
IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 699 www.ijsart.com

Design of Compact Multiplier Using Vedic

Mathematics Technique

V. Poojitha1, E. Ramakrishna2
2Assistant Professor, HOD, Dept of ECE

1, 2 SKD Engineering College, Gooty

Abstract- This paper describes the design of high speed Vedic

multiplier that uses the techniques of Vedic mathematics based

on 16 sutras (algorithms) to improve the performance. In this

paper the efficiency of Urdhva Tiryagbhyam (vertical and

crosswise) Vedic method for multiplication which is different

from the process of normal multiplication is presented.

Urdhva -Tiryagbhyam is the most efficient algorithm that

gives minimum delay for multiplication for all types of

numbers irrespective of their size. Vedic multiplier is coded in

Verilog HDL and stimulated and synthesized by using XILINX

software 12.2 on Spartan 3E kit. Further the design of array

multiplier is compared with the proposed multiplier in terms

of delay, memory and power consumption.

I. INTRODUCTION

STRUCTURED VLSI DESIGN:

VLSI aim is flexible approach initiated by

CM(Carver Mead) and LC (Lynn Conway) intended for

equivalent microchip region by diminishing inter relate fabrics

region. This approach is acquired through monotonous

procedure regarding quadrangular universal blocks that could

be inter related. An instance is apportioning the explain of

adder addicted to row about identical tad wedges cell. During

compound strategies structure might accomplished through

graded nest.

II. LITERATURE SURVEY

EXISTING METHOD:

DESIGN OF 32 BIT MAC ARCHITECTURE:

The design of MAC architecture consists of 3 sub designs is

shown in fig

 Design of 32×32 bit Vedic multiplier.

 Design of adder using DKG gate reversible logic.

 Design of accumulator which integrates both

multiplier and adder stages.

Modified MAC Architecture

32 X 32 BIT VEDIC MULTIPLIER:

Vedic mathematics is an ancient system of

mathematics, which was formulated by Sri Jagadguru Swami

Bharati Krishna Tirthaji(1884 - 1960). After a research of

eight years,he developed sixteen mathematical formulae from

Atharvana Veda. The sutras (aphorisms) covered each and

every topic of Mathematics such as Arithmetic, Algebra,

Geometry,Trigonometry, differential, integral, etc., The word

“Vedic” is derived from the word “Veda” which means the

power house of all knowledge and divine. The proposed Vedic

multiplier is based on the “UrdhavaTriyagbhayam” sutra

(algorithm). These Sutras have been traditionally used for the

multiplication of two numbers in the decimal number system..

PROPOSED METHOD:

A multiplying block function can be conceded in

three different ways: conventional addition, partial product

addition (PPA) and finally partial product Generation (PPG).

The two bud vase materials that must be considered are raising

the speed of MAC which is accumulator block partial and

product reduction. The 64 bit MAC design which will make

use of Vedic multiplier and reversible logic gate can be

accomplished in two stages. Firstly, multiplier stage, where a

usual multiplier is replaced by Vedic multiplier using Urdhava

Triyagbhayam sutra from Vedic Mathematics. Multiplication

is the primary operation of MAC unit. Speed, area, Power

dissipation, consumption and latency are the major concerns in

the multiplier stage. So, to evade them, we will go for fast

multipliers in different applications of DSP, networking, etc.

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 700 www.ijsart.com

DESIGN OF MAC ARCHITECTURE

MAC Architecture

The design of MAC architecture consists of 3 sub

designs is shown in fig.

 Design of 64×64 bit Vedic Multiplier.

 Design of adder using DKG gate reversible logic.

 Design of Accumulator which integrates both

multiplier and adder stages.

III. MULTIPLIERS

A compressor is a digital circuit which is used to

increases the calculation speed and decreases time of the

addition of 4 or more than 4 bits at the same time. Compressor

adders can capable to replace the combination of several half

adders and full adders, thereby enabling high speed

performance of the processor which incorporates the same.

The compressor adder used in the paper is a 4:2 and 7:2

compressor adders.

Multipliers are playing a crucial role in today‟s DSP

and various other applications. With improvements in the field

of science and technology, many researchers have tried and

are trying to design multipliers which can provide good

features like low power consumption, high speed, regularity in

layout structure and due to this less area or even combining of

them in one multiplier thus making multipliers suitable for

various high speed, low power and compact VLSI designs.

MULTIPLICATION ALGORITHM:

The general multiplication requires multiplier and

multiplicand. The multiplication algorithm used to multiply an

N bit multiplicand by N bit multiplier is given below:

A= An-1 An-2A2 A1 A0 Multiplier

B= Bn-1 Bn-2 B2 B1 B0

Multiplicand

Generally,

AND gates are used as the multiplier of two bits

these also called partial products short name is PP. If the

multiplicand is A-bits and the Multiplier is B-bits then there is

A* B partial product terms. The approach that the partial

products are obtained or added up is the difference between

the different architectures of several multipliers.

Example of binary normal multiplication.

The Multiplication of binary numbers can be

decomposed into some additions. Suppose if we consider the

multiplication of two 8-bit numbers A and B and it produce

the 16 bit product P.

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 701 www.ijsart.com

multiplication of two variables

The addition equation is shown below.

 If the Least Significant Bit of Multiplier is „1‟, then

add the multiplicand into an accumulator.

 Shift the multiplier one bit to right side and

multiplicand one bit to the left.

 Stop when all bits of the multiplier are zero.

From above it is clear that the multiplication has been

changed to addition of numbers. If the Partial Products are

added serially then a serial adder is used with less number of

gates. It is possible to add all the partial products with one

combinational circuit using parallel multipliers. On the other

hand it is possible also, to use compression technique then the

number of partial products can be reduced before addition

operation is performed

SERIAL MULTIPLIER:

Where power and area is of highest importance and

delay can be tolerating the serial multiplier is used. This

circuit uses one adder to add the × partial products. The circuit

is shown in the fig 3.3 below for m=n=4. Multiplicand and

Multiplier inputs have to be arranged in a special manner

synchronized with circuit behavior as shown in the figure.

Serial multiplier

The inputs could be presented at different rates

depending on the length of the multiplicand and the multiplier.

Two clocks are used, one to clock the data and one for the

reset. A first order approximation of the delay is O (m,n).

With this circuit arrangement the delay is given as

As shown the individual partial products are formed

individually. The addition of the partial products are

performed as the intermediate values of partial products

addition are stored in the DFF, circulated and added together

with the newly formed PP. This approach is not suitable for

large values of M or N.

