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Abstract- Let & =W.EJ pe a graph with P vertices and
g edges. Let [V = {L2...g+ 1} is called an Integral Root
labeling if it is possible to label all the vertices ¥ € V' with
distinct elements from £1.2...q + 1} gych that it induces an
edge labeling " E = {L2.... ¢} defined as

friw) =

[0 G032+ (f (002 + Fa F w3

v : is distinct for all

uv € E. (je.) The distinct vertex labeling induces a distinct
edge labeling on the graph. The graph which admits Integral
Root labeling is called an Integral Root Graph.

In this paper, we investigate the some result on

Integral Root labeling of graphs like Tn©K1 @nOK; D(Cy)
TL,OK, D(T,) D(T,)CK, D(Q,) D(Q,)OK,

Keywords- TnOKi @nOK,
D(T,)OK, D(Q,), D(Q,)OK,,
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1. INTRODUCTION

The graph considered here will be finite, undirected
and simple. The vertex set is denoted by V(G) and the edge

set is denoted by Z(G}. For all detailed survey of graph
labeling we refer to Gallian [1]. For all standard terminology
and notations we follow Haray[2]. V.L Stella Arputha Mary
and N.Nanthini introduced the concept of Integral Root
Labeling of graphs in [8]. In this paper we investigate Integral
Root labeling of disconnected graphs. The definitions and
other informations which are wuseful for the present
investigation are given below.

1. BASIC DEFINITION

Definition: 3.1

A walk in which 1:%z. 5 gre distinct is called a
Path. A path on ™ vertices is denoted by

Definition: 3.2
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The graph obtained by joining a single pendent edge
to each vertex of a path is called a Comb.

Definition: 3.3

The Cartesian product of two graphs G,=(V,E;) and
G,=(V,,E,) is a graph G=(V,E) with V=VxV, and two vertices
u=(u;u;) and v=(vv,) are adjacent in GixG, whenever
(us=viand u, is adjacent to v,) or (u,=v,and u, is adjacent to
vy) .Itis denoted by G1xG,.

Definition: 3.3

The Corona of two graphs G; and G is the graph
G=G,0G, formed by taking one copy of G; and |(&1)| copies
of G, where the i" vertex of G, is adjacent to every vertex in

the i copy of G.

Definition: 3.4

The product graph Pz % £ is called a Ladder and it
is denoted by Ln

Definition: 3.5

The union of two graphs G: = (Vi.Ey)  and
G; =(V2.E2) s a graph & =061 VG with vertex set
V=W UV; and the edge set £ = Es U Ez

111. MAIN RESULT

Theorem: 4.1

T2 0K, s a Integral Root graph ™ = 2,
Proof:

Let & =ThOK,;

Let i.Uz.-..Un be apath of length 7.

Let ¥io 1 =1 =1 —1 pe the new vertex joined to Ui
and Y1,

Let ¥i be the vertex which is joined to % 1 =t =7,
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Let ¥ be the wvertex which is joined to
v, l=i=n—-1

Define a function f:V{6) = {1.2.....qa + 1} py

Flud=5-3 1=i=m

flnl=5-2; 12isn-1

Fled=5i—4 1l=izgm
Flyl=5i-1; 1=isn-1

Then the edge labels are

Frilum,,)=5—-1 1=i =n-—1.
FHlum) =5 — 3 1=i=n-1;
F v, ) = 5i; lgign=-1
FHlurd =51 — 4 l=i=mn
FHlvyw) =5i—2; l=i=n-1

Then the edges labels are distinct.
Hence Tn®X1 is a Integral Root graph.
Example: 4.2
The Integral Root labeling of TaX: is given below.

(4 ¥2(9) ya(14)

u3(12) 14

uy(2) 4 1,(7) 4

Figure: 1
Theorem: 4.3

@+ CKy js an Integral Root graph
Proof:

Let & = @n0OK;
Let ¥1:%z: v Un be a path.
Let ¥i and Wi be two vertices joined to Ui and i+t
respectively and then join ¥t and Wi l=i=n-1
Let ¥: be the new vertex joined to Vi» 1 =t =n—1
Let Zi be the new vertex joined to Wi- 1 =i=n—1
Let *i be the new vertex joined to % L =i =mn
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Define a function f:V(6) = {L.2.....a +1} py
flud=7i—6 1=i=n
fl)=7i—4; 1<igsn-1;
fad=71-5 1=zi<n

flpd =7i-3; 1=i=n-1
Flw) =76 l=iz=n-1;
flz)=7i-1; 1<izn-1

Then the edge labels are

frluu,,)=7i-3 1<i<n-1
f+{'1,[[1:-'[:]:?f—5: lﬂfd_:ﬂ—l:
Frlwgug,,) =7 l<si<n-1;
Frilugxd=7i -6 l=i=n
frlgw) =7i-4 lsi=n-1
f+{1:-'['l-'l-'[:]:?f—2: ld_:fd_:'?’l—li
f+{1|'|r'[.3[:]:?f_1i 15f5?’1—1_

It is found all the edges labels are distinct.
Hence @» K\ s a Integral Root graph.
Example: 4.4

The Integral Root labeling of 2+@K: is given

below.

