Some Result on Integral Root Labeling of Graphs

V.L. Stella Arputha Mary¹ , N. Nanthini²

¹Dept of Mathematics

²M.phil Scholar

^{1,2} St. Mary's College (Autonomous), Thoothukudi-628001.

Abstract- Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ *be a graph with* **P** vertices and *Q* edges. Let $f: V \rightarrow \{1, 2, ..., q + 1\}$ is called an **Integral Root** *labeling if it is possible to label all the vertices* $v \in V$ **with** *distinct elements from* $\{1, 2, ..., q + 1\}$ *such that it induces an*

edge labeling $f^+ : E \rightarrow \{1, 2, \dots, q\}$ *defined as*
 $f^+(uv) = \left[\sqrt{\frac{(f(u))^2 + (f(v))^2 + f(u)f(v)}{3}} \right]$ *is distinct for all*

 $uv \in E$. (*i.e.*) The distinct vertex labeling induces a distinct *edge labeling on the graph. The graph which admits Integral Root labeling is called an Integral Root Graph.*

In this paper, we investigate the some result on Integral Root labeling of graphs like $T_n \mathbb{O}K_1$, $Q_n \mathbb{O}K_1$, $D(C_n)$ $TL_n \odot K_1$ $D(T_n)$ $D(T_n) \odot K_1$ $D(Q_n)$ $D(Q_n) \odot K_1$

 $Keywords$ *-* $T_n O K_1$ $Q_n O K_1$ $D(C_n)$ $TL_n O K_1$ $D(T_n)$ $D(T_n)$ OK₁, $D(Q_n)$, $D(Q_n)$ OK₁,

I. INTRODUCTION

The graph considered here will be finite, undirected and simple. The vertex set is denoted by $V(G)$ and the edge set is denoted by $E(G)$. For all detailed survey of graph labeling we refer to Gallian [1]. For all standard terminology and notations we follow Haray[2]. V.L Stella Arputha Mary and N.Nanthini introduced the concept of Integral Root Labeling of graphs in [8]. In this paper we investigate Integral Root labeling of disconnected graphs. The definitions and other informations which are useful for the present investigation are given below.

II. BASIC DEFINITION

Definition: 3.1

A walk in which u_1, u_2, \dots, u_n are distinct is called a **Path**. A path on \mathbb{R} vertices is denoted by P_n

Definition: 3.2

The graph obtained by joining a single pendent edge to each vertex of a path is called a **Comb.**

Definition: 3.3

The Cartesian product of two graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ is a graph $G=(V,E)$ with $V=V_1\times V_2$ and two vertices $u=(u_1u_2)$ and $v=(v_1v_2)$ are adjacent in $G_1\times G_2$ whenever $(u_1=v_1)$ and u_2 is adjacent to v_2 or $(u_2=v_2)$ and u_1 is adjacent to v_1). It is denoted by $G_1 \times G_2$.

Definition: 3.3

The Corona of two graphs G_1 and G_2 is the graph $G = G_1 \odot G_2$ formed by taking one copy of G_1 and $|G_1|$ copies of G_2 where the i^{th} vertex of G_1 is adjacent to every vertex in the i^{th} copy of G_2 .

Definition: 3.4

The product graph $P_2 \times P_n$ is called a **Ladder** and it is denoted by L_n

Definition: 3.5

The union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a graph $G = G_1 \cup G_2$ with vertex set $V = V_1 \cup V_2$ and the edge set $E = E_1 \cup E_2$.

III. MAIN RESULT

Theorem: 4.1

 $T_n \odot K_1$ is a Integral Root graph $n \geq 2$.

Proof:

$$
Let \mathbf{G} = T_n \mathbf{\odot} K_1
$$

Let u_1, u_2, \ldots, u_n be a path of length n .

Let v_i , $1 \le i \le n-1$ be the new vertex joined to u_i and u_{i+1} .

Let x_i be the vertex which is joined to u_i , $1 \le i \le n$.

