
IJSART - Volume 5 Issue 11 –NOVEMBER 2019 ISSN [ONLINE]: 2395-1052

Page | 305 www.ijsart.com

Applications of Parallel Processing In Linear Algebra

Vibhor Jaunsari1, Shyamal Goel2, Mridul Tripathi3, Prof. Narayanan Prasanth4

1, 2, 3, 4 Vellore Institute Of Technology

Abstract- Direct factor based math is the piece of number

juggling concerning straight conditions and direct limits, for

instance, and their depictions through systems and vector

spaces. Straight factor based math is vital to essentially all

regions of number juggling. For instance, straight factor

based math is basic in current presentations of geometry,

including for describing basic things, for instance, lines,

planes and turns. Furthermore, utilitarian examination may be

in a general sense seen as the use of direct factor based math

to spaces of limits. Straight factor based math is moreover

used in numerous sciences and building domains, since it

licenses exhibiting various ordinary wonders, and capably

figuring with such models. For nonlinear systems, which can’t

be exhibited with direct polynomial math, straight factor

based math is consistently used as a first-demand surmise.

Keywords- Linear algebra, Leontief Economic Models, Upper

triangular matrix, Lower triangular matrix, Do-Little

Algorithm.

I. INTRODUCTION

 There are various employments of straight

polynomial math in various fields of science, material science

and number- crunching, for instance, Constructing Curves and

Surfaces through Specified Points, Cubic Constructing Curves

and Surfaces Through Specified Points , Cubic Spline Interpo-

lation , Markov Chains ,Graph Theory , Games of Strategy ,

Leontief Economic Models ,Forest Management ,Computer

Graphics , Equilibrium Temperature Distributions ,Computed

Tomography ,Fractals , Cryptography , Genetics , Age-

Specific Population Growth ,Harvesting of Animal

Populations, A Least Squares Model for Human Hearing ,

Warps and Morphs ,Internet Search Engines

A huge amount of the extended and repetitive

calculations of incorporating lattices in straight factor based

math can be taken care of stunningly snappier by using

parallel computations.

In the field of numerical assessment and straight

factor based math, a cross section is considered or rotted along

with a lower and an upper triangular matrix. A phase system is

similarly joined into the thing. Square structures of direct

conditions are as often as possible comprehended by PCs by

applying LU factorization. PCs similarly use this methodology

while preparing various numerical computations like calculat-

ing the determinant or in reverse of the system. A cross

section wherein the segments over the guideline corner to

corner of the system are zero is known as a lower triangular

structure while frameworks in which the parts underneath the

crucial inclining are zero is known as the upper triangular

lattice.

For example, in case we consider a 3*3 network,

the LU breaking down of the cross section is according to the

accompanying

Consider An as a n*n system , with x being a vector

is size n which contains cloud factors which is to be lit up and

vector b of size n being the yield. This is for the condition

Ax=b. We factorize network An into upper and lower

triangular grids which are U and L. By and by we use

substitution to appreciate 2 triangular systems Ly=b, to

calculate the vector y which is then in this manner used to

settle Ux=y to finally enlist the estimation of x.

When preparing the LU rot of a system, consider

each cycle, which has been apportioned into 3 phases. The

underlying advance incorporates us searching for the turn

segment among the essential line segments of A(k). The

accompanying antic- ipates that us should separate each

segment in the essential area of A(k) by a(k,k). The last

advance anticipates that us should reviving and preparing the

segments of A(k) in like manner.

All the 3 phases of each accentuation referenced

above can be parallelised sufficiently, and the test remains in

understand- ing the correct figuring to consider the data

conditions present in the more than 3 phases t circled the

remarkable jobs that needs to be done subject to the number

and availability of enlisting or planning units open to us.

Consider An as a n*n system , with x being a vector

is size n which contains cloud factors which is to be lit up and

vector b of size n being the yield. This is for the condition

Ax=b. We factorize network An into upper and lower

triangular grids which are U and L. By and by we use

substitution to appreciate 2 triangular systems Ly=b, to

calculate the vector y which is then in this manner used to

settle Ux=y to finally enlist the estimation of x.

IJSART - Volume 5 Issue 11 –NOVEMBER 2019 ISSN [ONLINE]: 2395-1052

Page | 306 www.ijsart.com

When preparing the LU rot of a system, consider

each cycle, which has been apportioned into 3 phases. The

underlying advance incorporates us searching for the turn

segment among the essential line segments of A(k). The

accompanying antic- ipates that us should separate each

segment in the essential area of A(k) by a(k,k). The last

advance anticipates that us should reviving and preparing the

segments of A(k) in like manner.