BOOTH MULTIPLIERS:

Booth multiplier is a powerful algorithm for signed

number multiplication, which treats both negative and positive

numbers uniformly. For the standard add and shift operations,

each multiplier bit generate one multiple of the multiplicand to

be added to the partial product. If the multiplier is large, then a

large number of multiplicands have to be added. In this case

the delay of multiplier is determined by the number of

additions to be performed. If there is a way present to reduce

the number of the additions, the performance will be high

Radix-4 multiplication in dot notation

Booth algorithm is a method that will reduce the

number of multiplicand multiples. For a given range of

numbers to be represented, a higher representation radix leads

to lesser digits. Since a k-bit binary number can be interpreting

as K/2-digit radix-4 number, a K/3-digit radix-8 number, and

so on, it can deal with more than single bit of the multiplier in

each cycle by using radix multiplication. This is shown for

Radix-4 in the above example.

As shown in the figure, if multiplication is done in

radix 4, in each step, the partial product term (Bi+1Bi)2 A

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 702 www.ijsart.com

needs to be formed and added to the cumulative partial

product. Whereas in radix-2 multiplication, each row of dots

in the partial products matrix represents 0 or a shifted version

of A must be included and added. Table 1below is used to

convert a binary number to radix-4 number.

Initially, a “0” is placed to the right most bit of the

multiplier. Then 3 bits of the multiplicand is recoded

according to table below or according to the following

equation:

Example:

Multiplier is equal to 0 1 0 1 1 10

gives 0 1 0 1 1 10 0 the 3 digits are selected at a time with

overlapping left most bit as follows:

Radix-4 Booth recoding

For example, an unsigned number can be converted into a

signed-digit number radix 4:

(10 1 11 01 10 10 11 10)2 = (–2 2 –1 2 –1 –1 0 –2)4

IV. VEDIC MATHEMATICS

Vedic mathematics is part of four Vedas (books of

wisdom). It is part of Sthapatya- Veda (book on civil

engineering and architecture), which is an upa-veda

(supplement) of Atharva Veda.

It covers explanation of several modern mathematical

terms including arithmetic, geometry (plane, co-ordinate),

trigonometry, quadratic equations, factorization and even

calculus. His Holiness Jagadguru Shankaracharya Bharati

Krishna Teerthaji Maharaja (1884-1960) comprised all this

work together and gave its mathematical explanation while

discussing it for various applications. Swamiji constructed 16

sutras (formulae) and 16 Upa sutras (sub formulae) after

extensive research in Atharva Veda. The very word “Veda”

has the derivational meaning i.e. the fountainhead and

illimitable storehouse of all knowledge. Vedic mathematics is

the name given to the ancient system of mathematics or, to be

precise a unique technique of calculations based on simple

rules and principles with which many mathematical problems

can be solved, be it arithmetic, algebra, geometry or

trigonometry.

Vedic Mathematics existed in ancient India and was

rediscovered by a popular mathematician, Sri Bharati Krishna

Tirthaji. He divided Vedic mathematics into 16 simple sutras

(formulae). These Sutras deal with Arithmetic, Algebra,

Geometry, Trigonometry, Analytical Geometry etc. The

simplicity in the Vedic mathematics sutras paves way for its

application in several prominent domains of engineering like

Signal Processing, Control Engineering and VLSI.

 (Anurupye) Shunyamanyat -If one is in ratio, the

other is zero.

 Chalana Kalanabyham -Differences and similarities.

 Ekadhikina Purvena- By one more than the previous

One.

 Ekanyunena Purvena -By one less than the previous

one.

 Gunakasamuchyah-Factors of the sum is equal to the

sum of factors.

 Gunitasamuchyah-The product of sum is equal to

sum of the product.

 Nikhilam Navatashcaramam Dashatah -All from 9

and last from 10.

 Paraavartya Yojayet-Transpose and adjust.

 Puranapuranabyham -By the completion or

noncompletion.

 Sankalana- vyavakalanabhyam -By addition and by

subtraction.

 Shesanyankena Charamena- The remainders by the

last digit.

 Shunyam Saamyasamuccaye -When the sum is same

then sum is zero.

 Sopaantyadvayamantyam -The ultimate and twice the

penultimate.

 Urdhva- Triyagbhayam -Vertically and crosswise.

 Vyashtisamanstih -Part and Whole.

 Yaavadunam- Whatever the extent of its deficiency.

Vedic Mathematics can be bifurcated into 16

different sutras to perform mathematical operations. Among

these surtras the Urdhwa Tiryakbhyam Sutra is one of the

most highly preferred algorithms for performing

multiplication. The algorithm is competent enough to be

employed for the multiplication of integers as well as binary

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 703 www.ijsart.com

numbers. The term "Urdhva Tiryagbhyam ” originated from 2

Sanskrit words Urdhwa and Tiryakbhyam which mean

“vertically” and “crosswise” respectively. The main advantage

of utilizing this algorithm in comparison with the existing

multiplication techniques, is the fact that it utilizes only

logical “AND” operations, half adders and full adders to

complete the multiplication operation. Also, the partial

products required for multiplication are generated in parallel

and apriority to the actual addition thus saving a lot of

processing time.

URDHVA TIRYAGBHYAM ALGORITHM:

Let us consider two 8 bit numbers X7-X0 and Y7-

Y0, where 0 to 7 represent bits from the Least Significant Bit

(LSB) to the Most Significant Bit (MSB). P0 to P15 represent

each bit of the final computed product. It can be seen from

equation (1) to (15), that P0 to P15 are calculated by adding

partial products, which are calculated previously using the

logical AND operation. The individual bits obtained from

equations (1) to (15), in turn when concatenated produce the

final product of multiplication which is depicted in (16).The

carry bits generated during the calculation of the individual

bits of the final product are represented from C1 to C30. The

carry bits generated in (14) and (15) are ignored since they are

superfluous.

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 704 www.ijsart.com

Graphically illustrates the step by step method of

multiplying two 8 bit numbers using the Urdhwa

Tiryagkbhyam Sutra. The black circles indicate the bits of the

multiplier and multiplicand, and the two-way arrows indicate

the bits to be multiplied in order to arrive at the individual bits

of the final product. The hardware architecture of the 8x8

Urdhwa multiplier has been designed and shown in Fig.

EXAMPLE FOR URDHVATIRYAGBHYAM

ALGORITHM:

Now let an example to explain the multiplication

procedure of Urdhwa Tiryakbhyam Sutra. The 3 by 3 decimal

number is taken and the procedure is shown.

