
IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 719 www.ijsart.com

Design of Vedic Multiplier By Using Neural Network

Technology & Mac

B. Yerriswamy1, E. Ramakrishna2
 2 Assistant Professor, HOD Dept of ECE

1, 2 SKD Engineering College, Gooty

Abstract- An Artificial neural network (ANN) is parallel

Information processing structure consists of processing units.

The processing unit decides while the network is efficient or

not. So it is needed to design an efficient processing unit

which provides better performance. The processing unit

consists of MAC unit (Multiplication and Accumulation) and

Activation unit. In an existing system, the processing MAC

unit was designed by Booth multiplier and carry look ahead

adder. The existing processing unit provides delay and

consumes more area and power. To overcome the drawbacks,

a new processing unit, with Vedic multiplier consisting of

square root carry select adder (SQRT-CSLA) is designed. The

proposed design overcomes the drawbacks of the existing

system, and it also provides better performance to the entire

network. The Activation function unit was designed by sigmoid

neurons process. Entire processing unit was implemented and

verified by using Verilog HDL language.

Keywords- Artificial Neural Networks (ANN), MAC, Vedic

multiplier, SQRT-CSLA, Booth multiplier, Verilog HDL.

I. INTRODUCTION

1NEURAL NETWORK

A neural network is interconnected with processing

elements. The processing Element of the network is used to

store the interconnection strength and weights. Neural

networks are widely used for statistical analysis and data

modeling techniques. Some examples are image and speech

recognition, character recognition, financial prediction and

geological survey. In the neural network consider the input as

high dimensional and discrete or real valued function, the

same way output function is also discrete or real vector-valued

function.

An artificial neuron computational model is similar to

the natural neurons. Natural neuron receives signals through

synapses located on the membrane of the neurons. When the

signal is received are enough, the neuron is activated and

emits the signal though the axon. Likewise the signal sent to

another synapse and might activate other neurons. Modeling

the artificial neurons is done by multiplying the input

(synapses), with weights, and then computed by mathematical

function which determines the activation of the neurons, and

compute the output of the artificial neurons. ANNs combine

artificial neurons in order to process the information. It uses a

distributed representation of the information stored in the

network. Normally the neural network model takes an input

samples and produces output samples. The relationship

between the input and output function is determined by the

network.

Artificial neural network (ANN) is characterized by a

large number of simple processing neuron like processing

elements. Three different processing elements in the networks

are processing units and topology. Processing units are

generally MAC and activation unit. Based on the processing

unit the performance of the network is increased. Two

topologies are in the ANNs, one is feed forward networks and

another one is feedback or recurrent networks. Feed forward

network consists of single layer, multilayer perception and

radial basis function. Likewise the feedback networks consists

of competitive networks, Hopfield network and ART models

ANN can be dividing into feed forward and feedback

network. In the feed forward network the input is directly feed

to processing unit, after the completion of process forward to

the output unit. The operation of the feed forward network

shows the output is purely depends on present input only, not

a previous one. But the feedback network is differ from feed

forward, the output of the feedback network is depends on past

output also. The output of the previous stage is taken as the

feedback and given to the input unit. Application of the feed

forward Networks is to develop nonlinear models that are used

for pattern recognition and classification.

ARTIFICAL NEURAL NETWORKS (ANNs)

 Neural Network Architecture

An Artificial Neural Network is a parallel

information processing consists ofprocessing units. The

neural network was changed to Artificial Neural Networks,

because it’s not dealing with biological neural networks. ANN

was deals with general computing architecture known as

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 720 www.ijsart.com

Multiple Instruction Multiple Data (MIMD) parallel

processing architecture.

Simple neural network

Fig. shows the architecture of simple neural network,

it contains three layers, input, hidden and output layer. Input

data is feed forward to the output via the hidden layer. In-

between the input and output, processing is performed by the

help of processing unit.

B. Framework for ANN model

 There are different ANN models but each model can

be specified by the following aspects:

 A set of processing units

 A state of activation for each unit

 An output for each unit

 Topology of the network

 An activation rule to update the activities of each unit

 An external environment provides information to the

network

 A learning rule to modify the structure of

connectivity by using information provided by the

external environment.

After the processing of information, the output

function uses the activation value to calculate the output of the

unit. A simple artificial neuron tells how the process is done in

the processing MAC unit. MAC operation is important one to

get an accurate results from the neural networks.

Simple artificial neuron

Fig . shows the simple artificial neuron in the

artificial neural network. It contains multiplication and

accumulation unit. Each input are multiplied with weights

individually, output from the multiplier is added by using

addition unit. Added output is forward to activation unit, based

on the threshold it produced the output 0 or 1.

II. LITERATURE SURVEY

EXISTING SYSTEM

In existing system, the processing MAC unit was

designed by Booth multiplier and carry look ahead adder. The

existing processing unit provides delay and consumes more

area and power.

Booth Multiplier

It is a powerful algorithm for signed-number

multiplication, which treats both positive and negative

numbers uniformly. For the standard add and shift operation,

each multiplier bit generates one multiple of the multiplicand

to be added to the partial product. If the multiplier is very

large, then a large number of multiplicands have to be added.

In this case the delay of multiplier is determined mainly by the

number of additions to be performed. If there is a way present

to reduce the number of the additions, the performance will

get better.

Booth algorithm is a method that will decrease the

number of multiplicand multiples. For a given range of

numbers to be represented, a higher representation radix leads

to fewer digits. Since a k-bit binary number can be interpreted

as K/2-digit radix-4 number, a K/3-digit radix-8 number, and

so on, it can deal with more than one bit of the multiplier in

each cycle by using high radix multiplication. This is shown

for Radix-4 in the example below.

As shown in the Fig 2.1, if multiplication is done in

radix 4, in each step, the partial product term (Bi+1Bi)2 A

needs to be formed and added to the cumulative partial

product. Whereas in radix-2 multiplication, each row of dots

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 721 www.ijsart.com

in the partial products matrix represents 0 or a shifted version

of A must be included and added. Table 1below is used to

convert a binary number to radix-4 number.