All the 3 phases of each accentuation referenced

above can be parallelised sufficiently, and the test remains in

understand- ing the correct figuring to consider the data

conditions present in the more than 3 phases t circled the

remarkable jobs that needs to be done subject to the number

and availability of enlisting or planning units open to us.

II. SEQUENTIAL LU FACTORIZATION

ALGORTIHM

We have 3 made due with hovers in the back to

back count. We have 2 phases, one division and one end

for each accentuation of the outer circle. K*K sub grids

become

Fig. 1. Matrix Representation

dynamic on the lower straightforwardly as the

estimation executes. This causes a computational weight

which is non uniform, as the figuring augmentations for the

parts which are accessible in the lower right corner of the

structure. As the count proceeds, we can see that there are(n-

k-1) and (n-k- 1)^2*(2) figuring exercises for division

similarly as end. There, this prompts a runtime of O(n^3).

III. PROPOSED METHODOLOGY

LU DECOMPOSITION PARALLEL ALGORITHM->

We take a n*n coefficient system called An and we

square stripe it among p strings and focuses with [n/p]

circumscribing lines being doled out to each middle. We can

use various arranging philosophies which OpenMP

demonstrates using the timetable condition. Along these lines,

we can consign unmistakable subtasks to different strings the

two of which can be made statically or continuously.

Designers using OpenMp gadgets have assorted booking

proclamations accessible to them. We can use different pieces

to allocate different courses of action of cycles to different

strings which incredibly in- fluences the execution of the

count. In this figuring, we use static arranging anyway don’t

show the protuberance size which causes OpenMP to

disengage the cycles into p squares which are of proportional

size of [n/p] and in a blockwise apportionment, they are

statically consigned to the strings. Exactly when the circle

begins, this task or designation is passed on to be executed by

different strings.

ALGORITHM WITH ROW CYCLIC DATA DISTRI-

BUTION

1.

Gaussian transfer is typically used to unravel direct

straight factor based math structures and is all things

considered utilized in sensible and arranging models . LU

factorization schedules are intertwined into in every way that

really matters all prominent direct factor based math libraries,

for example, the Linear Algebra Package (LAPACK), the

Scalable Linear

,Variable based math Package (ScaLAPACK), and

Matrix Variable put together math with respect to GPU

,what’s more, Multicore Architectures (MAGMA). As clear

standard programming for world class thick direct polynomial

math checks, LAPACK and ScaLAPACK have been made for

shared-memory and passed on memory structures . LAPACK

is an item library for getting a handle on structures of syn-

chronous direct conditions, least-squares strategies of straight

frameworks of conditions, eigenvalue issues, and single worth

issues. It is proposed to be gainful on a wide degree of present

IJSART - Volume 5 Issue 11 –NOVEMBER 2019 ISSN [ONLINE]: 2395-1052

Page | 307 www.ijsart.com

×

day unmatched PCs and gives the related framework

factorizations. ScaLAPACK is a continuation of the LAPACK

experience for scattered memory message-passing MIMD PCs

and structures of workstations supporting PVM and MPI.

Regardless, they don’t have any tremendous bearing to het-

erogeneous structures with GPUs. MAGMA is a social event

of direct polynomial math libraries for cross breed many

focus and GPU frameworks. MAGMA utilizes a hybridization

framework where tallies of intrigue are part into assignments

of differentiating granularity, and their execution is organized

over the open rigging parts. To improve the presentation of

the check, insignificant nonparallelizable errands are much of

the time pushed toward the CPU, and more prominent

consistently parallelizable assignments are routinely set up for

the GPU. Their maltreatment of parallelism depends upon the

transparency of parallel BLAS. CUBLAS and CULA have

understood the standard BLAS and LAPACK subroutine

libraries, only, on various GPUs. For the handles execution

im- provement for cross area factorization, Volkov et al.

Finished the right-looking calculation for LU, Cholesky, and

QR for GPUs. Van De Velde indicated a LU breaking down

estimation for multicomputers with certain rotating. Kurzak et

al. utilized halfway rotating for multicore frameworks to

breath life into LU factorization. A halfway turning structure

knows about LU factorization in standard straight polynomial

math libraries, for example, LAPACK.

APPLICATION 1:

LU DECOMPOSITION SERIAL ALGORITHM

DOOLITTLE ALGORITHM

It is constantly conceivable to consider a square

lattice a lower triangular grid and an upper triangular network.

That is,

[A] = [L][U]

Doolittle’s technique gives an elective method to

figure An a LU decay without experiencing the problem of

Gaussian Elimination.

For a general n n grid A, we accept that a LU decay

exists, and compose the type of L and U expressly. We at that

point methodicallly unravel for the sections in L and U from

the conditions that outcome from the increases vital for

A=LU.