»1(4) z1(6) yz(11) 2(13) ¥3(18)

u3(15) 18

uy (1) 4 4, (8) 11

Figure: 2
Theorem: 45

Double Comb 2(€x) is a Integral Root graph.

Proof:

Let 6 =D(Cy)

Let %:, Vi, and Wi- 1 =1 =7 pe the new vertices of
G.

Define a function f=V(6) = (1.2.3,...q + 1} py

Flu) =3i - 1; l=i=mnm

Fle) = 3i; l=i<n

Flw)=3i-2; 1=i<n
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Then we find the edge labels

Frlgu,,l=3: 1=zizna-1
Frlumwd =3 —1; l=izn
Fluwl=3i—-2; 1<isn

Then the edge labels are distinct.
Hence € is an Integral Root graph.
Example: 4.6

The Integral root labeling of D( Ce )is given below.

v1(3) v,(6) v5(9) v5(15) vg(18)

v4(12)

ws(13)

w3(7) wy(10) ws(16)

Figure: 3
Theorem: 4.7
TLnOKy s an Integral Root graph.

Proof:

Let %; and ¥, 1 = © = 7 e the vertices of TLn,
Let i, 1 = & = n e the vertex which is attached to %:.

Let %, 1 =1 = npethe vertex which is attached to ¥i.
Let &= Tlﬂe'f{l_

Define a function f:V(6) = {1.2....q + 1}y

flud=6i-3 l1=izn
flo)=6i-3; 1=i<n
fed=6i-4 1=izn
fly)=6i-2; 1<i<n

Then we find the edge labels

frluu,)=6-2 1=i=n-1

FHiluz)=6i — 5 1=i=m
Frlup) =6i -4
£, ) = 6i; 1<i<n-1.
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frlvy) =6i — 3;
frluwy) = 6i - 1;

l=i=m
l1=i=n-1

Then the edge labels are distinct.

Hence € is an Integral Root graph.

Example: 4.8

The Integral Root labeling of TLs©K: s given

below.
x1(2) *2(8) x3(14) x4(20) x5(26)
[ . . ] )
13 19 5
! 4 7 10 16 2 =
uy (1)
uz(7) u3(13) uy (19) us(25)
2l s g| 11 4 |17 0 | 23 26
6 12 15 24
v1(3)
v3(9) 3(15) v, (21) v5(27)
3 9 15 1 27
e . * * L
¥ (4) ¥2(10) ¥2(16) va(22) v5(28)
Figure: 4
Theorem: 4.9
A Double Triangular P (=) is a Integral Root graph.
Proof:

Let 2(Tx) be the Double Triangular.

Consider a Path 1: Mz we s Uy,

Join Mili+1 with two new vertices Vi and Wi,
l=i=mn-1

Define a function £ V(D (T)) = {1.2...q + 1) by

flud=5i—-4 1<i=m

flnl=51-3; 1zisn-1

flw)=5-1 1=i<n-1

Then the edge labels are

Fflurp)=5%-4 1=iz=n-1;
Frlvu,,)=5-2 1=isn-1;
Flug,w) =5-1 1sisn—-1;
Frluwl)=5-3 1=izn-1
FHlug,w;) =5i; l=izn-1

Then the edges labels are distinct.
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Hence 2(T) is Integral Root graph.

Example: 4.10
An Integral Root labeling of 2(T4) is given below.

v1(2) v4(17)

uy(1)

wy (9

w,(19)

Figure: 5

Theorem: 4.11

D(T.)OK, is an Integral Root graph.

Proof:

Let & =D(T,)OK,
Let H1:Yz. . Un be the path of length ™.
Let ¥r and Wi» 1=i=n—1 pe the two vertices
which are joined to *i and *i+1.
Let *iand Y- 1 =1 =7 pe two new vertices which
are attached to .
Let ti be the vertex attached to ¥i» 1 =i =n—13nqd
Si be the vertex attached to Wi» 1 =t=n-1
Define a function fiV(6) = {1.2,m,q+ 1] py
Flud=9i-5; l=i=z=n
flo)=9%i-8 1si=n-1
Flw)=0i—4 1=izn-—1;
fls)=0i-3 1<ign-1
flgd=9i-7; 1=i=n—-1;
flx)=9i-1; 1=i<gn
Fly)=0i—-6: 1<i<n.