Radix-4 multiplication in dot notation

Initially, a “0” is placed to the right most bit of the

multiplier. Then 3 bits of the multiplicand is recoded

according to table below or according to the following

equation: Zi = -2xi+1 + xi + xi-1

Example:

Multiplier is equal to 0 1 0 1 1 10

then a 0 is placed to the right most bit which gives 0 1 0 1 1 10

0

the 3 digits are selected at a time with overlapping left most

bit as follows:

Radix-4 Booth recoding

For example, an unsigned number can be converted

into a signed-digit number radix 4:(10 01 11 01 10 10 11 10)2

= (–2 2 –1 2 –1 –1 0 –2)4

Booth Multiplier Algorithm

Step 1: From two operands, determine the least transitions

between bit and these operand assigned to X and other

operand to Y. In addition to this, determination of –Y will

helps to further process.

Step 2: Make a four column to understand the data flow of the

multiplication. The first column (U) holds the results from

each step in the algorithm. The second column (V) holds the

overflow from U when right-shifting. The third column holds

the operand (X). The fourth column (X-1) holds the least

significant bit from X before RSC. Initially set this to zero.

Step 3: Analyze the least significant bit of X and (X-1) in

each step of algorithm. From that string take the operation as

in table.

Decision making operation in Booth multiplier

This process repeats until the X has been RSC to its

original position.

For instance, consider X= 0100 and Y= 1010. From

this two operands, 1101 has less bit transitions so set X= 0100

and Y= 1010. The operation of multiplication by using booth

algorithm is as follows

Take U and V together, we get 11101000 which are -

24. i.e. 4X (-6) =-24.

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 722 www.ijsart.com

Similarly, we can easily design the 8-bit, 16-bit and

32-bit multiplication based on booth algorithm. When

implementing this algorithm through VLSI system design,

high speed and low power has been obtained than normal

array multiplier. This multiplier is one of the best multipliers

in MAC design and digital FIR filter. Large endeavors have

been working in booth multiplier to improve the performance

of digital FIR filter. Further to improve the performance booth

multiplier, modified booth multiplier has been developed in

later. Description of modified booth multiplier is arrived in

next section.

Modified Booth Multiplier

Booth multiplication consists of three major steps as

partial product generation (booth recoding, reducing the

partial product in two rows and addition of partial product that

finalize the result for multiplication. For better understanding

of modified booth multiplier, we must know each block of

booth algorithm for multiplication process. The modified

booth multiplier is used to perform high speed multiplication

by using modified booth algorithm. In modified booth

multiplier, computation time and logarithm of word length of

operand are proportional to each other. Traditionally radix-4

booth algorithm is used to increase the speed of multiplier and

reduces the area of the multiplier circuit. Every third column

of booth multiplier table is multiplied by 0 or +1 or +2 or -1 or

-2 in modified booth modifier instead of multiplying 0 or 1

after shifting and adding of every column of booth multiplier.

Thus, half of the partial product can be reduced in modified

booth multiplier. Grouping is started from least significant bit

(LSB), in which only two bits of the booth multiplier are used

and zero is padded as third bit.

Modified Booth multiplier

Based on this booth recoding table, further the

multiplication process is preceded as booth algorithm. The

procedure for both booth and modified booth multiplier is

represented in Fig 2.2. The performance of modified booth

multiplier is better than booth multiplier in terms of LUT and

Slices because half of the partial product can be reduced in

modified booth multiplier. Next to modified booth multiplier,

efficient multiplier structure called Vedic multiplier is

developed in later for improve the performance in terms of

area, delay and power.

Adder

Carry look ahead adder is being used in existing system. The

Carry look ahead adder provides delay and consumes more

area and power due to which efficiency of the system will get

reduced.

To reduce the area and power consumption of regular

CSLA, RCA unit with Cin =1 is replaced with BEC unit as

shown in Fig 2.3. An (n+1) bit BEC replaces the n-bit RCA.

The RCA calculate n-bit sum and carry corresponding to

Cin=0. The BEC unit receives sum and carry from the RCA

and generate (n+1) bit excess-1 code. The most significant bit

(MSB) of BEC represents Cout and least significant bit (LSB)

represents the sum corresponding to Cin =1.

Binary to Excess convertor based CSLA

PROPOSED SYSTEM

The existing processing unit provides delay and

consumes more area and power, to overcome this, a new

processing unit is designed which contains Vedic multiplier

with square root carry select adder (SQRT-CSLA). The

proposed design overcomes the drawbacks of the existing

system, and it also provides better performance to the entire

network. The Activation function unit was designed by

sigmoid neurons process. Entire processing unit was

implemented and verified by using Verilog HDL language.

Vedic Mathematics

Vedic mathematics is part of four Vedas (books of

wisdom). It is part of Sthapatya- Veda (book on civil

engineering and architecture), which is an upa-veda

(supplement) of Atharva Veda.

It covers explanation of several modern mathematical

terms including arithmetic, geometry (plane, co-ordinate),

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 723 www.ijsart.com

trigonometry, quadratic equations, factorization and even

calculus. His Holiness JagadguruShankaracharyaBharati

Krishna Teerthaji Maharaja (1884-1960) comprised all this

work together and gave its mathematical explanation while

discussing it for various applications. Swamiji constructed 16

sutras (formulae) and 16 Upa sutras (sub formulae) after

extensive research in Atharva Veda. The very word “Veda”

has the derivational meaning i.e. the fountainhead and

illimitable storehouse of all knowledge. Vedic mathematics is

the name given to the ancient system of mathematics or, to be

precise a unique technique of calculations based on simple

rules and principles with which many mathematical problems

can be solved, be it arithmetic, algebra, geometry or

trigonometry.