Page | 640 www.ijsart.com

Let \mathbb{R} be the vertex which is joined to v_i , $1 \leq i \leq n-1$

Define a function
$$
f: V(G) \to \{1, 2, ..., q + 1\}
$$
 by
\n $f(u_i) = 5i - 3; 1 \le i \le n;$
\n $f(v_i) = 5i - 2; 1 \le i \le n - 1;$
\n $f(x_i) = 5i - 4; 1 \le i \le n;$
\n $f(y_i) = 5i - 1; 1 \le i \le n - 1.$

Then the edge labels are

$$
f^+(u_iu_{i+1}) = 5i - 1; \quad 1 \le i \le n - 1;
$$

\n
$$
f^+(u_iv_i) = 5i - 3; \quad 1 \le i \le n - 1;
$$

\n
$$
f^+(v_iu_{i+1}) = 5i; \quad 1 \le i \le n - 1;
$$

\n
$$
f^+(u_ix_i) = 5i - 4; \quad 1 \le i \le n;
$$

\n
$$
f^+(v_iy_i) = 5i - 2; \quad 1 \le i \le n - 1.
$$

Then the edges labels are distinct.

Hence $T_n \odot K_1$ is a Integral Root graph.

Example: 4.2

The Integral Root labeling of $T_4 \square K_1$ is given below.

Theorem: 4.3

 $Q_n \odot K_1$ is an Integral Root graph

Proof:

Let $G = Q_m \odot K_1$

Let u_1, u_2, \ldots, u_n be a path.

Let v_i and w_i be two vertices joined to u_i and u_{i+1} respectively and then join v_i and w_i , $1 \le i \le n-1$.

> Let \mathcal{F}_i be the new vertex joined to v_i . $1 \leq i \leq n-1$. Let \mathbb{Z} *i* be the new vertex joined to W_i , $1 \le i \le n-1$.

Let x_i be the new vertex joined to u_i . $1 \le i \le n$.

Define a function
$$
f: V(G) \to \{1, 2, ..., q + 1\}
$$
 by
\n $f(u_i) = 7i - 6;$ $1 \le i \le n;$
\n $f(v_i) = 7t - 4;$ $1 \le i \le n - 1;$
\n $f(x_i) = 7i - 5;$ $1 \le i \le n;$
\n $f(y_i) = 7i - 3;$ $1 \le i \le n - 1;$
\n $f(w_i) = 7i;$ $1 \le i \le n - 1;$
\n $f(z_i) = 7i - 1;$ $1 \le i \le n - 1.$

Then the edge labels are

It is found all the edges labels are distinct.

Hence $\mathcal{Q}_n \mathbb{O} K_1$ is a Integral Root graph.

Example: 4.4

The Integral Root labeling of $Q_4 \Omega K_1$ is given below.

Theorem: 4.5

Double Comb $D(C_n)$ is a Integral Root graph.

Proof:

G.

$$
Let G = D(C_n)
$$

Let u_i , v_i , and w_i , $1 \le i \le n$ be the new vertices of

Define a function $f: V(G) \rightarrow \{1,2,3,\ldots,q+1\}$ by $f(u_i) = 3t - 1;$ $1 \leq t \leq m$ $f(v_i) = 3i;$ $1 \le i \le n.$ $f(w_i) = 3i - 2; 1 \le i \le n$

Page | 641 www.ijsart.com

IJSART - *Volume* 4 *Issue* 8 – *AUGUST* 2018

Then we find the edge labels

$$
f^+(u_iu_{i+1}) = 3i; \quad 1 \le i \le n-1; f^+(u_iv_i) = 3i - 1; \quad 1 \le i \le n; f^+(u_iw_i) = 3i - 2; \quad 1 \le i \le n.
$$

Then the edge labels are distinct.

Hence \boldsymbol{G} is an Integral Root graph.

Example: 4.6

The Integral root labeling of D(\mathcal{C}_{ϵ}) is given below.

 $TL_n \odot K_1$ is an Integral Root graph.

