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Abstract- The binary quadratic equation 
111 22  xy

 is 

analyzed for its distinct integer solutions and we obtain 

infinitely many Pythagorean triangles. A few interesting 

relations among the sides are also given. 
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I. INTRODUCTION 

 

 Number theory is a branch of pure mathematics 

dedicated mainly to the study of the integers. Mathematics is 

the queen of the sciences and number theory is the queen of 

mathematics. The Diophantine equation is of the form 

122  dyx
where d a nonsquare positive integer is and 

integer solutions sought for 
. and yx
This equation was first 

studied in India, starting with Brahmagupta, who developed 

the Chakravala method to solve Pell’s equation. Pell’s 

equation has infinitely many distinct integer solutions when 

''d
takes different numerical values. 

 

 In this communication, by applying the non-trivial 

integral solutions of the binary quadratic 

equation
111 22  xy

, we obtain infinitely many 

Pythagorean triangles. The recurrence relations satisfied by 

the sides of the triangle are presented. 

 

II. METHOD OF ANALYSIS 

 

Consider the binary quadratic equation 

 

111 22  xy
 

whose general solution 
 nn yx ,

 is represented by  
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where ,3,2,1,0n  

 

Considering nn ba ,
as the generators of a Pythagorean triangle, 

its legs nn YX ,
and hypotenuse nZ

are found to be 
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The above values of nn YX ,
and nZ

satisfy the following 

recurrence relations: 
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The following table shows a few numerical Pythagorean 

triangles: 

 

Table 1. Numerical Examples 

 
 

III. CONCLUSION 

 

In this paper, we have presented infinitely many 

Pythagorean triangles for the considered binary quadratic 

equation
111 22  xy

. As the binary quadratic equations are 

rich in variety, one may search for the other solutions of the 

considered binary quadratic equations and determine their 

integer solutions along with suitable properties.
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