The system is based on 16 Vedic sutras or aphorisms,

which are actually word formulae describing natural ways of

solving a whole range of mathematical problems. The beauty

of Vedic mathematics lies in the fact that it reduces the

cumbersome-looking calculations in conventional

mathematics to a very simple one. This is so because the

Vedic formulae are claimed to be based on the natural

principles on which the human mind works. This is a very

interesting field and presents some effective algorithms which

can be applied to various branches of engineering such as

computing and digital signal processing.

Vedic Mathematics existed in ancient India and was

rediscovered by a popular mathematician, Sri Bharati Krishna

Tirthaji. He divided Vedic mathematics into 16 simple sutras

(formulae). These Sutras deal with Arithmetic, Algebra,

Geometry, Trigonometry, Analytical Geometry etc. The

simplicity in the Vedic mathematics sutras paves way for its

application in several prominent domains of engineering like

Signal Processing, Control Engineering and VLSI.

1. (Anurupye) Shunyamanyat -If one is in ratio, the

other is zero.

2. ChalanaKalanabyham -Differences and similarities.

3. EkadhikinaPurvena- By one more than the previous

One.

4. EkanyunenaPurvena -By one less than the previous

one.

5. Gunakasamuchyah-Factors of the sum is equal to the

sum of factors.

6. Gunitasamuchyah-The product of sum is equal to

sum of the product.

7. NikhilamNavatashcaramamDashatah -All from 9 and

last from 10.

8. ParaavartyaYojayet-Transpose and adjust.

9. Puranapuranabyham -By the completion or

noncompletion.

10. Sankalana- vyavakalanabhyam -By addition and by

subtraction.

11. ShesanyankenaCharamena- The remainders by the

last digit.

12. ShunyamSaamyasamuccaye -When the sum is same

then sum is zero.

13. Sopaantyadvayamantyam -The ultimate and twice the

penultimate.

14. Urdhva-tiryakbhyam -Vertically and crosswise.

15. Vyashtisamanstih -Part and Whole.

16. Yaavadunam- Whatever the extent of its deficiency.

Vedic Mathematics can be bifurcated into 16

different sutras to perform mathematical operations. Among

these surtrastheUrdhwaTiryakbhyam Sutra is one of the most

highly preferred algorithms for performing multiplication. The

algorithm is competent enough to be employed for the

multiplication of integers as well as binary numbers. The term

"UrdhwaTiryakbhyam” originated from 2 Sanskrit words

Urdhwa and Tiryakbhyam which mean “vertically” and

“crosswise” respectively. The mainadvantage of utilizing this

algorithm in comparison with the existing multiplication

techniques, is the fact that it utilizes only logical “AND”

operations, half adders and full adders to complete the

multiplication operation. Also, the partial products required

for multiplication are generated in parallel and apriority to the

actual addition thus saving a lot of processing time.

URDHWA TIRYAKBHYAM ALGORITHM

Let us consider two 8 bit numbers X7-X0 and Y7-

Y0, where 0 to 7 represent bits from the Least Significant Bit

(LSB) to the Most Significant Bit (MSB). P0 to P15 represent

each bit of the final computed product. It can be seen from

equation (1) to (15), that P0 to P15 are calculated by adding

partial products, which are calculated previously using the

logical AND operation. The individual bits obtained from

equations (1) to (15), in turn when concatenated produce the

final product of multiplication which is depicted in (16).The

carry bits generated during the calculation of the individual

bits of the final product are represented from C1 to C30. The

carry bits generated in (14) and (15) are ignored since they are

superfluous.

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 724 www.ijsart.com

Pictorial Illustration of UrdhwaTiryakbhyam Sutra

Graphically illustrates the step by step method of

multiplying two 8 bit numbers using the UrdhwaTiryakbyam

Sutra. The black circles indicate the bits of the multiplier and

multiplicand, and the two-way arrows indicate the bits to be

multiplied in order to arrive at the individual bits of the final

product. The hardware architecture of the 8x8 Urdhwa

multiplier has been designed and shown in Fig.

Example for UrdhwaTiryakbhyam Algorithm

Now let an example to explain the multiplication

procedure of UrdhwaTiryakbhyam Sutra. The 3 by 3 decimal

number is taken and the procedure is shown.

654 – Multiplier

321 – Multiplicand

1) The first step is like as shown in the figure. The

multiplication should done between the first digits in each

numbers from right hand side.

2) The second step is multiplying cross wise first digit

in first number and second digit in second number and vice

versa.

4×2=8

5×1=5

And now add 8 and 5 gives 13. In number 13 tens place

number is the Carry.

3) The third step is multiplying first digit in first number

with third digit in second number , second digit in both

numbers and first digit in second number with third digit in

first number

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 725 www.ijsart.com

4×3=12

5×2=10

6×1=6

Here we got 2 digit number, so we have another carry which

will propagate to next stage.

4) Next step is multiplying second digit in first number

with third digit in second number and vice

5×3=15

6×2=12

Here we got 2 digit number, so we have another carry which

will propagate to next stage.

5) Final step is multiplying last digits in both numbers

with each other. 6×3=18

And now add this partial product and previous carry that

results final partial product 18+2=20.

6) Now arrange partial products without carry from

bottom to top in a sequence from left to right, we will get final

product

Result = 209934

The procedure which we use here is used for binary

numbers also. Now, let applying same procedure for two 8 bit

numbers as shown below. Partial products can be denoted as

P0 to P15.

P=10110110 – multiplier

Q=11011001– multiplicand

Now the partial products are from P14 to P0. The

partial product has two parts carry and product. Right most

digit in the partial product is the product and remaining part is

the carry. To get final product write the each product from P14

to P0,this is the required final product.

Final Result = 1 0 0 1 1 0 1 0 0 1 0 0 0 1 1 0

The number of multiplications required is same for

the UrdhwaTiryakbhyam algorithm and normal multiplication

but the advantage of the UrdhwaTiryakbhyam algorithm is

while implementing the circuit the partial product come

directly, and also there is no need of complex time consuming

operations like shifting and rotating. This algorithm eliminates

sequential operations so speed of operation increases. So UT

algorithm is best suited for the hard ware implementation with

less complexity.

