of rectangular plate with circular cut-out. We study the effects of aspect/size ratio, thickness ratio, and angle of the laminate, number of laminates, material properties and different boundary conditions.

Keywords- FEM, Composite materials, FSDT

I. INTRODUCTION

A composite material is defined as a material which is composed of two or more materials at a microscopic scale and chemically distinct face. So, a composite material is heterogeneous at a microscopic scale but statistically homogeneous at macroscopic scale. The materials which form the composite are also called as constituents or constituent materials. The constituent materials of a composite have significantly different properties. Further, it should be noted that the properties of the composite formed may not be obtained from these constituents. However, a combination of two or more materials with significant properties will not suffice to be called as a composite material. Composite material are mainly used in sstructural, construction, medical, house-hold, industrial, transportation, electrical; electronics, etc. Metals are the most commonly used materials in these applications.

II. LITERATURE REVIEW

S. Liu [1] studied a vibration analysis of composite laminated plates. D. Ngo-Cong et al [2] studied the free vibration analysis of laminated plates based on FSDT using one- dimensional IRBFN method.. Mohamed-Ouejdi Belarbi et al [3] uses a layer wise finite element formulation on the free vibration analysis of laminated composite and sandwich plates. T. Kant and K. Swaminathan [4] present the analytical solutions for free vibration of laminated composite and sandwich plates based on a higher order refined theory.

Avadesh Kumar Sharma and N. D. Mittal [5] studied the free vibration analysis of laminated composite plates with elastically restrained edges using FEM. Harsh Kumar Bhardwaj et al [6] studied the free vibration analysis of laminated composite plates with skew cutouts based on FSDT. Pushpendra Kumar Sharma and Jyoti Vimal [7] studied the vibration analysis of laminated composite plates using FEM.

III. MATERIAL PROPERTIES

Shell 181 elements is used for the analytical analysis of rectangular plate with circular hole. Following material properties are considered in the analysis:

$$
E_{11}/E_{22}=25, \nu_{12}=0.25, \, G_{12}=G_{13}=0.5E_{22}, \, G_{23}=0.2E_{22}
$$

Fig. Geometry of SHELL 181

Non-dimensional frequency is given by

$$
\bar{\omega} = \frac{\omega b^2}{h} \sqrt{\frac{\rho}{E_{22}}}
$$

Page | 205 www.ijsart.com

IV. RESULT AND DISCUSSION

Table1. Convergence study of non-dimensional frequencies for a cross-ply laminate, $(a/b=1, h/b=0.01)$ for CCFF boundary condition for different mesh size (M×N)

				Mode				
	$\mathbf{1}$	$\overline{2}$	з	4	5	6	7	я
$M=N$								
$\overline{7}$	5.4113	10.9971	25.7563	30.8719	34.1487	43.9286	49.1970	63.4234
Sharma	5.4691	11.1076	25.9892	31.3080	34.6154	44,4667	49.5819	64.0844
et al [7]								
9	5.4111	10.9930	25.6902	30.8605	34.1208	43.7862	48.7458	62.7503
Sharma	5.4686	11.1034	25.9228	31.2964	34.5858	44.4667	49.5819	64.0844
et al [7]								
11	5.4111	10.9909	25.6696	30.8574	34.1136	43.7541	48.5982	62.5748
Sharma	54686	11.1018	25.9017	31.2933	34.5790	44.2849	48.9807	63.2036
et al [7]								
13	5.4110	10.9909	25.6613	30.8553	34.1115	43.7428	48.5393	62.5108
Sharma	5,4686	11.1018	25.8932	31.2917	34,5763	44.2736	48.9211	63.1403
et al [7]								
15	5.4110	10.9909	25.6572	30.8553	34.1105	43.7387	48.5114	62.4829
Sharma	5.4686	11.1012	25.8895	31.2912	34.5753	44.2689	48.8931	63.1140
et al [7]								
17	5.4110	10,9909	25.6551	30.8553	34.1105	43.7356	48,4970	62.4695
Sharma	5.4686	11.1012	25.8874	31.2906	34.5748	44.2668	48.8789	63.0981
et al [7]								
19	5.4110	10.9909	25.6541	30.8543	34.1105	43.7345	48,4887	62.4612
Sharma	5.4686	11.1012	25.8864	31.2906	34.5748	44.2657	48.8710	63.0876
et al [7]								

a) Rectangular Plates with Circular Hole

Table2. Variation of first ten natural frequencies with size ratio ($a/b=1.5$, 2, 2.5, 3) for a cross-ply laminate having circular cut-out at the centre, $(r/b=0.1, h/b=0.01)$ for fully clamped boundary condition

From table 2 it is clear that natural frequencies of a rectangular plate with circular cut-out at the centre decreases with size ratio of plate except for first mode.

Table3. Variation of first ten natural frequency parameters ab^2 $\overline{\omega}$:

 $\sqrt{k_{\text{z}}k_{\text{z}}}\$ with angle of ply (Θ = 30°, 45°, 60°, 90°) for an angle-ply laminate having size ratio $a/b = 1.5$ with circular cut-out at the centre, $(r/b=0.1, h/b=0.01)$ for fully clamped boundary condition

89.420

94.537

As seen from table 3 natural frequencies for first 10 modes of a rectangular plate with circular cut-out at the centre has a non-uniform variation.

