
IJSART - Volume 4 Issue 9 – SEPTEMBER 2018 ISSN [ONLINE]: 2395-1052

Page | 349 www.ijsart.com

A Review Paper on Android Malwares
Analysis, Detection And Security

Ketaki A. Pattani1, Prof. B. V. Buddhadev2

1Dept of CSE
2Professor, Dept of CSE

1, 2 GEC, Gandhinagar, Gujarat, India

Abstract- Today, Android OS powers about hundreds of
millions of people who are over smart phones covering 190
countries as suggested by Official Android Market. This makes
Android the best medium to bridge people but the same bridge
may even lead to insecurity and penetration. The current
scenario shows that Android covers more than 80 percent of
the mobile market.[2] Also, since Android supports
application deployment, this brings forth great chances of
being attacked by malwares. The current status of malware
development notices a great rise of about 7.11 million in near
future. Thereby, this created a requirement of detecting and
developing antimalware techniques. Thus, the current paper is
a threefold survey dealing with Android malware
categorizations, their methods of detection and antimalware
techniques for security of android devices.

Keywords– Android Security, Malwares in Android, Malware
Detection, Antimalware, Signature.

I. INTRODUCTION

 The current research over Android use and market
share suggests that Android market covers a wide range of
smart phones.[1] As per International Data Corporation IDC
share 2018 First Quarter analysis Android shares about 84.8%
of the total market. Whereas, iOS covers 15.1% and others
cover 0.1% of the total share.[2] Android hosts millions of
applications everyday all of which may not be equally secure.
This creates a threat of undetected malwares being transferred
throughout the network via such applications. The malware
development analysis suggests that the rate of malware
development is increasing at a high pace. There are more than
600 million malwares developed and forecasted in 2016 and
among them over mobile platform Android holds a leading
position with high risk malwares. This creates a requirement
for the Android market to develop combatant constructs that
resist such malwares and their effects. Such combatants are
called anti-malwares in technical terminology. Thereby, to get
rid of such Android malwares, one needs to have critical
knowledge about Malware and their uses. As an example of
malware an application say ‘Messaging Application’ takes
permissions related to the messaging interfaces. Now it may
be malware infected and may send sensitive information
towards a sink. Such an attack is said to be permissions based
attack and may evade the personal information of the user.

In this paper analysis of various such types of attacks
as mentioned in the above example is done. It represents
various types of malwares in section II, Android malware
penetration techniques in section III and Android malware
detection techniques in section IV. Finally section V shows
the analysis of these techniques and later sections provide a
solution and its future scope of improvement.

II. ANDROID MALWARE ANALYSIS

Here, there is keen analysis of malware categories,
malware characteristics and standardized approaches adopted
to evade security. The different types of malwares are
categorized based on their operations and working. Thereby, a
group of malwares performing certain kind of operation are
considered to be in the same family also known as Malware
Family. Following is the specification of various Malware
Families with examples cited with each of them showing their
effect on Android devices.

1. Trojan: The keyword Trojan is termed from the ancient

story of ‘Trojan Horse’. The Trojan does the activity of
stealing user’s confidential data without user even being
notified about it. The stolen data is then leaked to the
attacking sources.[1] Example: FakeNetflix, Zsone,
FakePlayer etc.

2. Backdoors: There are certain malwares that require root
privileges as they access highly secure system resources.
Backdoors are meant to provide root privileges to the
malware and take control over the device so that it cannot
be interrupted. Example: Zimperlich, Exploid and
RageAgainstTheCage.

3. Worms: Creates multiple copies of itself and distributes
them over the network. Another common use of worm
that everyone is making is from a malware application a
worm is created which infects all the other applications by
its copies. Example: Android.Obad.OS is a Bluetooth
worm.

4. Spyware: Spyware containing App usually appears to be
gentle but actually monitors user’s confidential data,
events, logs etc. They may also install malicious payload

IJSART - Volume 4 Issue 9 – SEPTEMBER 2018 ISSN [ONLINE]: 2395-1052

Page | 350 www.ijsart.com

and transfer secret information to attacker’s sink.
Example: NickSpy, GPSSpy.