Half Adder

Half adder is the basic unit of this multiplier circuit.

The half adder circuit adds two bits and gives two outputs,

sum and the carry. The sum is the result of the XOR gate and

carry is the result of the AND gate. The circuit of the half

adder is shown in below Fig 2.5.

Sum = A XOR B

Carry = A AND B

Half Adder circuit diagram

The truth table of the half adder is shown in below table

Half adder Truth table

Full Adder

The full adder is the circuit which will add two bits

besides carry, totally three bits, same as half adder it gives two

outputs sum and carry. The full adder is combination of two

half adders and one or gate. The circuit diagram is shown in

Fig.

Sum = X XOR Y XOR CIN

CARRY = (X XOR Y) CIN + XY

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 726 www.ijsart.com

Full Adder circuit diagram

Full adder Truth table

As mentioned earlier, the partial products obtained

are added with the help of full adders and half adders. It can

be seen, from equation (1) to (16) that in few equations there

is a necessity of adding more than 3 bits at a time. This leads

to additional hardware and additional stages, since the full

adder is capable of adding only 3 bits at a time. Fig 2.7 shows

Hardware architecture of UrdhvaTiryakbhyam multiplier with

full adders and half adders, with reduced architecture and

increased efficiency in terms of speed.

Vedic Multiplier

Vedic mathematics is the name given to the ancient

Indian system of mathematics that was rediscovered in early

twentieth century. This mathematics is mainly based on

sixteen principles which are termed as Sutras. In other words,

Vedic multiplier architecture based on the Urdhva

Tiryakbhyam (Vertically and cross wise) Sutra is presented.

This Sutra was traditionally used in ancient India for the

multiplication of two decimal numbers in relatively less time.

The hardware architecture of Vedic multiplier is to be very

similar to that of popular array multiplier.

Vedic mathematics fulfils the explanation of various

modern mathematical terms including arithmetic, geometry

(plane, co-ordinate), trigonometry, quadratic equation,

factorization and even calculus. The advantage of Vedic

mathematics lies in the fact that it reduces the otherwise

cumbersome-looking calculations in conventional

mathematics to a very simple one. This multiplication is very

interesting field and presents some effective algorithms which

can be applied to various branches of engineering such as

computing and digital signal processing.

Implementation of Multiplier using Vedic Multiplier

The hardware architecture of 2X2 Vedic multiplier

is illustrated in Fig.

“Urdhva Tiryakbhyam” (Vertically and crosswise) sutra is

used to propose such architecture for the multiplication of two

binary numbers. The main benefit of Vedic multiplier is that

partial product generation and additions are done concurrently.

Hence, it is well adapted to parallel processing. The features

of this makes more attractive for binary multiplication.

The 2X2 Vedic multiplier is implemented using four AND

gates and two half-adders which is displayed in its block

diagram. It is found that the hardware architecture of 2X2

Vedic multiplier is same as the hardware architecture of 2X2

array multiplier. Therefore multiplication of 2 bit number

using Vedic method does not made significant effect in

improvement of multiplier’s efficiency. So we switch over to

the implementation of 4X4 bit Vedic multiplier which uses the

2X2 bit Vedic multiplier as a basic building block.

2X2 Vedic Multiplier

The same method can be extended for input bits 4

and 8. But for higher number of bits in input, little

modification is required. The structure of 16 bit Vedic

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 727 www.ijsart.com

multiplier by using 8X8 Vedic multiplier is illustrated in Fig

2.9. This structure consists of three 16 bit ripple carry adder

for addition process.

The performance of 16-bit Vedic multiplier is

increased in terms of area, delay and power when compared to

performance of 16-bit array multiplier. We can easily design

32-bit and 64-bit Vedic multiplier with help of 16X16 and

32X32 bit Vedic multiplier. Hence from above consecution, it

is clear that for large bit multiplication, Vedic multiplier gives

more advantage than array multiplier.

However, there are some limitations in Vedic

multiplier. In each NXN Vedic multiplier, three sets of ripple

carry adders are essential for perform addition process of

partial products. This multiplier’s performance is better than

array and modified booth multiplier’s performance. Further to

improve the performances of Vedic multiplier, different types

of adders like Carry Save Adder (CSA), Carry Look-ahead

Adder (CLA), Square Root Cary Select Adder (SQRT CSLA)

is incorporated into Vedic multiplier. In order to reduce the

limitation of Vedic multiplier, Wallace tree multiplier has

been developed in later.

An adder is the main component of an arithmetic

unit. Adders are commonly found in many building blocks of

microprocessors and digital signal processing chip.

8X8 Vedic Multiplier

Adders are essential not only for addition, but also

for subtraction, multiplication and division. Addition is one of

the fundamental arithmetic operations. A fast and accurate of

digital system is greatly influenced by the performance of the

resident adders.

The most important for measuring the quality of

adder design were propagation delay and area. Application

where these adders are used are multipliers, Digital signal

processing to execute like fast Fourier transform (FFT), finite

impulse response (FIR) and infinite impulse response (IIR).

Carry Select Adder

Design of area and power efficient high speed data

logic systems are one of the most substantial areas of research

in VLSI system design. Addition usually impacts widely the

overall performance of digital systems and an arithmetic

function. In electronics applications adders are most widely

used. In multipliers, DSP to execute various algorithms like

FFT, FIR and IIR. In digital adders, the speed of addition is

limited by the time required to propagate a carry through the

adder. The sum for each bit position in an elementary adder is

generated sequentially only after the previous bit position has

been summed and a carry propagated into the next position.

The CSLA is used in many computational systems to

alleviate the problem of carry propagation delay by

independent generation multiple carries and then select a carry

to generate the sum. However, the CSLA is not an area

efficient because it uses multiple pairs of Ripple Carry

Adders(RCA) to generate partial sum and carry by considering

carry input as Cin=0 and Cin=1, then the final summation and

carry are selected by the multiplexers.