For each i = 0,1,2 . . . n-1

U(i,k) = A(i,k) – sum(j :0 –>i) {L[i,j] * U[j,k]}

L(i,k) = (A[i,k] – sum(j:0->i) {L[i,j]*U[j,k]}) / U(k,k)

PARALLEL ALGORITHM

We section the framework ’An’ as: A1A2

A3A4

We section the framework ’L’ as : L10

L3L4

We section the framework ’U’ as: U1U2

0U4

Stage 1: Compute LI and U1 by applying Doolittle calcu-

lation on A1

A1 = [L1 U1]

Stage 2: Compute U2 A2 = [L1 U2]

U2 = inv(L1) * A2 Step 3: Compute L3 A3 = [L3 U1]

L3 = A3 * inv(U1)

Stage 4: Compute L4 and U4 by applying Doolittle Algo-

rithm as pursues [L4 U4] = A4 – [L3 *U2]

To parallelize the calculation, we can process stage 2 and

stage 3 together in light of the fact that there is no information

reliance .

IV. TEST RESULTS AND FINDINGS

LU FACTORIZATION SERIAL ALGORITHM ->

MATRIX 1

Fig. 2. Matrix 1

In order to get information into the display of the

com- putation presented, a couple of models have been

decided for diagram. Since we don’t have a parallel processor,

we impersonated it on a consecutive PC (VAX I l/780). In this

multiplication each processor is brought into the VAX 1 l/780

each thusly, and its program is executed.

LOWER TRIANGULAR

Exactly when this is done, it is then turned out, and

the processor that is most remote back in its execution time is

Fig. 3. Lower Triangular

gotten straightaway. The time spent by a processor

includes the program execution time and the data

IJSART - Volume 5 Issue 11 –NOVEMBER 2019 ISSN [ONLINE]: 2395-1052

Page | 308 www.ijsart.com

correspondence time. Here the synchronization time was

unimportant.

UPPER TRIANGULAR

Fig. 4. Upper Triangular

In our first investigation we have taken a 5 X 5

lattices utiliz- ing a different number of processors. The

parallel arrangement time TP, the holding up time TW, the

productivity EFF, and the accelerate proportion

TIME TAKEN –

Fig. 5. Time Comparison

The arrangement of a direct arrangement of

conditions lies at the core of numerous projects for logical

calculation. With the ongoing improvement and accessibility

of different parallel PCs, new calculations have showed up for

settling tridiagonal frameworks of conditions reasonable for

these mama chines.

AVERAGE = 49,058 microseconds

LU FACTORIZATION PARALLEL ALGORITHM ->

MATRIX 1

Fig. 6. Matrix 1-1

So as to get data into the presentation of the

calculation displayed, a few models have been chosen for

chart. Since we don’t have a parallel processor, we imitated it

on a back to back PC (VAX I l/780). In this augmentation

every processor is brought into the VAX 1 l/780 each along

these lines, and its program is executed.

TIME TAKEN –

Precisely when this is done, it is then turned out, and the

processor that is most remote back in its execution time is got-

ten straightaway. The time spent by a processor incorporates

Fig. 7. Time Taken

the program execution time and the information

correspon- dence time. Here the synchronization time was

irrelevant.

AVERAGE = 9128.8 microseconds

TIME IMPROVEMENT FINAL RESULT

Fig. 8. Final Time Comparison

A huge amount of the extended and repetitive

calculations of incorporating lattices in straight factor based

math can be taken care of stunningly snappier by using

parallel computations.

V. CONCLUSION

1. The productivity goes down when the quantity of pro-

cessors increments. The effectiveness is the most elevated

when the grid is thick.

2. The accelerate proportion is an expanding capacity of the

quantity of processors and the data transmission.

3. The productivity increments with the request: along these

lines, this calculation is useful for huge networks.

REFERENCES

[1] S. C. Chen, D. J. Kuck and A. H. Sameh, Practical

parallel band triangular framework solvers. ACM Trans.

Math. Programming 4, 270-277 (1980).

[2] S. C. Chen and A. H. Sameh, On parallel triangular

frame- work solvers. Proc. 1975 Sagamore Computer

Conf. on Parallel Processing, pp. 237-238, August (1975).

[3] J. W. Huang and 0. Wing, Optimal parallel triangulation

of a scanty lattice. /EEE Trans. Circuirs Sysf. CAS26,

726-732 (1979).

[4] E. Isaacson and H. B. Keller, Analwis of Numerical

Mrrh- ods. John Wiley, New York (1966).

[5] J. A. G. Jess and H. G. M. Kees, An information structure

for parallel L/U decay. fEEE Trans. Comput. C-31, 23 l-

239 (1982).