654 – Multiplier

321 – Multiplicand

 The first step is like as shown in the figure. The

multiplication should done between the first digits in each

numbers from right hand side.

4×1= 4

 The second step is multiplying cross wise first digit in

first number and second digit in second number and vice

versa.

4×2=8

5×1=5

And now add 8 and 5 gives 13. In number 13 tens place

number is the Carry.

 The third step is multiplying first digit in first number

with third digit in second number , second digit in both

numbers and first digit in second number with third digit

in first number

4×3=12

5×2=10

6×1=6

Here we got 2 digit number, so we have another carry which

will propagate to next stage.

 Next step is multiplying second digit in first number with

third digit in second number and vice

5×3=15

6×2=12

Here we got 2 digit number, so we have another carry which

will propagate to next stage.

 Final step is multiplying last digits in both numbers with

each other. 6×3=18

 And now add this partial product and previous carry that

results final partial product

18+2=20.

Now arrange partial products without carry from

bottom to top in a sequence from left to right, we will get final

product

Result = 209934

The procedure which we use here is used for binary

numbers also. Now, let applying same procedure for two 8 bit

numbers as shown below. Partial products can be denoted as

P0 to P15.

P=10110110 – multiplier

Q=11011001– multiplicand

Now the partial products are from P14 to P0. The

partial product has two parts carry and product. Right most

digit in the partial product is the product and remaining part is

the carry. To get final product write the each product from P14

to P0,this is the required final product.

Final Result = 1 0 0 1 1 0 1 0 0 1 0 0 0 1 1 0

The number of multiplications required is same for

the Urdhwa Tiryakbhyam algorithm and normal multiplication

but the advantage of the Urdhwa Tiryakbhyam algorithm is

while implementing the circuit the partial product come

directly, and also there is no need of complex time consuming

operations like shifting and rotating. This algorithm eliminates

sequential operations so speed of operation increases. So UT

algorithm is best suited for the hard ware implementation with

less complexity.

 HALF ADDER:

Half adder is the basic unit of this multiplier circuit.

The half adder circuit adds two bits and gives two outputs,

sum and the carry. The sum is the result of the XOR gate and

carry is the result of the AND gate. The circuit of the half

adder is shown in below fig.

Half Adder circuit diagram

The truth table of the half adder is shown in below table

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 705 www.ijsart.com

Half adder Truth table

FULL ADDER:

The full adder is the circuit which will add two bits

besides carry, totally three bits, same as half adder it gives two

outputs sum an carry. The full adder is combination of two

half adders and one or gate. The circuit diagram is shown in

below figure.

Full Adder circuit diagram

The truth table of the half adder is shown in below table

Full adder Truth table

As mentioned earlier, the partial products obtained

are added with the help of full adders and half adders. It can

be seen, from equation (1) to (16), that in few equations there

is a necessity of adding more than 3 bits at a time. This leads

to additional hardware and additional stages, since the full

adder is capable of adding only 3 bits at a time. In the next

section two different types of compressor architectures are

explored which assist in adding more that 3 bits at a time, with

reduced architecture and increased efficiency in terms of

speed.

IMPLEMENTATION

In the accumulate adder the previous MAC output

and the present output will added and it consists of Multiplier

unit, one adder unit and both will get be combined by an

accumulate unit. The major applications of Multiply-

Accumulate (MAC) unit are microprocessors, logic units and

digital signal processors, since it determines the speed of the

overall system. The efficient designs by MAC unit are

Nonlinear Computation like Discrete Cosine or wavelet

Transform (DCT), FFT/IFFT. Since, they are basically

executed by insistent application of multiplication and

addition, the entire speed and performance can be compute by

the speed of the addition and multiplication taking place in the

system. Generally the delay, mainly critical delay, happens

due to the long multiplication process and the propagation

delay is observed because of parallel adders in the addition

stage. The main idea of this paper is comparison of area, speed

and other parameters of Conventional MAC unit with the

Vedic MAC design.

A multiplying function can be carried out in three

ways: partial product Generation (PPG), partial product

addition (PPA), and final conventional addition. The two

bottle necks that should be considered are increasing the speed

of MAC are partial product reduction and accumulator block.

The 32 bit Mac design by using Vedic multiplier and

reversible logic gate can be done in two parts. First, multiplier

unit, where a conventional multiplier is replaced by Vedic

multiplier using Urdhva Triyagbhayam sutra. Multiplication is

the fundamental operation of MAC unit. Power consumption,

dissipation, area, speed and latency are the major issues in the

multiplier unit. So, to avoid them, we go for fast multipliers in

various applications of DSP, networking, etc. There are two

major criterions that improve the speed of the MAC units are

reducing the partial products and because of that accumulator

burden is getting reduced. The basic operational blocks in

digital system in which the multiplier determines the critical

path and the delay. The (log2N + 1) partial products are

produced by 2N-1 cross products of different widths for N*N.

The partial products are generated by Urdhava sutra is by

Criss Cross Method. The maximum number of bits in partial

products will lead to Critical path. The second part of MAC is

Reversible logic gate. In modern VLSI, fast switching of

signals leads to more power 2015 International Conference on

Circuit, Power and Computing Technologies [ICCPCT]

dissipation. Loss of every bit of information in the

computations that are not reversible is kT*log2 joules of heat

energy is generated, where k is Boltzmann‟s constant and T

the absolute temperature at which computation is performed.

In recent years, reversible logic functions has emerged and

played a vital role in several fields such as Optical, Nano,

Cryptography, etc.

DESIGN OF MAC ARCHITECTURE:

The design of MAC architecture consists of 3 sub designs.

 Design of 64 × 64 bit Vedic multiplier.

 Design of adder using DKG gate reversible logic.

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 706 www.ijsart.com

 Design of accumulator which integrates both

multiplier and adder stages.

Modified MAC Architecture

 64 X 64 BIT VEDIC MULTIPLIER:

Vedic mathematics is an ancient system of

mathematics, which was formulated by Sri Jagadguru Swami

Bharati Krishna Tirthaji (1884 - 1960). After a research of

eight years, he developed sixteen mathematical formulae from

Atharvana Veda. The sutras (aphorisms) covered each and

every topic of Mathematics such as Arithmetic, Algebra,

Geometry, Trigonometry, differential, integral, etc., The word

“Vedic” is derived from the word “Veda” which means the

power house of all knowledge and divine. The proposed Vedic

multiplier is based on the “Urdhva Triyagbhyam” sutra

(algorithm). These Sutras have been traditionally used for the

multiplication of two numbers in the decimal

number system. In this work, we will utilize similar techniques

to solve the binary number system to make the new aphorism,

which will be more compatible for the digital systems. It is a

general multiplication formula applicable to all cases of

multiplication.