The Carry select adders are classified as Linear Carry

select adder and Square-root Carry select adder.

Linear Carry Select Adder

The linear carry select adder is constructed by

chaining a number of equal length adder stages. For an n-bit

adder, it could be implemented with equal length of carry

select adder and is called as linear carry select adder.

Square-Root Carry Select Adder

The square-Root carry select adder is constructed by

equalizing the delay through two carry chains and the block

multiplexer signal from previous stage. It is also called as non-

linear carry select adder.

The existing modified SQRT CSLA uses Binary to

Excess-1 Converter (BEC) instead of RCA with Cin=1 in the

regular CSLA to achieve lower delay with slightly increase in

area. The basic idea of the proposed architecture is that which

replaces the BEC logic by Common Boolean Logic. The

proposed architecture generates a duplicate sum and carry-out

signal by using NOT and OR gate and select value with the

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 728 www.ijsart.com

help of multiplexer. The multiplexer is used to select the

correct output according to its previously carry-out signal.

Regular SQRT Carry Select Adder

The basic square-Root Carry Select adder has a dual

ripple carry adder with 2:1 multiplexer, the main disadvantage

of regular CSLA is the large area due to the multiple pairs of

ripple carry adder. The regular 16-bit SQRT Carry select

adder is shown in Fig. These 16-bits are divided into five

groups with different bit sizes of ripple carry adders.

Regular 16-bit SQRT CSLA

From the structure of regular SQRT CSLA, there is

scope for reducing delay and area utilization. The carry out is

calculated from the last stage, in this the selection is done by

using a multiplexer. The internal structures of the group2,

group3, group4 and group5 of the regular 16-bit SQRT CSLA

is shown in Fig.

Individual groups of regular 16-bit SQRT CSLA

Modified SQRT Carry Select Adder

The main idea of this work is to use BEC instead of

the RCA with Cin=1 in order to reduce the delay and area

utilization of the regular SQRT CSLA. To replace the n-bit

RCA, a n+1 bit BEC is required. The structure of a 4-bit BEC

is shown in Fig. and the function table given in Table I.

Fig. illustrates how the basic function of the CSLA is

obtained by using the 4-bit BEC together with the mux. In this

structure one input of the 8:4 mux gets as it input (B3, B2, B1,

and B0) and another input of the mux is the BEC output. This

produces the two possible partial outputs in parallel according

to the control signal Cin The importance of the BEC logic

stems from the large silicon area reduction when the CSLA

with large number of bits are designed. The Boolean

expression of the 4-bit BEC is listed as below.

X0 = ~B0

X1 = B0^B1

X2 = B2 ^ (B0 & B1)

X3 = B3 ^ (B0 & B1 & B2).

Function table of the 4-bit BEC

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 729 www.ijsart.com

Structure of 4-bit BEC with 8:4 MUX

The modified 16-bit SQRT CSLA using BEC is

shown in Fig.. The structure is again divided into five groups

with different sizes of Ripple carry adder and BEC. The

group2, group3, group4 and group5 of 16-bit SQRT CSLA are

shown in Fig.. The parallel Ripple carry adder with Cin=1 is

replaced with BEC. One input to the multiplexer goes from the

RCA with Cin=0 and other input from BEC. Comparing the

individual groups of both regular and modified SQRT CSLA,

it is clear that the BEC structure reduces delay. But the

disadvantage of BEC method is that the area is increasing than

the regular SQRT CSLA.

Modified 16-bit SQRT CSLA

Carry Select Adder (CSLA) is one of the fastest

adders used in many data processing processors to perform

fast arithmetic functions. It alleviates the problem of carry

propagation delay by independently generating multiple

carriers and then selects a carry to generate the sum. CSLA are

used for high speed carry propagation delay. The basic

operation of CSLA is parallel computation. The CSLA

provide a compromise between small area but longer ripple

carry adder (RCA) and larger area with shorter delay carry-

look ahead adder.

The CSLA has two units:

1) The sum and carry generation unit (SCG).

2) The sum and carry selection unit (SCS).

The SCG unit consumes most of the logic resources

of CSLA and significantly contributes to the critical path.

Individual groups of modified 16-bit SQRT CSLA

Applications

 Digital signal processors.

 Microprocessors.

 Multipliers.

 Digital circuits.

SYSTEM DESIGN

PROCESSING UNIT (MAC)

Multiplication and Accumulation (MAC) is one of

the processing units in the neural network. Based on the

performance of the MAC only, the accuracy of the network is

obtained. MAC operation was performed, using the Vedic

multiplier with SQRT-CSLA.

Vedic multiplier

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 730 www.ijsart.com

Block Diagram of 16 X 16 Vedic Multiplier

Multiplication is one of the important arithmetic

operations in signal processing applications. Signal processing

involves multiplication, speed and accuracy is the main

constraint in the multiplication process. Speed can be achieved

by reducing the computation process in the multiplication

technique. Vedic multiplier is efficient multiplication

technique.

Fig. shows the architecture of 16-bit Vedic multiplier.

It was designed by four 8 X 8 Vedic multiplier, each

multiplier perform the operation separately. Partial products

are added by 16-bit SQRT-CSLA; finally get a 32-bit

multiplication output.

The efficient Vedic multiplication technique is used.

The 16-bit Vedic multiplier is designed by using four 8X8

Vedic multiplier and square root carry select adder (SQRT-

CSLA). The 16-bit input sequence is divided into two 4-bit

numbers. Input to the 8-bit multiplier are a[7:0] & b[7:0],

a[15:8] & b[7:0], a[7:0] & b[15:8], a[15:8] & b[15:8].

Intermediate partial products output are added using the three

modified adder, named as SQRT-CSLA.

SQRT-CSLA Adder

Carry propagation delay and low complexity are

recognized as high potential in every addition circuit. To

achieve an efficient output, the proposed SQRT-CSLA

structure has designed. SQRT-CSLA adder circuit is classified

into two types based on selecting the carry inputs. a) Dual

RCA based SQRT CSLA; b) BEC based SQRT CSLA.