5. Botnet: It is a network of Android devices each of which
has a number of bots. They are victims of attackers and
are usually used for Distributed DOS attack to be done on
some external server. Example: Gemini.

6. Ransom ware: They do not allow user to access their own
data until some ransom is paid to them. Example: Fake
Defender acts as Avast Antivirus and locks the phone
until the ransom is paid.

7. Risk wares: They are the possible risks created over the
data or system but not definite risks on installation. Some
regular applications may also behave as risk wares. It may
edit, delete or modify the data or permissions.

The statistics are the overall malware distribution

detected in 2015 and 2016[3]. There may be certain malware
not detected then. Therefore, here the analysis for Android
suggests that Android devices are on verge of high risk and
alarming that high end security system must be developed for
protection. But before reaching towards solutions its
penetration techniques must be taken into consideration which
is explained as below.

III. MALWARE PENERATION TECHNIQUES

The penetration techniques are used by the attackers
to bypass the various analysis.[4] Following are the different
types of penetration techniques:

1. Repackaging with malware: This technique develops the

view of some popular app by disassembling the
application and then adds its malware content to the app
and again reassembles it and puts it on less monitored 3rd
party market. For example: Amazon Application Store.

2. Drive By Download: Here, as user tries to download any
resource unintentionally a malware is downloaded in the
background without the user being notified. Developers
use the ‘Non-Compatible Android Trojan’ to perform this
task.

3. Dynamic Download of Payloads: Here, the encrypted
payloads are executed at runtime to perform malicious
activities. Certain malwares are also used to download
these payloads at run time in order to fool static analysis
tool.

4. Malware with Stealing Techniques: Since direct analysis
of android app causes battery and resources issues, certain
techniques are used to obfuscate anti-malwares as key
permutation obfuscation approach, dynamic loading of
data for obfuscation, native code execution and stealth of
data etc. to attack victim’s device.

IV. ANDROID MALWARE DETECTION

Majorly, every scenario suggests two approaches

categorized at a higher level to detect the Android malwares
as: the Static and the Dynamic Approach. Even the defensive
anti-malware gets classified based on the mentioned two
standard categories.[6]

I. Static Analysis

Here, the maliciousness of malware is checked by
analyzing source code without executing it. Example: Certain
behavior of the system seen on occurrence of particular event.
They are further categorized as explained

1. Signature Based Approach

The approach analysis sementic patterns and creates a
unique signature for each malware. So, if new application
comes having similar type of malware, it is detected using
signature.[5] Such methods are very easy to obfuscate as they
do not identify unseen malwares.

EXAMPLES:

a. AndroSimilar by Faruki

Usually malwares are added upon existing
applications and repackaging is done. Mentioned tool finds
such obfuscating malware contained tools. The tool gives
more than 60% true outcomes with correct detections.

IJSART - Volume 4 Issue 9 – SEPTEMBER 2018 ISSN [ONLINE]: 2395-1052

Page | 351 www.ijsart.com

b. Droid Analytics

The tool uses the same signature base approach but
extracts and analysis every application at their operation-code
or instruction syllable level. It does this by generating three
level signatures. The levels are designated as Method Level
using code tracing at Application Programming Interface,
class level and application level. The similarity based score
provided on detection does not prove to be fully accurate and
may have false positives in results.

Limitations of Signature Based Approach

The most vulnerable aspect of this method is that it
cannot detect unknown or unseen malwares. Further, due to
pre-defined database of signatures there may be results with
undetected outcome.

2. Permission Based Approach

The base structure of Android consists of
AndroidManifest.xml which consists of all the permissions
that are needed for an application. Permissions granted to an
application are actually more than required most of the times.

