
IJSART - Volume 4 Issue 9 – SEPTEMBER 2018 ISSN [ONLINE]: 2395-1052

Page | 42 www.ijsart.com

A Study On Python Applications

Chethan K S1, Ravikumar V G2
1, 2 Dept of Computer Science and Engineering

1, 2 GSSSIETW, Mysuru

Abstract- Python is one of the most popular modern

programming languages. In 2008 its authors introduced a new

version of the language, Python 3.0, that was not backward

compatible with Python 2, initiating a transitional phase for

Python software developers. Aims: The study described in this

paper investigates the degree to which Python software

developers are making the transition from Python 2 to Python

3. Method: We have developed a Python compliance analyser,

PyComply, and have assembled a large corpus of Python

applications. We use PyComply to measure and quantify the

degree to which Python 3 features are being used, as well as

the rate and context of their adoption. Results: In fact, Python

software developers are not exploiting the new features and

advantages of Python 3, but rather are choosing to retain

backward compatibility with Python 2. Conclusions: Python

developers are confining themselves to a language subset,

governed by the diminishing intersection of Python 2, which is

not under development, and Python 3, which is under

development with new features being introduced as the

language continues to evolve.

I. INTRODUCTION

 Popular computer languages undergo evolution,

usually expressed in versions, where larger or later version

numbers generally represent a more mature form of the

language. This maturation might include modifications that

improve compilation or execution efficiency, the addition of

language constructs that expand the power or expressivity of

the language, or enhancements that improve the performance

or functionality of core libraries. However, most programming

languages have addressed language evolution by maintaining

backward compatibility, which means that software compiled

with an earlier version of the language will compile with a

later version and will exhibit the same behaviour as the

previous version [1]. However, the Python language represents

an important exception to the backward compatibility

approach because Python 3 versions, which currently range

from 3.0 to 3.6, are not backward compatible with Python 2

versions, which range from 2.0 to 2.7. An important

consequence of this lack of backward compatibility is that

applications that were developed using a version of the

language in the Python 2 range will not compile, without

modification, using a compiler for a language in the Python 3

range. This lack of backward compatibility introduces a

problem for software engineers building Python applications

that are also evolving: the developers must choose between

rewriting their application in the new language version, or

converting their current version into a form that is compatible

with the new language version. In this paper we describe a

large empirical study that investigates the impact that the

transition from Python 2 to Python 3 has had on applications

written in Python. We have developed a Python compliance

analyser, PyComply, based on an approach that exploits

grammar convergence to generate parsers for each of the

major versions in the Python 2 and Python 3 series [2], [3],

[4]. We have also conducted empirical studies on a large

selection of Python applications, including the Qualitas

corpus, the SciPy suite of programs, the programs studied by

Chen et al. in [5], [6], [7], the applications studied by

Destefanis et al. [8], the list of “Notable Ports” on the Python

3 resources website getpython3.com, and the top 20 “most

starred” and the top 20 “most forked” Python applications on

GitHub.com. We believe that this large corpus is

representative of the Python applications in use by the various

versions of the Python language. Our analysis of this corpus

indicates that Python developers are not exploiting the new

features provided in the Python 3 series but rather are

choosing to maintain compatibility with both Python 2 and

Python 3. The consequence of this decision is that Python

developers are confining themselves to a language subset,

governed by the diminishing intersection of Python 2, which

has halted further development, and Python 3, which is under

active development with new features being introduced as the

language continues to evolve. In the next section we provide

background about the Python language and its evolution, the

evolution of other languages, and our analysis tool,

PyComply, that we developed for our study. In Section III we

provide details of the corpus of Python applications we

examined and their compatibility with Python 2 and 3. In

Section IV we explore some possible explanations for the lack

of usage of Python 3 features and, in Section V, we study the

adoption of back-ported Python 3 features. In Section VI we

describe the threats to the validity of our study, including the

incorporation of additional Python applications to address

external threats to our study. In Section VII we review

research that relates to ours and, in Section VIII, we

II. BACKGROUND AND LANGUAGE EVOLUTION

IJSART - Volume 4 Issue 9 – SEPTEMBER 2018 ISSN [ONLINE]: 2395-1052

Page | 43 www.ijsart.com

In the next subsection we describe the history and

evolution of the Python language and its burgeoning surge in

popularity. In subsection II-B we describe the evolution of

languages other than Python and provide background about

how these other languages managed their evolution. In

subsection II-C we provide details about our analysis tool,

PyComply.