URDHVA TRIYAGBHYAM SUTRA:

It literally means “Vertically and Cross wise”. Shift

operation is not necessary because the partial product

calculation will perform it in a single step, which in turn saves

time and power. This is the main advantage of the Vedic

multiplier. An example for the Urdhva Triyagbhayam sutra is

as follows:

9284 * 5137

The word Vedic is derived from the word Veda

which means the store-house of all knowledge. Vedic

mathematics is mainly based o n 16 Sutras (or aphorisms)

dealing with various branches of mathematics like arithmetic,

algebra, geometry etc. The proposed Vedic multiplier is based

on the Vedic multiplication for mul (Sutras) .These Sutras

have been traditionally used for the multiplication of two

numbers in the decimal number system. In this work, we apply

the same ideas to the binary number system to make the

proposed algorithm compatible with the digital hardware.

2X2 BIT MULTIPLIER:

In 2x2 bit multiplier, the multiplicand has 2 bits each

and the result of multiplication is o f 4 bits. So in input the

range of inputs goes from (00) to (11) and output lies in the set

of (0000, 0001, 0010, 0011, 0100, 0110, 1001). Focusing on

these facts, a simple design by using Urdhva Triyagbhyam.

Here multiplicands a and b are taken to be (10) both. The first

step in the multiplication is vertical multiplication of LSB of

both multiplicand s, then is the second step, that is crosswise

multiplication and addition of the partial pro ducts. Then Step

3 involves vertical multiplication of MSB o f the multiplicands

and addition with the carry propagated from Step 2.

bit multiplier using logic Gates

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 707 www.ijsart.com

16×16 Vedic multiplier using 8×8 Vedic multiplier

32 × 32 Vedic Multiplier with

Carry save Adder

32 × 32 Vedic Multiplier with Kogge Stone Adder

32 ×32 Vedic multiplier using 16 × 16 Vedic multiplier

64 × 64 Vedic multiplier using 32 × 32 Vedic multiplier

DESIGN OF ADDER USING REVERSIBLE LOGIC

DKG GATE:

REVERSIBLE LOGIC:

Reversible logic is a unique technique (different from

other logic). Loss of information is not possible in here. In

this, the numbers of outputs are equal to the number of inputs.

GENERAL CONSIDERATION FOR REVERSIBLE

LOGIC GATE:

A Boolean function is reversible if each value in the

input set can be mapped with a unique value in the output set.

Landauer proved that the usage of traditional irreversible

circuits leads to power dissipation and Bennet showed that a

circuit consisting of only reversible gates does not dissipate

power. In the design of reversible logic circuits, the following

points must be kept in mind to achieve an optimized circuit:

 Fan-out is not permitted

 Loops or feedbacks are not permitted

 Garbage outputs must be Minimum

 Minimum delay

 Minimum quantum cost

 Zero energy dissipation

DKG GATE:

A 4* 4 reversible DKG gate that can work singly as a

reversible full adder and a reversible full subtractor is shown

below. If input A=0, the DKG gate works as a reversible Full

adder, and if input A=1 then it works as a reversible Full

subtractor. It has been verified that a reversible full-adder

circuit requires at least two or three garbage outputs to make

the output combinations unique.

DKG gate

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 708 www.ijsart.com

DKG gate as a Full adder

Parallel adder using DKG gate

ACCUMULATOR STAGE:

Accumulator has an important role in the DSP

applications in various ranges and is a very basic and common

method. The register designed in the accumulator is used to

add the multiplied numbers. Multiplier, adder and an

accumulator are forming the essential foundation for the MAC

unit. The conventional MAC unit has a multiplier and

multiplicand to do the basic multiplication and some parallel

adders to add the partial products generated in the previous

step. To get the final multiplication output we add the partial

product to these results. Vedic Multiplier has put forward to

intensify the action of the MAC Unit. The suggested MAC is

compared with the conventional MAC and the results are

analyzed. The results obtained using our design had better

performance when compared to the pervious MAC designs.

IV. XILINX

 XILINX ISE OVERVIEW:

The Integrated Software Environment (ISE™) is the

Xilinx® design software suite that allows you to take our

design from design entry through Xilinx device programming.

The ISE Project Navigator process and manages our design

through the following steps in the ISE design flow.

DESIGN ENTRY:

Design entry is the first step in the Xilinx ISE design

flow. During design entry, we create your source files based

on our design. We can construct our top-level design file using

a Hardware Description Language (HDL), such as Verilog,

VHDL or ABEL, or using a schematic. We can use multiple

formats for the lower-level source files in our design.

SYNTHESIS:

After completion of design entry and simulation of

the code, we run synthesis. During synthesis, Verilog, VHDL,

or mixed level designs become net list files that are accepted

as input to the implementation step.

IMPLEMENTATION:

After synthesis, we run design implementation,

which converts the logical design into a physical file format

that can be downloaded to the selected target device. From

Project Navigator, we proceed to the implementation process,

or we can run each of the implementation processes

separately. Implementation processes vary depending on

whether we are targeting a Complex Programmable Logic

Device (CPLD) or a Field Programmable Gate Array (FPGA).

VERIFICATION:

We can verify the functionality of our design at steps

in the design flow. We can use simulator software to verify the

functionality and timing of our design or a portion of our

design. Simulation allows you to create and verify complex

functions in a relatively small amount of time. The simulator

interprets Verilog or VHDL code into circuit functionality and

displays logical results of the described Hardware Description

Language to determine correct operation of circuit.

Simulation allows you to create and verify complex

functions in a relatively small amount of time. we can also run

in-circuit verification after programming your device.

DEVICE CONFIGURATION:

After generating a programming file, you configure

your device. During configuration, you generate configuration

files and download the programming files from a host

computer to a Xilinx device

PROJECT NAVIGATOR OVERVIEW:

Project Navigator organizes your design files and

runs processes to move the design from design entry through

implementation to programming the targeted Xilinx® device.

Project Navigator is the high-level manager for your Xilinx

FPGA and CPLD designs, which allows you to do the

following:

 Add and create design source files, which appear in

the Sources window

 Modify your source files in the Workspace

 Run processes on your source files in the Processes

window

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 709 www.ijsart.com

 View output from the processes in the Transcript

window

PROJECT NAVIGATOR MAIN WINDOW:

After generating a programming file, you configure

your device. During configuration, you generate configuration

files and download the programming files from a host

computer to a Xilinx device.