EXAMPLES:

a. Stopaway

There may be applications requesting hazardous
combinations of permissions more than actually required set
of permissions. The work here does analyze the code statically
to track API calls and permissions to determine the level of
vulnerability. Analysis shows one-third results to be having
over-privileged permissions in a total of 940. However, the
API calls made or executed by applications with java
reflections remain undetected.

b. Extract Manifest

Given approach shows the malignancy or
vulnerability score based on the analysis of manifest file. It is
a light weight proposal working over extracted information
and its comparison with the list of keywords within the
proposed method. Based on the score the application is termed
as malicious or trustable.

c. Analysis of permissions

As per the known fact that the applications ask for
permissions which prove o be more than what is actually
required. So, analysis of permissions develops comparison of

the requested as well as the required permission set. This is
done by analysis of features and characteristic behavior of the
applications. Once analysis is done, labeling is followed into
three different classes or types. The three involve site based
labeling as the first; scanner based labeling as second and third
as mixed labeling. Thereafter, samples are listed to three
different datasets and algorithms such as the Naive Bayes,
AdaBoost, etc. are utilized to evaluate its behavior. Finally, the
malwares are determined to be present or absent.

d. PUMA

One another method of malware detection is PUMA
which again analyzes the permission requirement of
application, but uses tag based analysis for the same. Tags
determining permissions in AndroidManifest.xml file are
helpful for the process. Classifier algorithms play a vital role
and are applied on 357 trusted applications and 249 harmful
applications. The consequence is a high end detection rate but
also has heavy false positives. So, it cannot be used efficiently
and requires other dynamic ways of detection to be
implemented.

e. Security Distance Model

Also abbreviated as the SD Model, given application
focuses that one permission alone cannot pose threat to the
security of the system. Instead there may be more than one
combination or group of permissions that may be hazardous
and threatening to the system. Thus, the SD Model classifies
the application based on set of permissions. And also terms
some of them as malicious. The work proceeds by
classification of permission requested into four different
groups and assigning them threat points as TP-0 as Safe, TP-1
as Normal, TP-5 as Dangerous and TP-25 as Serious level.
This certainly determines the possible attack level and threat.

f. KIRIN

KIRIN is a tool developed by Enck [36], useful for
certification. This is a very light weight process done at the
installation phase. Certain rules for the security of data are
pre-defined and also comparison with application asked
permissions is done. Undertaken application is considered as
malicious on account of failure in regulations defined. But, the
main issue with KIRIN is when it determines certain trusted
applications also as vulnerable which may not be reliable for
the usage.

g. DroidMat

IJSART - Volume 4 Issue 9 – SEPTEMBER 2018 ISSN [ONLINE]: 2395-1052

Page | 352 www.ijsart.com

It is an application using K-means clustering
algorithm for better malware detection as well as determining
applications o be benign or possibly vulnerable. System here
extracts manifest based information involving permissions,
communication in intents and tracing API calls. Tool uses
KNN algorithm for analysis. However, DroidMat cannot
determine dynamically loaded malicious activities as it
functions statically.

Limitations in Analysis of Permissions

The very outer approach for analysis of malignity is
permission analysis by portraying the list of vulnerable
permission combinations and then checking for their presence.
This may give a huge range of false positives as there is a very
thin line between the permissions requested and actually
required for benign and malicious applications. This
represents that here must be another level over it for analysis
of malignity.

3. Dalvik Bytecode Analysis:

Functionally applications developed in Android have
back-end in java and are further converted to Dalvik code
which is a VM based on registry. Such an analysis of bytecode
determines the functionality and feature based behavior of the
application. Also, the control flow analysis and the data flow
analysis shows highly vulnerable functionalities of apps.

