
IJSART - Volume 5 Issue 11 –NOVEMBER 2019                                                                            ISSN  [ONLINE]: 2395-1052 
 

Page | 305                                                                                                                                                                     www.ijsart.com 

 

Applications of Parallel Processing In Linear Algebra 

 

Vibhor Jaunsari1, Shyamal Goel2, Mridul Tripathi3, Prof. Narayanan Prasanth4 

1, 2, 3, 4 Vellore Institute Of Technology 

 

Abstract- Direct factor based math is the piece of number 

juggling concerning straight conditions and direct limits, for 

instance, and their depictions through systems and vector 

spaces. Straight factor based math is vital to essentially all 

regions of number juggling. For instance, straight factor 

based math is basic in current presentations of geometry, 

including for describing basic things, for instance, lines, 

planes and turns. Furthermore, utilitarian examination may be 

in a general sense seen as the use of direct factor based math 

to spaces of limits. Straight factor based math is moreover 

used in numerous sciences and building domains, since it 

licenses exhibiting various ordinary wonders, and capably 

figuring with such models. For nonlinear systems, which can’t 

be exhibited with direct polynomial math, straight factor 

based math is consistently used as a first-demand surmise. 
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I. INTRODUCTION 

 

 There are various employments of straight 

polynomial math in various fields of science, material science 

and number- crunching, for instance, Constructing Curves and 

Surfaces through Specified Points, Cubic Constructing Curves 

and Surfaces Through Specified Points , Cubic Spline Interpo- 

lation , Markov Chains ,Graph Theory , Games of Strategy , 

Leontief Economic Models ,Forest Management ,Computer 

Graphics , Equilibrium Temperature Distributions ,Computed 

Tomography ,Fractals , Cryptography , Genetics , Age-

Specific Population Growth ,Harvesting of Animal 

Populations, A Least Squares Model for Human Hearing , 

Warps and  Morphs ,Internet Search Engines 

 

A huge amount of the extended and repetitive 

calculations of incorporating lattices in straight factor based 

math can be taken care of stunningly snappier by using 

parallel computations. 

 

In the field of numerical assessment and straight 

factor based math, a cross section is considered or rotted along 

with a lower and an upper triangular matrix. A phase system is 

similarly joined into the thing. Square structures of direct 

conditions are as often as possible comprehended by PCs by 

applying LU factorization. PCs similarly use this methodology 

while preparing various numerical computations like calculat- 

ing the determinant or in reverse of the system. A cross 

section wherein the segments over the guideline corner to 

corner of the system are zero is known as a lower triangular 

structure while frameworks in which the parts underneath the 

crucial inclining are zero is known as the upper triangular 

lattice. 

 

For example, in case  we  consider  a  3*3  network,  

the  LU breaking down of the cross section is according to the 

accompanying 

 

Consider An as a n*n system , with x being a vector 

is size n which contains cloud factors which is to be lit up and 

vector b of size n being the yield. This is for the condition 

Ax=b.   We factorize network An into upper and lower 

triangular grids which are U and L. By and by we use 

substitution to appreciate 2 triangular systems Ly=b, to 

calculate the vector y which is then in this manner used to 

settle Ux=y to finally enlist the estimation of x. 

 

When preparing the LU rot of a system, consider 

each cycle, which has been apportioned into 3 phases. The 

underlying advance incorporates us searching for the turn 

segment among the essential line segments of A(k). The 

accompanying antic- ipates that us should separate each 

segment in the essential area of A(k) by a(k,k). The last 

advance anticipates that us should reviving and preparing the 

segments of A(k) in like manner. 

 

All the 3 phases of each accentuation referenced 

above can be parallelised sufficiently, and the test remains in 

understand- ing the correct figuring to consider the data 

conditions present in the more than 3 phases t circled the 

remarkable jobs that needs to be done subject to the number 

and availability of enlisting or planning units open to us. 

 

Consider An as a n*n system , with x being a vector 

is size n which contains cloud factors which is to be lit up and 

vector b of size n being the yield. This is for the condition 

Ax=b.   We factorize network An into upper and lower 

triangular grids which are U and L. By and by we use 

substitution to appreciate 2 triangular systems Ly=b, to 

calculate the vector y which is then in this manner used to 

settle Ux=y to finally enlist the estimation of x. 
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When preparing the LU rot of a system, consider 

each cycle, which has been apportioned into 3 phases. The 

underlying advance incorporates us searching for the turn 

segment among the essential line segments of A(k). The 

accompanying antic- ipates that us should separate each 

segment in the essential area of A(k) by a(k,k). The last 

advance anticipates that us should reviving and preparing the 

segments of A(k) in like manner. 