In the dual RCA (Ripple Carry Adder) based SQRT

CSLA circuit, each group has dual RCA pair for providing

carry select signals. RCA circuit would be more

disadvantageous due to the increasing propagation delay. To

overcome the problem, Binary to Excess 1 converter circuit

has been suggested in the SQRT-CSLA adder.

Fig. shows the Architecture of BEC Based SQRT

CSLA, it contain BEC, RCA and mux. Half adders, full adders

and multiplexers are used for providing partial product

addition results. BEC circuits are used to provide same RCA

functions, but have different architectures with less gate count.

Architecture of BEC based SQRT CSLA

Activation function unit

The Activation function of a single neuron in the

artificial neural network is determined as function of the

output in that neuron. Binary threshold neuron, Sigmoid

neuron shown in Fig 3.3, and Rectified linear neuron are the

different activation function used in the neural network.

Output functions are varied by the activation function.

Sigmoid Neuron

y is denotes the output function,z is denotes as impulse

response function.

The above equation describes the function of the

sigmoid neuron. Sigmoid neuron is used as the activation

function of the neural network. The above function is efficient

compared to other activation functions.

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 731 www.ijsart.com

SYSTEM ARCHITECTURE

The overall system architecture of the proposed work

is presented in Fig 3.4. It consists of 4 different modules

namely half sum generation, carry generation, carry selection

and full sum generation.

All the redundant logic operation present in the

conventional CSLA is eliminated and a new logic formulation

is used in the proposed CSLA design.

System Architecture of Reduced Area-Delay-Power (ADP) -

SQRT-CSLA

Half Sum Generation Unit

The Half Sum Generation units (HSG) receives the

two n-bit operands (A and B) and generates the half sum word

(S0) and half carry word (C0) of width n-bit each. The logic

diagram of the HSG unit is shown in Fig 3.5. The Carry

Generation unit receives both the half sum and half carry

words from the HSG unit.

Half Sum generation unit

Carry Generation Unit

The Carry Generation (CG) unit composed of two

CGs (CG0 and CG1) corresponding to input carries 0 and 1.

Both CG0 and CG1 receives half sum word (S0) and half

carry word (C0) from the HSG unit and generate two n-bit full

carry word C1
0 and C1

1 corresponding to the input carry 0 and

1 respectively. The logic circuits of CG0 and CG1 are

optimized to take advantage of the fixed input carry bit. The

optimized design of CG0 and CG1 are shown in Fig.

Carry Generation Unit for Input Carry = 0

Carry Generation Unit for Input Carry = 1

Carry Selection Unit

The Carry Selection (CS) unit selects one final carry

word from the two carry words available at the input line

using the control signal Cin. It selects C10 when Cin = 0;

otherwise it selects C1
1. The CS unit can be implemented

using an n-bit 2-to-1 MUX. However, the carry word C1
0 and

C1
1 follow a specific bit pattern. If C1

0 = 1 then C1
1(i) = 1

irrespective of S0(i) and C0(i), for 0 ≤ i ≤ n-1. This feature is

used for logic optimization of Carry Selection unit. The

optimized design of the CS unit is shown in Fig which

composed of n AND- OR gates.

Carry Selection Unit

Full Sum Generation Unit

The final carry word C is obtained from the carry

Selection unit. The most significant bit (MSB) is sent to output

as Cout, and (n-1) least significant bits are XORed with (n-1)

MSBs of half sum (S0) in the full sum generation unit to

obtain (n-1) MSBs of final sum (S). The LSB of S0 is XORed

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 732 www.ijsart.com

with Cin to obtain the LSB of S. The logic diagram of Full

Sum Generation (FSG) unit is shown in Fig.

Full Sum Generation Unit

FLOW DIAGRAM

The flow chart shown in Fig describes the generation

of sum and carries word.

The HSG receives two n-bit input data and generate

the half-sum word and half-carry word of width of n-bit each.

Both CG0 and CG1 receives half sum and half carry word

from the HSG unit and generate the two n-bit full-carry word

corresponding to input carry 0 and 1 respectively. The CS unit

selects one final carry word from the two carry word available

at its input line using the control signal Cin.

The final carry word is obtained from the CS unit.

The final sum is generated by the FSG unit.

Flow Chart of Reduced ADP- SQRT – CSLA

III. REQUIREMENT SPECIFICATIONS

SOFTWARE REQUIREMENTS

 Synthesis Tool

-Xilinx ISE 10.2

 Verification Tool

-Modelsim 6.3c

XILINX ISE

The Integrated Software Environment (ISE) is the

Xilinx design software suite that allows us to take our design

from design entry through Xilinx device programming. The

ISE Project Navigator manages and processes our design

through the following steps in the ISE design flow.

DESIGN ENTRY

Design entry is the first step in the ISE design flow.

During design entry, we create our source files based on our

design objectives. We can create our top-level design file

using a Hardware Description Language (HDL), such as

VHDL, Verilog, or ABEL, or using a schematic. We can use

multiple formats for the lower-level source files in our design.

SYNTHESIS

After design entry and optional simulation, we run

synthesis. During this step, VHDL, Verilog, or mixed

language designs become netlist files that are accepted as

input to the implementation step.

IMPLEMENTATION

After synthesis, we run design implementation,

which converts the logical design into a physical file format

that can be downloaded to the selected target device. From

Project Navigator, we can run the implementation process in

one step, or we can run each of the implementation processes

separately.

Implementation processes vary depending on whether

we are targeting a Field Programmable Gate Array (FPGA) or

a Complex Programmable Logic Device (CPLD).

VERIFICATION

We can verify the functionality of our design at

several points in the design flow. We can use simulator

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 733 www.ijsart.com

software to verify the functionality and timing of our design or

a portion of our design.

The simulator interprets VHDL or Verilog code into

circuit functionality and displays logical results of the

described HDL to determine correct circuit operation.