Proof:

Let u_i and v_i , $1 \le i \le n$ be the vertices of TL_n . Let x_i , $1 \le i \le n$ be the vertex which is attached to u_i . Let \mathcal{Y}_i , $1 \leq i \leq n$ be the vertex which is attached to v_i . Let $G = TL_n \odot K_1$

Define a function $f: V(G) \rightarrow \{1, 2, ..., q + 1\}$ by

$$
f(u_i) = 6i - 5; \quad 1 \le i \le n;
$$

\n
$$
f(v_i) = 6i - 3; \quad 1 \le i \le n;
$$

\n
$$
f(x_i) = 6i - 4; \quad 1 \le i \le n;
$$

\n
$$
f(y_i) = 6i - 2; \quad 1 \le i \le n.
$$

Then we find the edge labels

$$
f^+(u_iu_{i+1}) = 6i - 2; \quad 1 \le i \le n - 1;
$$

\n
$$
f^+(u_ix_i) = 6i - 5; \quad 1 \le i \le n;
$$

\n
$$
f^+(u_iv_i) = 6i - 4; \quad 1 \le i \le n;
$$

\n
$$
f^+(v_iv_{i+1}) = 6i; \quad 1 \le i \le n - 1;
$$

$$
f^+(v_i\gamma_i) = 6i - 3; \qquad 1 \le i \le n;
$$

$$
f^+(u_i v_{i+1}) = 6i - 1; \qquad 1 \le i \le n - 1.
$$

Then the edge labels are distinct.

Hence \boldsymbol{G} is an Integral Root graph.

Example: 4.8

The Integral Root labeling of $TL_5 \odot K_1$ is given below.

Theorem: 4.9

A Double Triangular $\mathcal{D}(T_m)$ is a Integral Root graph.

Proof:

Let $D(T_n)$ be the Double Triangular.

Consider a Path u_1, u_2, \ldots, u_n

Join $u_i u_{i+1}$ with two new vertices v_i and w_i , $1 \leq i \leq n-1$

> Define a function $f: V(D(T_n)) \to \{1, 2, ..., q + 1\}$ by $f(u_i) = 5i - 4; 1 \leq i \leq n;$ $f(v_i) = 5i - 3; 1 \le i \le n - 1;$ $f(w_i) = 5i - 1; 1 \le i \le n - 1.$

Then the edge labels are

 $f^+(u_iv_i) = 5i - 4;$ $1 \leq i \leq n-1$; $f^+(u_iu_{i+1}) = 5i - 2; 1 \le i \le n-1;$ $f^+(u_{i+1}v_i) = 5i - 1; 1 \le i \le n-1;$ $f^+(u_iw_i) = 5i - 3;$ $1 \leq i \leq n-1$: $f^+(u_{i+1}w_i) = 5i;$ $1 \le i \le n-1$

Then the edges labels are distinct.

Hence $D(T_n)$ is Integral Root graph.

Example: 4.10

An Integral Root labeling of $D(T_4)$ is given below.

 $D(T_n)$ **OK**₁ is an Integral Root graph.

Proof:

Let $G = D(T_n) \odot K_1$

Let u_1, u_2, \ldots, u_n be the path of length n .

Let v_i and w_i , $1 \le i \le n-1$ be the two vertices which are joined to u_i and u_{i+1} .

Let x_i and y_i , $1 \le i \le n$ be two new vertices which are attached to u_i .

Let \bar{t}_i be the vertex attached to v_i , $1 \le i \le n-1$ and s_i be the vertex attached to w_i . $1 \le i \le n-1$.