Then the edge labels are

Frlapl=9-7 1zi=n—1;
Frlumw)=9-5 12isn—-1
Flugr) =%—-21zisn -1
Frlauga,wl=9% 1zisn-1;
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f*’{u[uiﬂ:]:g:'—l: ld_:f ‘:_::'?’1—1:

Frlup)=0i—6 1=i=n
Frluxl=9i-3 1=i=<mn
Fragt) =9:-8; 1zi=n-—1
frlws)=0i—4 1<i<n-1

Then the edge labels are distinct.

Hence 2 (Tx)©Ky s an Integral Root graph.

Example: 4.12

The Integral Root labeling of D{T:)CK: is given

below.
(2) t(11) 3(20)
¥1(3) ¥2(12) ¥2(21) ¥4(30)
L ] 1 10 L ] 19
n( 72 (10) 75
3 12 21 30
2 7
n 16 20 25
u5(13) ug(22)
1, (4) uy(31)
8 17 26
4 13 2
6 9 1s 1s 24 27 | 33
wy(5) wy(14) w;(23)
® 5 14 L ] 23
2,(8) x5(17) x5(26) 4 (33)
s1(8) s, (15) 55(24)
Figure: 6

Theorem: 4.13

A Double Quadrilateral Snake P{@x) is a Integral
Root graph.

Proof:

Let 2{@x) be the Double Quadrilateral Snake.
Let Fn be the path 1:tzs - U,

Join u;amd Uiy to four new vertices VirWis¥: and,

M ld_:fﬂﬂ—l

Define a function £ V(D (T)) = {12....q + 1} by
flud=7i—6 1=i=mn

flo)=7i-5; 1=i=n-1

flwl=7i—-4 1zi<n-1;

fa)=7i-2; 1<isn-1;
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Ffls) =7i;

1=i=n-1.
Then the edge labels are

FHiupwd =7i -6

Frluw,)=7i-% 1=iz=n-1;

f+{ﬂ[+11¢1-'[:]=?:-—2: 1"!_::-‘!_:?1—1'

15:‘511—1;

frlow)=7t-5% 1sizn-1
FHlug,w) =76 1~=_E:'*=_:n—1;
Frux)=7i—-4 1<isn-1;
Frogm)=7i-1; 1=<i<n—1

Then the edges labels are distinct.
Hence 2 (@) is an Integral Root graph.
Example: 4.14
An Integral Root labeling of 2{@s) is given below.

vy (2) wy(3) 5(9) w; (10) v3(16) w4 (17)

uy(22)

x1(5) (7

x5(12)

Figure: 7

¥2(14) x3(19) ¥3(21)

Theorem: 4.15

D{Q+J)OK: is an Integral Root graph.

Proof:
Let & = D{QHJGHL
Join ¥i and *i+1 to four new vertices Vi-Wi:* )i by
the edges  Mi¥i,  ieaWioo WpXp Wi Ui Vi

v, l=i=n—-1
Let ¥: and Wi: be the two vertices joined to &: and
b 1=i=n-1 respectively.
Let *iand Y be two new vertices joined to Fi and
di 1 =i =m—1respectively.
Let =i and &, be
toup 1 =i=n-—-1

Define a function f:V(6) = {1.2,...q +13py

two vertices joined
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Flud =131 —9; l=i=zn

Flo ) =131 -7, 1=i=n-1;
Flw;l=131-3; 1=isn-—-1;
Fled =13 —12 1=i=n-1;
fly)=13i-6 1=is=n-1
fla;) =13i — 5; l=iz=n-1
Fib;) = 13i; lsi=n-1.
fled=13i-11; 1=i<n-1;
fldd=13i-1: 1=i=z=n-1
fls) =13i —10; 1<i<n
Fl) =131 — 4 1=izn

Then the edge labels are

Frluwpl=13i-8 1=isn—-1
f+':1F'[W[:] =13i—-2; 1<i<n-1;
Frlax)=13i-11<i =n—1;
f+':‘l{[+1w[:] =13i; l=i=n-1
Frlum,)=13i-31=i=mn
Frlu,y)=13i-1; 12 izn-1;

frlne)=13i -6 1<i<n-1
Fricy)=13i -9 1<1<n-1
Friwb)=13t -2 1=i=n-1.
Frlae)=13i-12; 1=i<n—1;
frivd)=13i—4 1=i=n-1.
Frlus) =13i-10; 1=1=n;

frlug)=13i-7; 1=i=n

Then the edge labels are distinct.

Hence 2(@xJCK; s an Integral Root graph.

Example: 4.16

The Integral Root labeling of P(QsJOK: js given
below
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a1(8) b, (13) a,(21) b,(26) a5(34) b3(39)

5, (16) 5,(42)

42

uy(43)

t,(48)

e (2) d;(12) c3(15) d,(25) £5(28) d3(38)

Figure: 8
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