The following figure shows the Project Navigator

main window, which allows you to manage your design

starting with design entry through device configuration.

1. Toolbar

2. Sources window

3. Processes window

4. Workspace

5. Transcript window

USING THE SOURCES WINDOW:

The first step in implementing your design for a

Xilinx® FPGA or CPLD is to assemble the design source files

into a project. The Sources tab in the Sources window shows

the source files you create and add to your project, as shown in

the following figure. For information on creating projects and

source files, see Creating a Project and Creating a Source File.

Project navigator

Sources Window

USING THE PROCESSES WINDOW:

The Process tab shows the available processes in a

hierarchical view. You can collapse and expand the levels by

clicking the plus (+) or minus (-) icons. Processes are arranged

in the order of a typical design flow: project creation, design

entry, constraints management, synthesis, implementation, and

programming file creation.

PROCESS TYPES:

The following types of processes are available as you

work on your design:

 Tasks

When you run a task process, the ISE software runs

in "batch mode," that is, the software processes your source

file but does not open any additional software tools in the

Workspace. Output from the processes appears in the

Transcript window.

 Reports

Most tasks include report sub-processes, which

generate a summary or status report, for example, the

Synthesis Report or Map Report. When you run a report

process, the report appears in the Workspace.

 Tools

When you run a tools process, the related tool

launches in standalone mode or appears in the Workspace

where you can view or modify your design source files.

PROCESS STATUS:

As you work on your design, you may make changes

that require some or all of the processes to be rerun. For

example, if you edit a source file, it may require that the.

Synthesis process and all subsequent process be rerun. Project

Navigator keeps track of the changes you make and shows the

status of each process with the following status icons:

 Running

This icon shows that the process is running.

 Up-to-date

This icon shows that the process ran successfully with no

errors or warnings and does not need to be rerun. If the icon is

next to a report process, the report is up-to-date; however,

associated tasks may have warnings or errors. If this occurs,

you can read the report to determine the cause of the warnings

or errors.

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 710 www.ijsart.com

 Warnings reported

This icon shows that the process ran successfully but that

warnings were encountered.

 Errors reported

This icon shows that the process ran but encountered an error.

 Out-of-Date

This icon shows that you made design changes, which require

that the process be rerun. If this icon is next to a report

process, you can rerun the associated task process to create an

up-to-date version of the report.

No icon-If there is no icon, this show that the process

was never run.

RUNNING PROCESSES:

Right-click while positioned over the process, and

select Run from the popup menu, as shown in the following

fig .

Running processes

 Select the process, and then click the Run toolbar button

.

 To run the Implement Design process and all preceding

processes on the top module for the design, select

Process>Implement Top Module, or click the

Implement Top Module toolbar button .

SETTING PROCESS PROPERTIES:

Most processes have a set of properties associated

with them. Properties control specific options, which

correspond to command line options. When properties are

available for a process, you can right-click while positioned

over the process and select Properties from the popup menu,

as shown in the following fig.

Setting process properties

When you select Properties, a Process Properties

dialog box appears, with standard properties that you can set.

The Process Properties dialog box differs depending on the

process you select.

USING THE WORKSPACE:

To open a file or view in a standalone window

outside of the Project Navigator Workspace, use the Float

toolbar button. To dock a floating window, use the Dock

toolbar button.

Float

Dock

USING THE TRANSCRIPT WINDOW:

The Console tab of the Transcript window shows

output messages from the processes you run. When the

following icons appear next to a message, you can right-click

the message and select Goto Answer Record to open the

Xilinx website and show any related Answer Records. If a line

number appears as part of the message, you can right-click the

message and select Goto Source to open the source file with

the appropriate line number highlighted.

Warning

Error

USING THE TOOLBARS:

Toolbars provide convenient access to frequently

used commands. Click once on a toolbar button to execute a

command. To see a short popup description of a toolbar

button, hold the mouse pointer over the button for about two

seconds. A longer description appears in the status bar at the

bottom of the main window.

CREATING A PROJECT:

Project Navigator allows you to manage your FPGA

and CPLD designs using an ISE™ project, which contains all

the files related to your design. First, you must create a project

and then add source files. With your project open in Project

Navigator, you can view and run processes on all the files in

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 711 www.ijsart.com

your design. Project Navigator provides a wizard to help you

create a new project, as follows.

TO CREATE A PROJECT:

1. Select File > New Project.

2. In the New Project Wizard Create New Project page,

do the following:In the Project Name field, enter a

name for the project. Follow the naming conventions

described in File Naming Conventions.

HDL: Select this option if your top-level design file is a

VHDL, Verilog, or ABEL (for CPLDs) file. An HDL Project

can include lower-level modules of different file types, such as

other HDL files, schematics, and "black boxes," such as IP

cores and EDIF files.

 Schematic: Select this option if your top-level design

file is a schematic file. A schematic project can

include lower-level modules of different file types,

such as HDL files, other schematics, and "black

boxes," such as IP cores and EDIF files

 EDIF: Select this option if you converted your

design to this file type, for example, using a synthesis

tool. Using this file type allows you to skip the

Project Navigator synthesis process and to start with

the implementation processes.

NGC/NGO: Select this option if you converted your design to

this file type, for example, using a synthesis tool. Using this

file type allows you to skip the Project Navigator synthesis

process and start with the implementation processes.

3. Click Next.

4. If you are creating an HDL or schematic project, skip

to the next step. If you are creating an EDIF or

NGC/NGO project, do the following in the Import

EDIF/NGC Project page:

a) In the Input Design field, enter the name of the input

design file, or browse to the file and select it.

b) Select Copy the input design to the project directory

to copy your file to the project directory. If you do not select

this option, your file is accessed from the remote location.

c) In the Constraint File field, enter the name of the

constraints file, or browse to the file and select it.

d) Select Copy the constraints file to the project

directory to copy your file to the project directory. If you do

not select this option, your file is accessed from the remote

location.

e) Click Next.

In the Device Properties page, set the following options. These

settings affect other project options, such as the types of

processes that are available for your design.

 Product Category

 Family

 Device

 Package

 Speed

 Top-Level Source Type

 Synthesis Tool

Select one of the following synthesis tools and the

HDL language for your project. VHDL/Verilog is a mixed

language flow. If you plan to run behavioral simulation, your

simulator must support multiple language simulation.

 XST (Xilinx® Synthesis Technology)

XST is available with ISE Foundation™ software

installations. It supports projects that include schematic design

files and projects that include mixed language source files,

such as VHDL and Verilog sources files in the same project.