 

All the 3 phases of each accentuation referenced 

above can be parallelised sufficiently, and the test remains in 

understand- ing the correct figuring to consider the data 

conditions present in the more than 3 phases t circled the 

remarkable jobs that needs to be done subject to the number 

and availability of enlisting or planning units open to us. 

 

II. SEQUENTIAL LU FACTORIZATION  

ALGORTIHM 

 

We have 3 made due with hovers in the back  to  

back count. We have 2 phases, one  division  and  one  end  

for  each accentuation of the outer circle. K*K sub grids 

become 

 

 
Fig. 1. Matrix Representation 

 

dynamic on the lower straightforwardly as the 

estimation executes. This causes a computational weight 

which is non uniform, as the figuring augmentations for the 

parts which   are accessible in the lower right corner of the 

structure. As  the count proceeds, we can see that there are(n-

k-1) and (n-k- 1)^2*(2) figuring exercises for division 

similarly as end. There, this prompts a runtime of O(n^3). 

 

 
 

 

III. PROPOSED METHODOLOGY 

 

LU DECOMPOSITION PARALLEL ALGORITHM-> 

 

We take a n*n coefficient system called An and we 

square stripe it among p strings and focuses with [n/p] 

circumscribing lines being doled out to each middle. We can 

use various arranging philosophies which OpenMP 

demonstrates  using the timetable condition. Along these lines, 

we can consign unmistakable subtasks to different strings the 

two of which can be made statically or continuously. 

Designers using OpenMp gadgets have assorted booking 

proclamations accessible to them. We can use different pieces 

to allocate different courses of action of cycles to different 

strings which incredibly in- fluences the execution of the 

count. In this figuring, we use static arranging anyway don’t 

show the protuberance size which causes OpenMP to 

disengage the cycles into p squares which are of proportional 

size of [n/p] and in a blockwise apportionment, they are 

statically consigned to the strings. Exactly when the circle 

begins, this task or designation is passed on to be executed by 

different strings. 

 

 
 

ALGORITHM WITH ROW CYCLIC DATA DISTRI- 

BUTION 

1.  

Gaussian transfer is typically used to unravel direct 

straight factor based math structures and is all things 

considered utilized in sensible and arranging models . LU 

factorization schedules are intertwined into in every way that 

really matters all prominent direct factor based math libraries, 

for example, the Linear Algebra Package (LAPACK), the 

Scalable Linear 

 

,Variable based math Package (ScaLAPACK), and 

Matrix Variable  put  together  math  with  respect  to  GPU 

,what’s more, Multicore Architectures (MAGMA). As clear 

standard programming for world class thick direct polynomial 

math checks, LAPACK and ScaLAPACK have been made for 

shared-memory and passed on memory structures . LAPACK 

is an item library for getting a handle on structures of syn- 

chronous direct conditions, least-squares strategies of straight 

frameworks of conditions, eigenvalue issues, and single worth 

issues. It is proposed to be gainful on a wide degree of  present 
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day unmatched PCs and gives the related framework 

factorizations. ScaLAPACK is a continuation of the LAPACK 

experience for scattered memory message-passing MIMD PCs 

and structures of workstations supporting PVM and MPI. 

Regardless, they don’t have any tremendous bearing to het- 

erogeneous structures with GPUs. MAGMA is a social event 

of direct polynomial math libraries for cross breed many  

focus and GPU frameworks. MAGMA utilizes a hybridization 

framework where tallies of intrigue are part into assignments 

of differentiating granularity, and their execution is organized 

over the open rigging parts. To improve the presentation of  

the check, insignificant nonparallelizable errands  are  much of 

the time pushed toward the CPU, and more prominent 

consistently parallelizable assignments are routinely set up for 

the GPU. Their maltreatment of parallelism  depends  upon the 

transparency of parallel BLAS. CUBLAS and CULA  have 

understood the standard BLAS and LAPACK subroutine 

libraries, only, on various GPUs. For the handles execution 

im- provement for cross area factorization, Volkov et al. 

Finished the right-looking calculation for LU, Cholesky, and 

QR for GPUs. Van De Velde indicated a LU breaking down 

estimation for multicomputers with certain rotating. Kurzak et 

al. utilized halfway rotating for multicore frameworks to 

breath life into LU factorization. A halfway turning structure 

knows about LU factorization in standard straight polynomial 

math libraries, for example, LAPACK. 