Simulation allows us to create and verify complex functions in

a relatively small amount of time. We can also run in-circuit

verification after programming your device.

DEVICE CONFIGURATION

After generating a programming file, we configure

our device. During configuration, we generate configuration

files and download the programming files from a host

computer to a Xilinx device.

MODELSIM 6.3C

ModelSim is a verification and simulation tool for

VHDL, Verilog, System Verilog, and mixed language designs.

BASIC SIMULATION FLOW

Basic simulation flow is shown in Fig.The simulation

flow comprises of creating a working library, in which

compilation of designed files happen, which is further loaded

and simulated and finally the output is debugged.

Basic Simulation Flow

CREATING A WORKING LIBRARY

In ModelSim, all designs are compiled into a library.

We typically start a new simulation in ModelSim by creating a

working library called "work," which is the default library

name used by the compiler as the default destination for

compiled design units.

COMPILING DESIGN

After creating the working library, we compile our

design units into it. The ModelSim library format is

compatible across all supported platforms. We can simulate

our design on any platform without having to recompile our

design.

LOAD AND RUN SIMULATION

With the design compiled, we can load the simulator

with our design by invoking the simulator on a top-level

module (Verilog) or a configuration or entity/architecture pair

(VHDL).

DEBUGGING

If we don’t get the results we expect, we can use

ModelSim’s robust debugging environment to track down the

cause of the problem.

PROJECT FLOW

MODELSIM PROJECT

A project is a collection mechanism for an HDL

design under specification or test. Even though we don’t have

to use projects in ModelSim, they may ease interaction with

the tool and are useful for organizing files and specifying

simulation settings. The Fig shows the basic steps for

simulating a design within a ModelSim project.

Project Flow

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 734 www.ijsart.com

MULTIPLE LIBRARY FLOW

ModelSim uses libraries in two ways:

1) As a local working library that contains the compiled

version of our design.

2) As a resource library.

The contents of our working library will change as

we update our design and recompile. A resource library is

typically static and serves as a parts source for our design. We

can create our own resource libraries, or they may be supplied

by another design team or a third party (e.g., a silicon vendor).

We specify which resource libraries will be used

when the design is compiled, and there are rules to specify in

which order they are searched. A common example of using

both a working library and a resource library is one where

your gate level design and test bench are compiled into the

working library, and the design references gate-level models

in a separate resource library.

DEBUGGING TOOLS

ModelSim offers numerous tools for debugging and

analyzing your design. Several of these tools are covered in

subsequent lessons, including:

 Using projects

 Working with multiple libraries

 Setting breakpoints and stepping through the source

code

 Viewing waveforms and measuring time

 Viewing and initializing memories

 Creating stimulus with the Waveform Editor

 Automating simulation

IV. HARDWARE TOOLS

SPARTAN 3

The family of Field-Programmable Gate Arrays is

specifically designed to meet the needs of high volume, cost-

sensitive consumer electronic applications. The eight-member

family offers densities ranging from 50,000 to five million

system gates.

Spartan-3

The Spartan-3family shown in Fig builds on the

success of the earlier Spartan-IIE family by increasing the

amount of logic resources, the capacity of internal RAM, the

total number of I/Os, and the overall level of performance as

well as by improving clock management functions. Numerous

enhancements derive from the Vertex®-II platform

technology.

These Spartan-3 FPGA enhancements, combined

with advanced process technology, deliver more functionality

and bandwidth per dollar than was previously possible, setting

new standards in the programmable logic industry. Because of

their exceptionally low cost, Spartan-3 FPGAs are ideally

suited to a wide range of consumer electronics applications,

including broadband access, home networking,

display/projection and digital television equipment. The

Spartan-3 family is a superior alternative to mask programmed

ASICs. FPGAs avoid the high initial cost, the lengthy

development cycles, and the inherent inflexibility of

conventional ASICs. Also, FPGA programmability permits

design upgrades in the field with no hardware replacement

necessary, an impossibility with ASICs.

FEATURES

 Low-cost, high-performance logic solution for high-

volume, consumer-oriented applications

 Automotive Spartan-3 XA Family variant

 Select IO™ interface signaling

 Double Data Rate (DDR) support

 DDR, DDR2 SDRAM support up to 333 Mbps

 Abundant logic cells with shift register capability

 Wide, fast multiplexers

 Fast look-ahead carry logic

 Dedicated 18 x 18 multipliers

 Select RAM hierarchical memory

 Up to 1,872 Kbits of total block RAM

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 735 www.ijsart.com

 Up to 520 Kbits of total distributed RAM

 Digital Clock Manager (up to four DCMs)

 Fully supported by Xilinx ISE and Web PACK

ARCHITECTURAL OVERVIEW

The Spartan-3 family architecture consists of five

fundamental programmable functional elements:

 Configurable Logic Blocks (CLBs) contain RAM-

based Look-Up Tables (LUTs) to implement logic

and storage elements that can be used as flip-flops or

latches. CLBs can be programmed to perform a wide

variety of logical functions as well as to store data.

 Input/Output Blocks (IOBs) control the flow of data

between the I/O pins and the internal logic of the

device. Each IOB supports bidirectional data flow

plus 3-state operation. Twenty-six different signal

standards, including eight high-performance

differential standards. Double Data-Rate(DDR)

registers are included. The Digitally Controlled

Impedance (DCI) feature provides automatic on-chip

terminations, simplifying board designs.

 Block RAM provides data storage in the form of 18-

Kbit dual-port blocks.

 Multiplier blocks accept two 18-bit binary numbers

as inputs and calculate the product.

 Digital Clock Manager (DCM) blocks provide self-

calibrating, fully digital solutions for distributing,

delaying, multiplying, dividing, and phase shifting

clock signals.

These elements are organized in a ring of IOBs

surrounds a regular array of CLBs. The XC3S50 has a single

column of block RAM embedded in the array. Those devices

ranging from the XC3S200 to the XC3S2000 have two

columns of block RAM. The XC3S4000 and XC3S5000

devices have four RAM columns.