A. The History and Evolution of Python

The Python programming language was conceived

during the latter part of the 1980s and its implementation was

begun in 1989 by its author Guido van Rossum. Python 2.0

was released in October of 2000 and included many

interesting features and paradigms that have contributed to its

burgeoning

popularity.

Python is known for being easy to read and write,

which permits developers to work quickly and integrate

systems more effectively [9]. Python syntax has a light and

uncluttered feel with a large number of built-in data types

including tuples, lists, sets, and dictionaries. The language

includes a large standard library and a massive repository of

user contributed packages that promote rapid prototyping. In

addition to its general purpose features, Python has powerful

scripting capabilities, which increase its overall general

popularity. Python has developed an avid cultural base who

pride themselves on their Pythonic style of code and their

practice of the Zen of Python [10]. Python includes support for

Unicode, garbage collection, as well as elements of

procedural, functional, and object oriented programming.

In the presence of its rapidly growing popularity, the

Python language continued its linear development up to

version 2.5. The development then branched, with the release

of Python 2.6 in October of 2008 being quickly followed by

the release of Python 3.0 in December of that year. Notably,

Python 3.0 was not backward compatible with previous

versions of Python, and Python 2.6 included an optional

warning mode that highlighted the use of features that had

been removed from Python 3.0.

The almost concurrent release of Python 2.6 and

Python 3.0 is illustrated in the time-line shown in Figure 1,

which highlights the break in compatibility in 3.0 over

previous releases so that applications that ran under Python 2

would no longer run under Python 3 without modification. In

addition, the time-line shows that further development of the

Python 2 series will halt with the development of Python 2.7.

In November of 2014 the Python developers announced that

Python 2.7 would be supported until 2020, but that users

should consider moving to Python 3 [11]. The advantages of

Python 3 include the addition of many new features, from

relatively minor details like a new keyword nonlocal to permit

access to variables in an enclosing scope, to major features

such as support for asynchronous programming and a new

syntax for variable and function annotations that can be used

for type hints.

Fig. 1. The Python time-line, showing the development of

Python versions and the branch following version 2.5.

The original migration guides recommended that

developers use a provided tool, 2to3, to automatically convert

to Python 3.0. However, the 2to3 utility simply performs

syntactic changes to the Python 2 source code, which does not

address the semantic discrepancies between versions 2 and 3

of Python, so this migration approach was abandoned in

favour of promoting a single code base that can run under and

caniusepython3 [13]. The migration of Python applications

from Python 2 to Python 3 represents the main thrust of our

current research.

B. Language Evolution and Backward Compatibility

Programming languages need to continually evolve

in response to user needs, hardware advances, developments

in research, and to address awkward constructs and

inefficiencies in the language [1]. In the absence of this

evolution the language suffers the prospect of diminishing

popularity and even disuse. Even though language evolution is

necessary, it also offers many difficulties. The first difficulty

is that the language designer is not always cognisant of the

needs of the application developers so the designer must rely

on mailing lists and user community surveys. The second

difficulty is that the effect of language evolution can have a

negative impact on the developers for whom the language

serves. For example, as language versions continue to evolve,

older versions are often discontinued or are no longer

supported. This difficulty is exacerbated for backward

incompatible changes in the context of programming language

evolution. A recent study by Urma has defined six main

categories of backward compatibility: source, binary, data,

performance model, behaviour and security compatibility [14].

We consider two language versions to possess syntactic

compatibility if a program that compiles under an older

language version also compiles under the new language

version. We consider two language versions to be semantically

IJSART - Volume 4 Issue 9 – SEPTEMBER 2018 ISSN [ONLINE]: 2395-1052

Page | 44 www.ijsart.com

compatible if the behaviour of a program written in the older

version behaves the same as it does in the newer version. In

general, the problem of judging behavioural equivalence is

undecidable [15], but can be approximated with varying

degrees of completeness. In this paper, we consider only

syntactic compatibility, which falls under the source

compatibility category studied by Urma. As we have noted

previously, there are currently two main series of Python

versions - Python 2 and Python 3 – that reflect the evolution of

the language. This kind of variety

Fig. 2. PyComply for Python Feature Recognition.