EXAMPLES:

a. SCANDAL

Developed by Jimyung Kim, the tool creates analysis
of Dalvik Bytecode and then detects privacy leakage. It
detected 11 out of 90 Android applications malicious. It
analyzes all possible paths from source to remote server by
branch based approach, method invocation for detection and
approach involving jump instructions tracking. It does not
support reflections calls so they must be manually written.

b. Formalization with reflection

Karlsen has analyzed over 1700 applications and
Dalvik Bytecode is formalized using java reflection. This does
control the malignity by detection of control flow and data
flow based vulnerabilities. System requires betterment in
reflection and concurrency handling in application. But, it has
enhanced dynamic dispatch.

c. DroidMOSS

It generated finger print for each tool by getting
Dalvik Bytecode Sequence and Developer Information to
detect repackaged information. Hence it has unique signatures
and checks. But the issue is it must have original application
in its database.

d. DroidAPI Miner

Use of KNN algorithm for API call tracking, analysis
of hazardous parameters and information analysis using
bytecode is done. Tool uses Androguard and gives upto 99%
accurate results and only 2.2% false positives.

e. SCandroid

Fuchs the developer, has developed the tool that does
static analysis at the installation time and maps data flow
based analysis. Thereby, considering data flow analysis at run-
time and behavioral aspects along with permissions it dignity
is determined.

Limitations of Dalvik Byte Code

 The major disadvantage is that the analysis occurs at
the instruction level. This is very time consuming and also
high storage is required which is unaffordable by Android.

II. Dynamic Approach

This approach examines the application during
execution so that they can even detect malwares with
obfuscating approaches.

Suggested by Egele, the dynamic analysis methods
require certain mode resources but are better comparatively.

1. Anomaly based detection

It refers to the behavior based analysis of applications

and is also known as Behavioral Malware Detection. Anomaly
based detection may function two phases : training phase and
detection phase. In the training phase the detector tries to learn
from its obvious behaviors. The major advantage of anomaly
based detection is that it can detect the zero day attacks.

EXAMPLES:

a. CrowDroid

It is a tool for Dynamic Analysis. The details of the
application are collected by trace based tool. Crowdsourcing
app generates a logging content file and transports it to

IJSART - Volume 4 Issue 9 – SEPTEMBER 2018 ISSN [ONLINE]: 2395-1052

Page | 353 www.ijsart.com

another remote server where certain algorithm for cluster
formation is used. Generated are the results accumulated on
database. It may also classify safe benign application as a
malware if there are heavy system calls.

b. Shabtai
 Shabtai is a tool performing detection based on the
behavioral analysis of application run.hus changes in certain
measures are continuously checked for and also machine
learning is used to be applied so as to improve its status and
detecting capability. Thereby, detection of benign or
vulnerable application is done.

c. AntiMalDroid

Zhao the publisher determines dynamic analysis of
application to track their execution using SVM algorithm.
Firstly, the analysis is done for the determination of benign or
the malicious application and then they are put into learning
module after which signature is prepared. The signature is the
basis and is used every time to check any application for
vulnerability.

Limitations of Anomaly Based Detection

There are false positives when even a safe application
shows uncertain behaviors as battery drainage.

2. Taint Analysis

Tainting here is dynamic and allows system wide
information flow tracking system. This may include tracking
and tainting of all system wide resources.

EXAMPLES:

a. TaintDroid

It provides system-wide information flow tracking
for Android. It can simultaneously track multiple sources of
sensitive data such as camera, GPS and microphone etc. and
identify the data leakage in third party developer apps. It
labels the sensitive data and keeps track of that data and app
when tainted data leaves moves from the device to sink.

b. XmanDroid

There are certain issues with the TaintDroid as it
cannot adequately address certain attacks. XManDroid
analyzes communication links among applications and ensures
they comply to a desired system policy. XManDroid can
prevent privilege escalation attacks including collusion attacks

(e.g., Soundcomber) that exploit the covert channels provided
by the Android's core application. Further, there is integration
of a new concept for storing the decisions made by
XManDroid which can be directly integrated in the standard
permission framework of Android.

3. Emulation based detection

In emulation based technique, system can detect the

behavior of malware as well as the sequence of malware. This
technique is used to minimize the time of detection. It is also
used to detect both the polymorphic malware and even the
metamorphic malware.