Synplify and Synplify Pro (Synplicity®, Inc.)The Synplify

and Synplify Pro software do not support projects that include

schematic design files.

The Precision® software supports projects that

include schematic design files and projects that include mixed

language source files, such as VHDL and Verilog sources files

in the same project.

 Simulator

Select one of the following simulators and the HDL

language for simulation.

 ISE Simulator (Xilinx®, Inc.)

This simulator allows you to run integrated

simulation processes as part of your ISE design flow. For

more information, see the ISE Simulator Help.

 ModelSim (Mentor Graphics®, Inc.)

You can run integrated simulation processes as part

of your ISE design flow using any of the following

Modelsim® editions: ModelSim Xilinx Edition (MXE),

ModelSim MXE Starter, ModelSim PE, or ModelSim SE™.

For more information on ModelSim, including the differences

between each edition, see Using the ModelSim Simulator.

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 712 www.ijsart.com

 NC-Sim (Cadence®, Inc.)

The NC-Sim simulator is not integrated with ISE and

must be run standalone. For more information, see the

documentation provided with the simulator.

 VCS (Synopsys®, Inc.)

The VCS® simulator is not integrated with ISE and

must be run standalone. For more information, see the

documentation provided with the simulator.

 Other

Select this option if you do not have ISE Simulator or

ModelSim installed or if you want to run simulation outside of

Project Navigator. This instructs Project Navigator to disable

the integrated simulation processes for your project.

 Preferred Language

Select one of the following to set your preferred

language. The Preferred Language project property controls

the default setting for process properties that generate HDL

output. If the Synthesis Tool and/or Simulator options are set

to a single-language tool, the default language for generated

HDL output files will be automatically chosen appropriately

Verilog

Simulation are set to mixed-language and you want

the default language to be Verilog.

 VHDL

Select this option if both Synthesis Tool and

Simulation are set to mixed-language and you want the default

language to be VHDL.

 N/A

This option will appear if both Synthesis Tool and

Simulation are set to a single language.

 Enable Enhanced Design Summary

Select this option to show the number of errorsand

warnings for each of the Detailed Reports in the Design

Summary.

Enable Message Filtering

Select this option to turn on Message Filtering.

Display Incremental Messages

Select this option to show the number of new

messages for the most recent software run in the Design

Summary. You must enable this option and then run the

software to show the number of new messages.

 If you are creating an EDIF or NGC/NGO project,

skip to step 8. If you are creating an HDL or schematic

project,

 Click next, and optionally, add existing source files

to your project in the Add Existing Sources page.

 Click Next to display the Project Summary page.

 Click Finish to create the project.

WHAT TO EXPECT:

Project Navigator creates the project file,

project_name.ise, in the directory you specified. All source

files related to the project appear in the Project Navigator

Sources tab. Project Navigator manages your project based on

the project properties (top-level module type, device type,

synthesis tool, and language) you selected when you created

the project. It organizes all the parts of your design and keeps

track of the processes necessary to move the design from

design entry through implementation to programming the

targeted Xilinx device.

WHAT TO DO NEXT:

 FPGA DESIGN FLOW OVERVIEW:

The ISE™ design flow comprises the following

steps: design entry, design synthesis, design implementation,

and Xilinx® device programming. Design verification, which

includes both functional verification and timing verification,

takes places at different points during the design flow.

FPGA design flow overview

FUNCTIONAL VERIFICATION:

You can verify the functionality of your design at

different points in the design flow as follows:

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 713 www.ijsart.com

 Before synthesis, run behavioral simulation (also

known as RTL simulation).

 After Translate, run functional simulation (also

known as gate-level simulation), using the SIMPRIM

library.

 After device programming, run in-circuit verification.

DESIGN IMPLEMENTATION:

Implement your design as follows:

1. Implement your design, which includes the following

steps:

 Translate

 Map

 Place and Route

2. Review reports generated by the Implement Design

process, such as the Map Report or Place & Route Report, and

change any of the following to improve your design:

 Process properties

 Constraints

 Source files

 TIMING VERIFICATION:

You can verify the timing of your design at different

points in the design flow as follows:

 Run static timing analysis at the following points in

the design flow:

 After Map

 After Place & Route

 Run timing simulation at the following points in the

design flow:

 After Map (for a partial timing analysis of CLB and

IOB delays)

 After Place and Route (for full timing analysis of

block and net delays)

XILINX DEVICE PROGRAMMING:

Program your Xilinx device as follows:

1. Create a programming file (BIT) to program your

FPGA.

2. Generate a PROM, ACE, or JTAG file for debugging

or to download to your device.

3. Use impact to program the device with a

programming cable.

V.HARDWARE DESCRIPTION LANGUAGEDESIGN

USING HDL

As a result of the efficiency gains realized using

Hardware Description Language; a majority of recent digital

circuit design revolves around it. Most designs begin as a set

of requirements or a high-level architectural diagram. Control

and decision structures are often prototyped in flowchart

applications, or entered in a state diagram editor. The process

of writing the Hardware Description Language is highly

dependent on the nature of the circuit and the designer's

preference for coding style. The Hardware Description

Language is merely the 'capture language', often beginning

with a high-level algorithmic description such as a C++

mathematical model. Designers often use scripting languages

such as Perl to automatically generate repetitive circuit

structures in the Hardware Description Language. Special text

editors offer features for automatic indentation, syntax-

dependent coloration, and macro-based expansion of

entity/architecture/signal declaration.

The HDL code then undergoes a code review, or

auditing. In preparation for synthesis, the HDL description is

subject to an array of automated checkers. The checkers report

deviations from standardized code guidelines, identify

potential ambiguous code constructs before they can cause

misinterpretation, and check for common logical coding

errors, such as dangling[jargon] ports or shorted outputs. This

process aids in resolving errors before the code is synthesized.

WHAT IS VHDL?

VHDL is a programming language that has been

designed and optimized for describing the behavior of digital

systems.

VHDL has many features appropriate for describing

the behavior of electronic components ranging from simple

logic gates to complete microprocessors and custom chips.

Features of VHDL allow electrical aspects of circuit behavior

(such as rise and fall times of signals, delays through gates,

and functional operation) to be precisely described. The

resulting VHDL simulation models can then be used as

building block sin larger circuits (using schematics, block

diagrams or system-level VHDL descriptions) for the idea of

simulation.