The PyComply system is configurable with scanners

and parsers for all language versions in the Python 2 and

Python 3 series. in language versions is different from the

proliferation of language dialects, such as those that exist for

languages like COBOL, C, and C++ [16], [17], [18]. In the

case of dialects, language discrepancies arise when different

compiler vendors add features to the language, or simply have

difficulty implementing the full language standard. Many of

these dialectic differences can be mitigated using the

conditional compilation facility included in the C family of

languages, with a corresponding overhead for the software

developers. In contrast Python has a reference implementation,

CPython, which provides a standard against which other

implementations can be compared. This provision of a

reference implementation is similar to the Java programming

language, which has also been largely successful in avoiding a

proliferation of dialects. However, most programming

languages attempt to maintain compatibility with previous

versions, with discontinuities being notable events. The move

from K&R C to ANSIC is one of the more distinctive

examples of this discontinuity. Differences due to dialects or

versions can be addressed with tools centering on a parser for

the relevant language versions.In the next section we describe

our approach for constructing parser-based analysers for

various versions of Python 2 and Python 3.

III. USAGE OF PYTHON 3.0 AND 3.1 FEATURES

Since 49 of the applications studied in the previous

sections are 2.7-compatible, we cannot study the degree to

which they have used features from the Python 3 series in

general. However, as part of preparing the path to Python 3

migration, the Python developers began “back-porting”

selected features from Python 3.0 and 3.1 into Python 2.6 and

2.7. By studying the use of these features, we can distinguish

between (a) projects that remain essentially within the Python

2 series and (b) projects that are willing to use Python 3

features, but just not willing to commit fully to Python 3 itself.

In this section we examine the latest versions of the

applications in the Qualitas suite, and determine the degree to

which they are willing to use back-ported Python 3 features.

To study the use of these features we augmented the Python

2.7 parser used in PyComply with parse actions to log the

usage of grammar constructs that corresponded to the back-

ported features.

Degree of usage of back-ported features

One of the most notable differences in Python 3 was

changing print from a keyword to a function name (and thus

print statements became expressions). To ease the transition,

Python 2.6 introduced a __future__ import that allowed

Python 2 developers to use this new formulation. Among the

other back-ported Python 3 features, we identified four that

could be detected at the grammar level: (1) set literals, (2) set

comprehensions, (3) dictionary comprehensions, and (4)

multiple context managers (via multiple as targets) in a with

statement. We then examined the applications in the Qualitas

suite to determine the degree to which these features were

being used by the developers. Since these features are

relatively specialised, failure to use them may not indicate a

disinterest in Python 3 features, but simply a lack of need for

these particular features. Thus we interpret the use of any of

these four features as being sufficient but not necessary

evidence of a willingness to use Python 3 features. Table II

shows the results of this study. In this table we list the 51

Qualitas applications, along with the number of uses of the

__future__ import (to support print as a function) and the

number of uses of each of the four back-ported features. The

rightmost column shows the total number of uses of these four

back-ported features, and the table is sorted in reverse order

based on this column. Of the 51 applications in the Qualitas

suite a total of 39 of them used the __future__ import to

support print as function. We have separated this feature from

the other four in Table II since it is most likely being used to

achieve minimal Python 3 compatibility, rather than to take

advantage of any new features offered by the new function.

Thus we regard this as an indicator of compatibility, rather

than a desire to use new features per se. As noted in Section

III two applications, django and ipython, have already moved

to Python 3, and thus have no need of this feature.

IJSART - Volume 4 Issue 9 – SEPTEMBER 2018 ISSN [ONLINE]: 2395-1052

Page | 45 www.ijsart.com

TABLE II

THE USE OF BACK-PORTED PYTHON 3 FEATURES IN

THE LATEST VERSION OF EACH APPLICATION IN

THE QUALITAS CORPUS.

IV. CONCLUDING REMARKS

In this paper we have presented a major longitudinal

study into the transition of Python applications concurrent

with the evolution of the language from Python 2 to Python 3.