EXAMPLES:

a. DroidScope

Developed by Yan, it is based on Virtual Machine
Introspection. DroidScope monitors the whole operating
system by staying out of the execution environment and thus
have more privileges than the malware programs. It also
monitors the Dalvik semantics thus the privilege escalation
attacks on kernel can also be detected. It is built upon QEMU.
DroidDream and DroidKungFu were detected with this
technique.

b. Android Application Sandbox

Developed by Blaising, it performs both static and
dynamic analysis. It first extracts the .dex file into human
readable form and then performs static analysis on application.
Then it analyzes the low level interactions with system by
execution of application in isolated sandbox environment.
Actions of application are limited to sandbox due to security
policy and do not affect the data on device. It uses Money tool
to dynamically analyze the application behavior which
randomly generates the user events like touches, clicks and
gestures etc. it cannot detect the new malware types.

V. CONCLUSION

The analysis of the current scenario according to

IDC[2] suggests that current mobile market has high influence
of Android. Also, the Android Malware is increasing
exponentially its power. But yet there are many covert
channels and evasive techniques not successfully defended by
the anti-malwares. These aspects discover great scope of
development as relatively less progress is seen in this area.
Anti-malwares should combine static as well as dynamic
approach and defend against such newly developing attacks.
Hence, the paper not only shows the status of existing

IJSART - Volume 4 Issue 9 – SEPTEMBER 2018 ISSN [ONLINE]: 2395-1052

Page | 354 www.ijsart.com

malwares but also concludes that anti-malwares need to cope
up with the everyday growing vulnerabilities with appropriate
techniques.

VI. FUTURE WORK

The two upthrusting fields in Information Security are
Evasion and Covert Channels that are not defended much from
security point of view. There are many covert channels as
Settings of volume, vibration etc. used to leak privacy based
data e.g. contacts to sink. One such Covert Channel is
Ultrasound.[7] Any mobile device having speakers is capable
of producing frequencies considerably high for major humans
to hear. Generated ultrasound can be received by a
microphone on the same device or on another device. Based
on this the ultrasound can also be flooded with private data
and it can be easily migrated to the sink. Evasion here helps to
hide the data flow of the data sent along with covert channels
so that it goes unnoticed to the users as well as propriety anti-
malwares. Whereas, covert channels establish a secure and
unnoticed transmission channel. Such an attack can
unnoticeably evade the security of any user. Relative defense
techniques must also be published.

REFERENCES

[1] Y. Zhou and X. Jiang, “Dissecting Android Malware:
Characterization and Evolution,” 2012 IEEE Symp.
Secur. Priv., no. 4, pp. 95–109, 2012.

[2] “IDC: Smartphone OS Market Share 2022, 2021, 2020,
2019, and 2018.” [Online]. Available:
http://www.idc.com/prodserv/smartphone-os-market-
share.jsp. [Accessed: 20-Sep-2018].

[3] “Malwares types and their market share in the years 2015
and 2016.”. Available at: https://securelist.com/mobile-
malware-evolution-2016/77681/ . [Accessed: 20-Dec-
2017].

[4] Parvez Faruki Ammar Bharmal Vijay Laxmi Vijay
Ganmoor Manoj Singh Gaur Mauro Conti Muttukrishnan
Rajarajan "Android security: a survey of issues malware
penetration and defenses" IEEE communications surveys
& tutorialsno. 2 at
http://ieeexplore.ieee.org/document/6999911/

[5] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A.
Bharmal, “AndroSimilar: Robust Statistical Feature
Signature for Android Malware Detection,” Proc. 6th Int.
Conf. Secur. Inf. Networks, pp. 152–159, 2013.

[6] R. Raveendranath, V. Rajamani, A. J. Babu, and S. K.
Datta, “Android malware attacks and countermeasures:
Current and future directions,” 2014 Int. Conf. Control.
Instrumentation, Commun. Comput. Technol., pp. 137–
143, 2014.

[7] D. Arp E. Quiring C. Wressnegger K. Rieck "Privacy
threats through ultrasonic side channels on mobile
devices" Proc. IEEE Eur. Symp. Secur. Privacy pp. 35-47
Jul. 2017.