Each column is made up of several 18-Kbit RAM

blocks; each block is associated with a dedicated multiplier.

The DCMs are positioned at the ends of the outer block RAM

columns.

The Spartan-3 family features a rich network of

traces and switches that interconnect all five functional

elements, transmitting signals among them. Each functional

element has an associated switch matrix that permits multiple

connections to the routing.

CONFIGURATION

Spartan-3 FPGAs are programmed by loading

configuration data into robust, reprogrammable, static CMOS

configuration latches (CCLs) that collectively control all

functional elements and routing resources. Before powering

on the FPGA, configuration data is stored externally in a

PROM or some other nonvolatile medium either on or off the

board. After applying power, the configuration data is written

to the FPGA using any of five different modes: Master

Parallel, Slave Parallel, Master Serial, Slave Serial, and

Boundary Scan (JTAG). The Master and Slave Parallel modes

use an 8-bit-wide Select MAP port. The recommended

memory for storing the configuration data is the low-cost

Xilinx Platform Flash PROM family, which includes the

XCF00S PROMs for serial configuration and the higher

density XCF00P PROMs for parallel or serial configuration.

V. RESULT AND COMPARISON

FPGA kit

The Fig is Spartan-3 FPGA.Spartan-3 FPGAs are

programmed by loading configuration data into robust,

reprogrammable, static CMOS configuration latches (CCLs)

that collectively control all functional elements and routing

resources. Before powering on the FPGA, configuration data

is stored externally in a PROM or some other nonvolatile

medium either on or off the board. After applying power, the

configuration data is written to the FPGA using any of five

different modes: Master Parallel, Slave Parallel, Master Serial,

Slave Serial, and Boundary Scan (JTAG). The Master and

Slave Parallel modes use an 8-bit-wide Select MAP port. The

recommended memory for storing the configuration data is the

low-cost Xilinx Platform Flash PROM family, which includes

the XCF00S PROMs for serial configuration and the higher

density XCF00P PROMs for parallel or serial configuration

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 736 www.ijsart.com

RESULT OF VEDIC MULTIPLIER USING MODELSIM

MAC Unit Output

Fig . shows the output form of the MAC unit. Follow

the below procedure to generate output wave form.

 Click on simulate button on top of ModelSim

 Work window will be popped up, select the

Mac_add8 from work window and click OK button.

 Right click on Mac_add8 and select Add all signals

to wave.

 Wave form window is generated which is shown in

fig.

 Right click on clk and set it to clock.

 Right click on Reset and force reset value to 0.

 Right click on mac_add8/A and force value to

11001101 which is 205 in unsigned value.

 Right click on mac_add8/B and force value to

00000011 which is 3 in unsigned value.

 Click on Run button which is on top of the wave

window.

 Output will be generated by multiplying 205 and 3

and comes output as 615.

 Right click on Reset and force it to 1.

 Click on Run button continuously.

 Output will be generated by adding 205 to each

cumulative output and will display in Accumulator

line.

Results of various multipliers

From the above table it is clear that the Area, Delay

and Power is reduced respectively for each Multipliers. It is

clearly showing that numbers of LUTs, slices, Delay are

reduced from existing booth multiplier and proposed vedic

multiplier.

USING GRAPH

Fig shows the graphical representation of MAC

output using Booth multiplier and Vedic multiplier where it is

clearly showing the difference in LUTs, number of slices and

delay between Booth and Vedic multipliers.

Graphical Representation of MAC Unit Output

VI. CONCLUSION AND FUTURE SCOPE

CONCLUSION

Artificial Neural Networks are used in many

applications, to analyze the methodology. MAC unit is one of

the processing units in the artificial neural network. MAC

decides the output function is efficient or not. So, a new MAC

unit with the help of Vedic multiplier with SQRT-CSLA is

designed. It produced the accurate and efficient output,

compared to the existing booth multiplier with carry look

ahead adder. Our proposed MAC increases the speed of the

neural network. The MAC operation is performed well, entire

network performance also increased.

In future the multiplier circuit is designed by using

Reversible logic gates. It consumes less power compared to

our ordinary logic gates. So this technique is applied to the

neural network, get a better results.

FUTURE SCOPE

 Advanced Carry Select Adder can be replaced with

Fast adder for reducing delay

 Input sample can be given above and below the

Threshold value.

Threshold value and M sample value can be changed for

future scope.

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 737 www.ijsart.com

REFERENCES

[1] Saman Razavi and Bryan A. Tolson, “A New formulation

for feedforward neural

networks” IEEE Transactions on neural networks,

vol.22, October 2011.

[2] Richard L. et al. “Comparison of feedforward and

feedback neural networkarchitectures for short term

wind speed prediction”, International joint conference on

neural networks, June 2009.

[3] Premananda B.S. et al. “Design and Implementation of 8-

bit Vedic multiplier”,International Journal of Advanced

Research in Electrical, Electronics and Instrumentation

Engineering, vol. 2, Issue 12, December 2013.

[4] Damarla paradhasaradhi and K. Anusudha,”An area

efficient SQRT carry select adder”, International

Journal of Engineering Research and Applications, vol. 3,

Issue 6, Dec 2013.

[5] Hariprasath S and T.N. Prabakar,” FPGA Implementation

of multilayer feed forward neural network architecture

using VHDL”.S. Coric, I.Latinovic and A.Pavasovic,” A

Neural Network FPGA Implementation” ,IEEE, Neural-

2000.

[6] G.Ganesh Kumar, V. Charishma,”Design of High speed

Vedic multiplier using Vedic mathematics

Techniques”, International Journal of scientific

andResearch publication, volume 2, Issue 3, march 2012.

[7] K.Saranya,”Low power and area efficient carry select

adder”, International Journal of soft computing and

Engineering, volume-2, Issue-6, January 2013.

[8] B. Ramkumar and Harish M kittur,”Low power and area

efficient carry select adder”, IEEE Transaction on Very

large scale Integration (VLSI) systems, vol. 20.