VHDL is also a general-purpose programming

language: just as high-level programming languages allow

complex design concepts to be expressed as computer

programs, VHDL allows the behavior of complex electronic

circuits to be captured into a design system for automatic

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 714 www.ijsart.com

circuit synthesis or for system simulation. Like Pascal, C++, C

and VHDL includes features useful for structured design

techniques, and offers a rich set of control and data

representation features. Unlike these other programming

languages, VHDL provides features allowing concurrent

events to be described. This is significant because the

hardware described using VHDL is inherently concurrent in

its operation.

VHDL Design Units:

VHDL provides five different types of primary constructs

called design units

1. Entity declaration: Describes external view of entity,

that is nothing but it shows input and output signal

names.

2. Architecture body: It contains the internal description

of the entity.

3. Configuration declaration: Used to create

configuration for an entity.

4. Package declaration: It encapsulates a set of related

declarations such as type declarations and sub

program declarations.

5. Package body: Package body contains the definitions

of subprograms declared in package declaration

.

VHDL Modeling styles:

VHDL support basically three main design styles, those are

DATA FLOW MODEL:

The data flow modeling has several additional

concurrent statements allow VHDL to describe a circuit in

terms of the flow of data and operations on it within the

circuit. This style is called a data flow description or dataflow

design. The simple data flow model example is given below

library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity

HALF_ADDER is port(p: in std_logic; in std_logic; sum: out

std_logic; carry : out std_logic);

end HALF_ADDER;

architecture Behavioral of HALF_ADDER is begin

sum<= p xor q;

carry<= p and q;

end Behavioral;

BEHAVIORAL MODEL:

It is sometimes possible to directly describe a desired

logic circuit behavior using a concurrent statement. This is a

good thing, as ability to create a behavioral design or

behavioral description is one of the key benefits of HDL in

general and VHDL in particular. VHDL key behavioral

element is the „process‟. A process is a collection of

sequential statements that executes in parallel with other

concurrent statements and other processes.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity HALF_ADDER is

port(p: in std_logic;

q: in std_logic;

sum: out std_logic;

carry : out std_logic);

end HALF_ADDER;

architecture Behavioral of HALF_ADDER is

begin

process(p,q,sum,carry)

begin

sum<= p xor q;

carry<= p and q;

end process;

end Behavioral;

STRUCTURAL MODEL:

A VHDL architecture that uses components often

called structural description or structural design. The structural

model has two parts, component declaration part and

statement declaration part. The structural model used most

basic VHDL concurrent statements is component statement.

 HOW TO INSTANTIATE COMPONENT:

The example is given below there is a small

difference in instantiation of component in Xilinx 9.2 and

Xilinx 14.2 versions. Below example shows how to

instantiates in Xilinx 9.2.The simple half adder code is given

below

HALF ADDER CODE:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity HALF_ADDER is

Port (p : in STD_LOGIC;

q : in STD_LOGIC;

r : out STD_LOGIC;

cou : out STD_LOGIC);

end HALF_ADDER;

architecture Behavioral of HALF_ADDER is

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 715 www.ijsart.com

component xor2

port(I0,I1:in STD_LOGIC;O: out STD_LOGIC);

end component;

component and2

port (I0,I1:in STD_LOGIC; O:out STD_LOGIC);

end component;

begin

x1: xor2 port map(p,q,r);

c1:and2 port map(p,q,cou);

end Behavioral;

The component declaration is must, and after

declaration of component by using label we use declared

component and port map to assign actual parameters to formal

parameters.

Now, how to instantiate a component in Xilinx 14.2

there is instantiation template under design utilities in process

tab in Xilinx ISE 14.2 as shown in below fig.

VHDL Instantiation template in Xilinx 14.2

Instantiation template example.

The Inst_HALF_ADDER is the label name, it may be

any name. we have to assign actual parameter right at right

hand side of arrow symbol in our program use

work.HALF_ADDER port map(parameters).

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity FULL_ADDER is

Port (a : in STD_LOGIC;

b : in STD_LOGIC;

c : in STD_LOGIC;

sum : out STD_LOGIC;

carry : out STD_LOGIC);

end FULL_ADDER;

architecture Behavioral of FULL_ADDER is

signal s1,s2,s3:std_logic;

begin

HALF_ADDER1:entitywork.HALF_ADDER

PORT MAP(

p => a,

q => b,

sum => s1,

carry => s2

);

HALF_ADDER2:entitywork.HALF_ADDER

PORT MAP(

p => s1,

q => c,

sum => sum,

carry => s3

);

or_gate1:entitywork.or_gate

PORT MAP(

a => s3,

b => s2,

c => carry

);

end Behavioral;

we have to write code previously for the component.

That code is present at work, we use that by giving

work.name, but in Xilinx 9.2 we have to declare component in

declaration part. This is structural model. We can also

represent the above example in Verilog code

module half_adder (in_x, in_y, out_sum, out_carry);

input in_x;

input in_y;

output out_sum;

output out_carry;

assign out_sum = in_x^in_y;

assign out_carry = in_x&in_y;

endmodule

VI. SPARTAN 3-FPG

Spartan-3 FPGA

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 716 www.ijsart.com

The Spartan-3 family builds on the success of the

earlier Spartan-IIE family by increasing the amount of logic

resources, the capacity of internal RAM, the total number of

I/Os, and the overall level of performance as well as by

improving clock management functions. Numerous

enhancements derive from the Vertex®-II platform

technology. These Spartan-3 FPGA enhancements, combined

with advanced process technology, deliver more functionality

and bandwidth per dollar than was previously possible, setting

new standards in the programmable logic industry. Because of

their exceptionally low cost, Spartan-3 FPGAs are ideally

suited to a wide range of consumer electronics applications,

including broadband access, home networking,

display/projection and digital television equipment. The

Spartan-3 family is a superior alternative to mask programmed

ASICs. FPGAs avoid the high initial cost, the lengthy

development cycles, and the inherent inflexibility of

conventional ASICs. Also, FPGA programmability permits

design upgrades in the field with no hardware replacement

necessary, an impossibility with ASICs.

ARCHITECTURAL OVERVIEW:

The Spartan-3 family architecture consists of five

fundamental programmable functional elements:

 Configurable Logic Blocks (CLBs) contain RAM-

based Look-Up Tables (LUTs) to implement logic

and storage elements that can be used as flip-flops or

latches. CLBs can be programmed to perform a wide

variety of logical functions as well as to store data.

 Input/Output Blocks (IOBs) control the flow of data

between the I/O pins and the internal logic of the

device. Each IOB supports bidirectional data flow

plus 3-state operation. Twenty-six different signal

standards, including eight high-performance

differential standards. Double Data-Rate(DDR)

registers are included. The Digitally Controlled

Impedance (DCI) feature provides automatic on-chip

terminations, simplifying board designs.