In our previous research we developed techniques that

leverage grammar convergence to generate parsers for each of

the major versions of Python [4]; in this paper, we extend the

technique to develop a Python compliance analyser,

PyComply, that uses our previous research. We use PyComply

to analyse a large corpus of Python applications, including the

applications in common use, and described the results of our

investigation about their adoption of Python 3 features. Based

on the results from this study we conclude that Python

developers have not been willing to make a full transition to

the Python 3 series, but instead are choosing to maintain

compatibility with both Python 2 and Python 3. This has two

potentially negative consequences. First, Python 2, while still

supported, is no longer under active development, and these

developers have no access to new features related to language

evolution that are being added to Python 3. Second, in order to

maintain compatibility between Python 2 and 3, developers

must confine themselves to a language subset, governed by the

diminishing intersection of features common to both Python 2

and 3.

REFERENCES

[1] R.-G. Urma, D. Orchard, and A. Mycroft, “Programming

language evolution workshop report,” in Workshop on

Programming Language Evolution, 2014, pp. 1–3.

[2] R. L¨ammel and V. Zaytsev, “An Introduction to

Grammar Convergence,” in Integrated Formal Methods,

ser. LNCS, vol. 5423, 2009, pp. 246–260.

[3] V. Zaytsev, “Negotiated Grammar Evolution,” The

Journal of Object Technology, vol. 13, no. 3, pp. 1:1–22,

July 2014.

[4] B. A. Malloy and J. F. Power, “Extending automated

grammar convergence to the generation and verification

of multiple parser versions,”[under review].

[5] B. Wang, L. Chen, W. Ma, Z. Chen, and B. Xu, “An

empirical study on the impact of Python dynamic features

on change-proneness,” in International Conference on

Software Engineering and Knowledge Engineering, July

2015, pp. 134–139.

[6] Z. Chen, L. Chen, W. Ma, and B. Xu, “Detecting code

smells in Python programs,” in International Conference

on Software Analysis, Testing and Evolution, Nov. 2016,

pp. 18–23.

[7] W. Lin, Z. Chen, W. Ma, L. Chen, L. Xu, and B. Xu, “An

empirical study on the characteristics of Python fine-

grained source code change types,” in International

Conference on Software Maintenance and Evolution,

Nov. 2016, pp. 188–199.

[8] G. Destefanis, M. Ortu, S. Porru, S. Swift, and M.

Marchesi, “A statistical comparison of Java and Python

software metric properties,” in International Workshop on

Emerging Trends in Software Metrics, 2016, pp. 22–28.

[9] R. Toal, R. Rivera, A. Schneider, and E. Choe,

Programming Language Explorations. CRC Press, 2016.

[10] G. Lindstrom, “Programming with Python,” IT

Professional, vol. 7, pp. 10–16, 2005.

[11] S. Gee, “Python 2.7 to be maintained until 2020,” 2014,

[accessed 03-April-2017]. [Online]. Available:

http://www.i-programmer.info/news/ 216-python/7179-

python-27-to-be-maintained-until-2020.html

[12] N. Coghlan, “Python 3 Q&A,” 2012, [accessed 03-April-

2017].[Online].Available:http://python

IJSART - Volume 4 Issue 9 – SEPTEMBER 2018 ISSN [ONLINE]: 2395-1052

Page | 46 www.ijsart.com

notes.curiousefficiency.org/en/latest/python3/questions

and answers.html#other-changes

[13] B. Cannon, “Porting Python 2 code to Python 3,”

[accessed 04-April- 2017]. [Online]. Available:

https://docs.python.org/3/howto/pyporting. html

[14] R.-G. Urma, “Programming language evolution,” Univ. of

Cambridge, Computer Laboratory, Tech. Rep. UCAM-

CL-TR-902, Feb. 2017.

[15] M. Sipser, Introduction to the Theory of Computation.

Cengage Learning, 2012.

[16] B. A. Malloy, S. A. Linde, E. B. Duffy, and J. F. Power,

“Testing C++ compilers for ISO language conformance,”

Dr. Dobbs Journal, pp. 71– 80, June 2002.

[17] B. A. Malloy, T. H. Gibbs, and J. F. Power, “Progression

toward conformance for C++ language compilers,” Dr.

Dobbs Journal, pp. 54– 60, November 2003.

[18] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D.

Chisnall, R. N. M. Watson, and P. Sewell, “Into the

depths of C: elaborating the de facto standards,” in

Programming Language Design and Implementation,

2016, pp. 1–15.