Define a function $f: V(G) \rightarrow \{1, 2, ..., q + 1\}$ $f(u_i) = 9t - 5; 1 \leq i \leq n$ $f(v_i) = 9i - 8; 1 \le i \le n - 1;$
 $f(w_i) = 9i - 4; 1 \le i \le n - 1;$ $f(s_i) = 9i - 3; 1 \leq i \leq n-1$ $f(t_i) = 9i - 7; 1 \le i \le n - 1;$ $f(x_i) = 9i - 1; 1 \leq i \leq n;$ $f(y_i) = 9i - 6; 1 \le i \le n.$

Then the edge labels are

$$
f^+(u_i v_i) = 9i - 7; \quad 1 \le i \le n - 1; \nf^+(u_i w_i) = 9i - 5; \quad 1 \le i \le n - 1; \nf^+(u_{i+1} v_i) = 9i - 2; 1 \le i \le n - 1; \nf^+(u_{i+1} w_i) = 9i; \quad 1 \le i \le n - 1;
$$

$$
\begin{aligned} &f^+(u_iu_{i+1})=9i-1;\ 1\le i\le n-1;\\ &f^+(u_iy_i)=9i-6;\quad 1\le i\le n;\\ &f^+(u_ix_i)=9i-3;\ 1\le i\le n;\\ &f^+(v_it_i)=9i-8;\ 1\le i\le n-1;\\ &f^+(w_is_i)=9i-4;\ 1\le i\le n-1. \end{aligned}
$$

Then the edge labels are distinct.

Hence $D(T_n)$ OK₁ is an Integral Root graph.

Example: 4.12

The Integral Root labeling of $D(T_4) \odot K_1$ is given below.

Theorem: 4.13

A Double Quadrilateral Snake $D(Q_n)$ is a Integral Root graph.

Proof:

Let $D(Q_n)$ be the Double Quadrilateral Snake. Let P_n be the path u_1, u_2, \ldots, u_n . Join u_i and u_{i+1} to four new vertices v_i, w_i, x_i and, y_i $1 \leq i \leq n-1$ Define a function $f: V(D(T_n)) \rightarrow \{1, 2, ..., q + 1\}$ by $f(u_i) = 7i - 6; \quad 1 \leq i \leq n;$

 $f(v_i) = 7i - 5; 1 \le i \le n - 1;$ $f(w_i) = 7i - 4; 1 \le i \le n - 1;$ $f(x_i) = 7i - 2; 1 \le i \le n - 1;$

Page | 643 www.ijsart.com

$$
f(y_i) = 7i; \qquad 1 \leq i \leq n-1.
$$

Then the edge labels are

$$
f^+(u_i v_i) = 7i - 6; \quad 1 \le i \le n - 1;
$$

\n
$$
f^+(u_i u_{i+1}) = 7i - 3; \quad 1 \le i \le n - 1;
$$

\n
$$
f^+(u_{i+1} w_i) = 7i - 2; \quad 1 \le i \le n - 1;
$$

\n
$$
f^+(v_i w_i) = 7i - 5; \quad 1 \le i \le n - 1;
$$

\n
$$
f^+(u_{i+1} y_i) = 7i; \quad 1 \le i \le n - 1;
$$

\n
$$
f^+(u_i x_i) = 7i - 4; \quad 1 \le i \le n - 1;
$$

\n
$$
f^+(x_i y_i) = 7i - 1; \quad 1 \le i \le n - 1.
$$

Then the edges labels are distinct.

Hence $\mathcal{D}(Q_n)$ is an Integral Root graph.

Example: 4.14

An Integral Root labeling of $D(Q_4)$ is given below.

Theorem: 4.15

 $D(Q_n) \odot K_1$ is an Integral Root graph.

Proof:

Let $G = D(Q_n) \odot K_1$

Join u_i and u_{i+1} to four new vertices v_i, w_i, x_i, y_i by the edges $u_i v_i$, $u_{i+1} w_i$, $u_i x_i$ $\mathcal{V}_i W_{\vec{a}}$, $u_{i+1}y_i$. $x_i y_i, \; 1 \leq i \leq n-1$

Let \mathbb{V}_i and \mathbb{W}_i be the two vertices joined to a_i and b_i , $1 \leq i \leq n-1$ respectively.

Let x_i and y_i be two new vertices joined to c_i and d_i , $1 \leq i \leq n-1$ respectively.