 Block RAM provides data storage in the form of 18-

Kbit dual-port blocks.

 Multiplier blocks accept two 18-bit binary numbers

as inputs and calculate the product.

 Digital Clock Manager (DCM) blocks provide self-

calibrating, fully digital solutions for distributing,

delaying, multiplying, dividing, and phase shifting

clock signals.

CONFIGURATION:

Spartan-3 FPGAs are programmed by loading

configuration data into robust, reprogrammable, static CMOS

configuration latches (CCLs) that collectively control all

functional elements and routing resources. Before powering

on the FPGA, configuration data is stored externally in a

PROM or some other nonvolatile medium either on or off the

board. After applying power, the configuration data is written

to the FPGA using any of five different modes: Master

Parallel, Slave Parallel, Master Serial, Slave Serial, and

Boundary Scan (JTAG). The Master and Slave Parallel modes

use an 8-bit-wide Select MAP port. The recommended

memory for storing the configuration data is the low-cost

Xilinx Platform Flash PROM family, which includes the

XCF00S PROMs for serial configuration and the higher

density XCF00P PROMs for parallel or serial configuration.

VII. RESULTS

The modified multiplier using Vedic multiplier and

kogge stone adder is fast and design of MAC done using

Xilinx. This design is implemented in VHDL code using

Xilinx. The below figure shows the simulation result of the

proposed design. The below fig shows the RTL Schematic of

MAC unit.

The modified 64 bit multiplier using Vedic multiplier

and DKG adder is fast and design of MAC done using Xilinx.

This design is implemented in Verilog code using Xilinx. The

below figure shows the simulation result of the proposed

design. The below figure shows the RTL Schematic of MAC

unit.

(a): RTL Schematic of MAC Unit

(b): RTL Schematic of MAC Unit

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 717 www.ijsart.com

Synthesis report of 64-bit MAC using Vedic Multiplier

using RCA,DKG and KSA Reversible logic gates

The above fig 9.2 shows comparison between MAC

design unit using different Multipliers. The power

consumption in MAC design using booth multiplier will be

greater than 4 nW and speed is also high. But it will take more

area.

The above fig shows the results of Vedic multiplier

with different gates and adders. In which DKG Adders has

moderate delay. But it consumes very less power and it can be

designed in small area.

Delay Analysis report of 64-bit MAC using Vedic

Multiplier using RCA,DKG and KSA Reversible logic

gates

The above fig shows the results of Vedic multiplier

with different gates and adders. In which DKG Stone Adders

has moderate delay. But it consumes very less power and it

can be designed in small area. The above figure 8 shows that

simulation result of DKG adder. It is a 64 bit adder. In this

design we used two 64 bit adders.

Simulation result of Adder

The above fig shows that simulation result of DKG

adder. It is a 64 bit adder. In this design we used two 64 bit

adders. The above figure 9 shows simulation result of 64 bit

MAC design unit. For this we applied two inputs. Which

values are a=12345678 and b=78945612 and it will give result

of 55bed11b057ec60.

Simulation result of 64 bit MAC unit

The above fig shows simulation result of 32 bit

MAC design unit. For this we applied two inputs. Which

values are a=305419896 and b=305419896 and it will give

result of 932813128726508160.

Design utilization summary

VIII. CONCLUSION AND FUTURE SCOPE

CONCLUSION:

The results obtained by the proposed design of Vedic

multiplier with 32 bits and reversible logic are quite good. The

work presented is based on 32 bit MAC unit with Vedic

Multipliers. MAC unit basic building blocks were designed

and its performance has been analyzed for all the blocks.

Therefore, we can say that the Urdhva Triyagbhyam sutra with

32-bit Multiplier and reversible logic is the best in all aspects

like delay, speed, area and complexity as compared to all other

architectures which are shown in table 3.1 Many researchers

are reconfiguring the structure of MAC unit, which is the basic

block in different designs and aspects especially using

reversible logic which develops in recent days. Spectrum

Analysis and Correlation linear filtering which are the

applications of transform algorithm further add to the field of

communication, signal and image processing and

instrumentation.

FUTURE SCOPE:

By Combining the Vedic and reversible logic will

lead to new and efficient achievements in developing various

fields of mathematics, science as well engineering. Future

work is to implement the designs using Synopsys IC Compiler

to analyze the post layout results for area and delay. Synopsys

Prime Time can be used to analyze the multipliers for their

power consumption.

REFERENCES

[1] R.NareshNaik , P.Siva Nagendra Reddy and K. Madan

Mohan “Design of Vedic Multiplier for Digital Signal

Processing Applications” in International Journal

ofEngineering Trends and Technology, volume 4 issue 7-

2013 ISSN: 2231-5381(IJETT).

[2] VaijyanathKunchigi ,LinganagoudaKulkarni,

SubhashKulkarni 32-bit MAC unit design using Vedic

multiplier International Journal of Scientific and Research

Publications, Volume3, Issue 2, February 2013

IJSART - Volume 4 Issue 7 – JULY 2018 ISSN [ONLINE]: 2395-1052

Page | 718 www.ijsart.com

[3] Ramalatha, M.Dayalan, K D Dharani, P Priya, and S

Deoborah, High Speed Energy Efficient ALU design

using Vedic multiplication techniques, International

Conference on Advances in Computational Tools for

Engineering Applications, 2009. ACTEA ‟09.pp. 600 -3,

Jul 15-17, 2009.

[4] SreeNivas A and Kayalvizhi N. Article: Implementation

of Power Efficient Vedic multiplier. International Journal

of Computer Applications 43(16):21-24, April 2012.

Published by Foundation of Computer Science, New

York, USA

[5] Abdelgawad, MagdyBayoumi ,” High Speed and Area-

Efficient Multiply Accumulate (MAC) Unit for Digital

Signal Processing Applications”, IEEE Int.Symp. Circuits

Syst. (2007) 3199–3202.

[6] R.Bhaskar, GanapathiHegde, P.R.Vaya,” An efficient

hardware model for RSA Encryption system using Vedic

mathematics”,International Conference on

Communication Technology and System Design 2011

Procedia Engineering 30 (2012) 124 – 128.

[7] FatemehKashfi, S. Mehdi Fakhraie, Saeed Safari,”

Designing an ultra-high-speed multiply-accumulate

structure”, Microelectronics Journal 39 (2008) 1476–

1484.