 

APPLICATION 1: 

 

LU DECOMPOSITION SERIAL ALGORITHM 

DOOLITTLE ALGORITHM 

 

It is constantly conceivable to consider a square 

lattice a lower triangular grid and an upper triangular network. 

That is, 

[A] = [L][U] 

 

Doolittle’s technique gives an elective method to 

figure An a LU decay without experiencing the problem of 

Gaussian Elimination. 

 

For a general n n grid A, we accept that a LU decay 

exists, and compose the type of L and U expressly. We at that 

point methodicallly unravel for the sections in L and U from 

the conditions that outcome from the increases vital for 

A=LU. 

 

For each i = 0,1,2 . . . n-1 

U(i,k) = A(i,k) – sum(j :0 –>i) {L[i,j] * U[j,k]} 

L(i,k) = (A[i,k] – sum(j:0->i) {L[i,j]*U[j,k]}) / U(k,k) 

 

PARALLEL ALGORITHM 

We section the framework ’An’ as: A1A2 

A3A4 

We section the framework ’L’ as : L10 

L3L4 

We section the framework ’U’ as: U1U2 

0U4 

Stage 1: Compute LI and U1 by applying Doolittle calcu- 

lation on A1 

A1 = [L1  U1] 

Stage 2: Compute U2 A2 = [L1 U2] 

U2 = inv(L1) * A2 Step 3: Compute L3 A3 = [L3 U1] 

L3 = A3 * inv(U1) 

Stage 4: Compute L4 and U4 by applying Doolittle Algo- 

rithm as pursues [L4 U4] = A4 – [L3 *U2] 

To parallelize the calculation, we can process stage 2 and 

stage 3 together in light of the fact that there is no information 

reliance . 

 

IV. TEST RESULTS AND FINDINGS 

 

LU FACTORIZATION SERIAL ALGORITHM -> 

 

MATRIX 1 

 

 
Fig. 2. Matrix 1 

 

In order to get information into the display of the 

com- putation presented, a couple of models  have  been  

decided for diagram. Since we don’t have a parallel processor, 

we impersonated it on a consecutive PC (VAX I l/780). In this 

multiplication each processor is brought into the VAX 1 l/780 

each thusly, and its program is executed. 

 

LOWER TRIANGULAR 

 

Exactly when this is done, it is then turned out, and 

the processor that is most remote back in its execution time is 

 

 
Fig. 3. Lower Triangular 

 

gotten straightaway. The time spent by a processor 

includes the program execution time and the data 
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correspondence time. Here the synchronization time was 

unimportant. 

 

UPPER TRIANGULAR 

 

 
Fig. 4. Upper Triangular 

 

In our first investigation we have taken a 5 X 5 

lattices utiliz- ing a different number of processors. The 

parallel arrangement time TP, the holding up time TW, the 

productivity EFF, and the accelerate proportion 

 

TIME  TAKEN – 

 

 
Fig. 5.   Time Comparison 

 

The arrangement of a direct arrangement of 

conditions lies at the core of numerous projects for logical 

calculation. With the ongoing improvement and accessibility 

of different parallel PCs, new calculations have showed up for 

settling tridiagonal frameworks of conditions reasonable for 

these mama chines. 

 

AVERAGE = 49,058 microseconds 

 

LU FACTORIZATION PARALLEL ALGORITHM -> 

MATRIX 1 

 

 
Fig. 6. Matrix 1-1 

So as to get data into the presentation of the 

calculation displayed, a few models have been chosen for 

chart. Since we don’t have a parallel processor, we imitated it 

on a back to back PC (VAX I l/780). In this augmentation 

every processor is brought into the VAX  1 l/780 each along 

these lines, and  its program is executed. 

 

TIME TAKEN – 

Precisely when this is done, it is then turned out, and the 

processor that is most remote back in its execution time is got- 

ten straightaway. The time spent by a processor incorporates 

 
Fig. 7. Time Taken 

 

the program execution time and the information 

correspon- dence time. Here the synchronization time was 

irrelevant. 

 

AVERAGE = 9128.8 microseconds 

 

TIME IMPROVEMENT FINAL RESULT 

 

 
Fig. 8. Final Time Comparison 

 

A huge amount of the extended and repetitive 

calculations of incorporating lattices in straight factor based 

math can be taken care of stunningly snappier by using 

parallel computations. 

 

V. CONCLUSION 

 

1. The productivity goes down when the quantity of pro- 

cessors increments. The effectiveness is the most elevated 

when the grid is thick. 

2. The accelerate proportion is an expanding capacity of the 

quantity of processors and the data transmission. 

3. The productivity increments with the request: along these 

lines, this calculation is useful for huge networks. 
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