Let \mathbf{z}_i and \mathbf{z}_i , be two vertices joined $_{to} u_i$. $1 \le i \le n-1$

Define a function $f: V(G) \rightarrow \{1, 2, ..., q + 1\}$ by

$$
f(u_i) = 13i - 9; \quad 1 \le i \le n;
$$

\n
$$
f(v_i) = 13i - 7; \quad 1 \le i \le n - 1;
$$

\n
$$
f(w_i) = 13i - 3; \quad 1 \le i \le n - 1;
$$

\n
$$
f(x_i) = 13i - 12; \quad 1 \le i \le n - 1;
$$

\n
$$
f(y_i) = 13i - 6; \quad 1 \le i \le n - 1;
$$

\n
$$
f(a_i) = 13i - 5; \quad 1 \le i \le n - 1;
$$

\n
$$
f(b_i) = 13i; \quad 1 \le i \le n - 1;
$$

\n
$$
f(c_i) = 13i - 11; \quad 1 \le i \le n - 1;
$$

\n
$$
f(s_i) = 13i - 1; \quad 1 \le i \le n - 1;
$$

\n
$$
f(s_i) = 13i - 10; \quad 1 \le i \le n;
$$

\n
$$
f(t_i) = 13i - 4; \quad 1 \le i \le n.
$$

Then the edge labels are

 $f^+(u_iv_i) = 13i - 8; 1 \le i \le n-1;$ $f^+(v_iw_i) = 13i - 5; 1 \le i \le n-1;$ $f^+(u_ix_i) = 13i - 11; 1 \le i \le n-1;$ $f^+(u_{i+1}w_i) = 13i;$ $1 \leq i \leq n-1;$ $f^+(u_iu_{i+1}) = 13i - 3; 1 \leq i \leq n;$ $f^+(u_{i+1}\gamma_i) = 13i - 1; 1 \leq i \leq n-1;$ $f^+(v_i a_i) = 13i - 6; \quad 1 \leq i \leq n-1;$ $f^+(x_iy_i) = 13i - 9; 1 \le 1 \le n-1;$ $f^+(w_i b_i) = 13i - 2; \; 1 \leq i \leq n-1;$ $f^+(x_ic_i) = 13i - 12; 1 \le i \le n-1;$ $f^+(y_i d_i) = 13i - 4; 1 \leq i \leq n-1.$ $f^+(u_i s_i) = 13i - 10; \quad 1 \leq 1 \leq n;$ $f^+(u_i t_i) = 13i - 7;$ $1\leq i\leq n$.

Then the edge labels are distinct.

Hence $D(Q_n) \odot K_1$ is an Integral Root graph.

Example: 4.16

The Integral Root labeling of $D(Q_4) \odot K_{1}$ is given below

Page | 644 www.ijsart.com

REFERENCES

- [1] J.A.Gallian, 2010, "A dynamic Survey of graph labeling," *The electronic Journal of Combinatories*17#DS6.
- [2] F.Harary, 1988, "Graph Theory," *Narosa Publishing House Reading*, New Delhi.
- [3] S.Sandhya, S. Somasundaram, S. Anusa, "Root Square Mean labeling of graphs," *International Journal of Contemporary Mathematical Science*, Vol.9, 2014, no.667-676.
- [4] S. S. Sandhya, E. Ebin Raja Merly and S. D. Deepa, "Heronian Mean Labeling of Graphs", communicated to *International journal of Mathematical Form.*
- [5] S.S.Sandhya, S.somasundaram, and S. Anusa, "Some Results on Root Square Mean Graph", *International Journal of Mathematics Research*, vol.7, no.2(2015), pp.125-134.
- [6] S.S.Sandhya, S.somasundaram, and S. Anusa, "Some More Results on Root Square Mean Graph", communicated to "*Journal of Mathematics Research*".
- [7] S. Sandhya, E. Ebin Raja Merly and S. D. Deepa, " Some results On Heronian Mean Labeling of Graphs", communicated to *Journal of Discrete Mathematical Science of crypotography.*
- [8] V.L Stella Arputha Mary, and N. Nanthini, "Integral Root labeling of graph" *International Journal of Mathematics Trends Technology(IJMTT),* vol.54, no.6(2018), pp.437- 442.