87.845

263.881

Table4. Variation of first ten natural frequencies with different boundary conditions (CCCC, SSSS, CSCS, CFCF) for a crossply laminate having size ratio a/b= 1.5 with circular cut-out at

the centre, $(r/b=0.1, h/b=0.01)$

As seen from table 4 the values of natural frequency is maximum for fully clamped condition and minimum for all sides simply supported conditions.

Table5. Variation of first ten natural frequencies with thickness ratio $(h/b=0.01, 0.05, 0.1, 0.5)$ for a cross-ply laminate having size ratio $a/b = 1.5$ with circular cut-out at the centre, $(r/b=0.1)$ for fully clamped boundary condition

Table 5 shows the variation of first 10 natural frequencies of rectangular plate with circular cut-out with thickness. Natural frequency first decreases with thickness and then increases and again decreases.

91.046

95.437

IJSART - *Volume 5 Issue 1 –JANUARY 2019 ISSN* **[ONLINE]: 2395-1052**

Table6. Variation of first ten natural frequencies with material properties $(E_{11}/E_{22}= 10, 15, 20, 25)$ for a cross-ply laminate

having size ratio $a/b = 1.5$ with circular cut-out at the centre, $(r/b=0.1, h/b=0.01)$ for fully clamped boundary

condition

As shown in table 6 natural frequencies of rectangular plate with circular cut-out for first 10 modes of vibration increases with material property.

Table7. Variation of first ten natural frequencies with no. of layers (n= 3, 5, 7, 9) for a cross-ply laminate having size ratio $a/b = 1.5$ with circular cut-out at the centre, $(r/b=0.1, h/b=0.01)$ for fully clamped boundary condition

As seen from table 7 the natural frequencies for a rectangular plate with circular cut-out for first 10 modes increases with increase in number of laminates of the plate.

112.717

117.229

115.505

121.224

115.288

121.534

V. CONCLUSIONS

Following conclusions derived from the analytical analysis of rectangular plate with circular cut-out:

- Natural frequencies for first 10 modes of vibration for a rectangular plate with circular cut-out increases with angle of ply.
- Natural frequencies for first 10 modes of vibration for a rectangular plate with circular cut-out increases with material properties of plate.
- Natural frequencies for first 10 modes of vibration for a rectangular plate with circular cut-out increases with number of laminate in the plate.
- Natural frequencies for first 10 modes of vibration for a rectangular plate with circular cut-out decreases with aspect/ size ratio.
- Natural frequencies for first 10 modes of vibration for a rectangular plate with circular cut-out increases with thickness ratio of the plate.
- Natural frequencies for first 10 modes of vibration for a rectangular plate with circular cut-out are maximum for fully clamped condition and minimum for all sides simply supported condition.

REFERENCES

- [1] S. Liu, "A vibration analysis of composite laminated plates" Finite Elements in Analysis and Design, 9(4), 295- 307, 1991.
- [2] D. Ngo-Cong, N. Mai-Duy, W. Karunasena and T. Tran-Cong, "Free vibration analysis of laminated plates based on FSDT using one- dimensional IRBFN method", Computers and Structures, 89 (1-2), 1-13, 2011.
- [3] Xinkang Li, Jifa Zhang and Yao Zheng, "Static and free vibration analysis of laminated composite plates using isogeometric approach based on the third order shear deformation theory", Advances in Mechanical Engineering, 2015.
- [4] Mohamed-Ouejdi Belarbi, Abdelouahab Tati, Houdayfa Ounis and Abdelhak Khechai, "On the free vibration analysis of laminated composite and sandwich plates: A layer wise finite element formulation", Latin American Journal of Solids Structure, 14 (12), 2017.
- [5] T. Kant and K. Swaminathan, "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher order refined theory", Composite Structures, 53, 73-85, 2001.
- [6] J. Suresh Kumar, T. Dharma Raju and K. Vijaya Kumar Reddy, "Vibration analysis of laminated plates using higher- order shear deformation theory with zig-zag function", Indian journal of Science and Technology, 4 (8), 2011.
- [7] Avadesh Kumar Sharma and N. D. Mittal, "Free vibration analysis of laminated composite plates with elastically restrained edges using FEM", Central European Journal of Engineering, 3(2), 306-315, 2013.
- [8] Harsh Kumar Bhardwaj, Jyoti Vimal and Avadesh Kumar Sharma, "Study of free vibration analysis of laminated composite plates with skew cutouts based on FSDT", Journal of Civil Engineering and Environmental Technology, 1(3), 71-75, 2014.

 \circ

10

91.046

95 437

IJSART - *Volume 5 Issue 1 –JANUARY 2019 ISSN* **[ONLINE]: 2395-1052**

- [9] Pushpendra Kumar Sharma and Jyoti Vimal, "Study of the vibration analysis of laminated composite plates using FEM", International Journal of Advanced Mechanical Engineering, 4(6), 675-680, 2014.
- [10] Arpita Mandal, Chaitali Ray and Salil Halder, "Free vibration analysis of laminated composite skew plates with cut-out", Archive of Applied Mechanics, 9, 2017.