
IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 966 www.ijsart.com

Shadow Detection Using Convolutional Neural
Network

Mr. Nasaruddin N.Shaikh1, Dr. Mrs.A.A.Agashe2

1, 2 Department of Electronics Engineering
1, 2 Walchand College of Engg.Sangli, Maharashtra, India

Abstract- We present a practical framework to automatically
detect shadows in real-world scenes from a single photograph
Previous works on shadow detection requires human
intervention to detect shadow.But our framework
automatically learns the most relevant features in a supervised
manner using multiple convolutional deep neural network
(ConvNets).Framework explain procedure of labeling image
data, balancing classes, defining layers in CNN, setting
training options ,training on GPU and testing test image on
trained network .The proposed framework learns features at
the pixel level and gives probability to each pixel to be shadow
or nonshadow.

Keywords- Convolutional neural networks
(ConvNets),Stochastic Gradient Descent with Momentum
(SGDM)

I. INTRODUCTION

 Shadow is natural phenomenon whose detection and
removal is important in many computer vision tasks. Shadows
provide useful clues for the scene characteristics which can
help in visual scene understanding. Recently, shadows have
been used for tasks related to object shape, size, movement,
number of light sources and illumination conditions. Shadows
have a particular practical importance in augmented reality
applications, where the illumination conditions in a scene can
be used to seamlessly render virtual objects and their casted
shadows. In digital photography, information about shadows
and their removal can help to improve the visual quality of
photographs. Beside the above mentioned assistive roles,
shadows can also cause complications in many fundamental
computer vision tasks. They can degrade the performance of
object recognition, stereo, shape reconstruction, image
segmentation and scene analysis. Shadows are also a serious
concern for aerial imaging and object tracking in video
sequences. Despite the ambiguities generated by shadows, the
Human Visual System (HVS) does not face any real difficulty
in filtering out the degradations caused by shadows. We need
to equip machines with these same visual comprehension
abilities. Inspired by the hierarchical architecture of the human
visual cortex, many deep representation learning architectures
have been proposed in the last decade. We draw our

motivation from the recent successes of these deep learning
methods in many computer vision tasks where learned features
out-performed hand-crafted features.On that basis, we propose
to use multiple convolutional neural networks (ConvNets)
tolearn useful feature representations for the task of shadow
detection.

II. SHADOW DETECTION FRAMEWORK

Figure 1. Block diagram of shadow detection

A. Defining Classes

 A class is a category in which we need to classify
pixels in an image.In our framework, our interest is to detect
shadow so we have considered two classes: shadow class and
nonshadowclass.We aim to classify each pixel in test image in
either shadow pixel or nonshadow pixel.

B. Labeling Images

 For training images need a number of images.For
indicating a region of interest there is a need to label data
according to class present in an image.In our case region of
interest is a shadow. In our framework, we have labeled 700
images with shadow and nonshadow class.

There are two types of labeling :

1. Rectangular Labeling
2. Pixel Labeling

IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 967 www.ijsart.com

 If an object is of fixed size then rectangular labeling
is beneficial. If a region of interest is non-regular size object
then pixel label labeling is beneficial. Shadow does not have
fixed size so we have labeled 700 images with pixel labeling.

 We have labeled images using image labeler app in
Matlab.

Figure 2. Image and corresponding class labeling

C. Pixel Label Datastore

 It contains pixel labeled data of 700 labeled images.
All pixel labeled data is stored in a PixelLabelDatastore object
so that whenever we need we can read pixel label data for
reading pixel-wise classification of image data.

D. Image Datastore:

 It contains original 700 images.All images are stored
in Image data store object to manage a collection of a number
of image files.

Figure 3. Some Images from Image datastore

E. Prepare Training and Test Sets

 We have labeled all 700 images with respective
classes.At the end of testing test image we need to calculate
the accuracy of shadow detection .so we need to calculate the
intersection of a union of shadow detected by CNN and
original manually labeled image of the same image.so we have
to split whole data into Training and Test Sets.We have
trained Convolutional Neural Network using 95% of the
images from the dataset. The rest 5% of the images are used
for testing.

IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 968 www.ijsart.com

F. Analyzing Dataset Statistics

 To see the distribution of class labels in the dataset,
we have use countEachLabel. This function counts the number
of pixels by a class label. Visualizing the pixel counts by class,
we have observed that nonshadow class pixels are more than
shadow class pixels. So here class imbalance problem arises.

G. Balance Classes Using Class Weighting

 The class imbalance biases learning process in favor
of dominant class to fix this class weighting is used.We have
used Inverse of frequency weighting where class weights are
inverse of class frequency is used.

Procedure for class Weighting:

Total Number Of Pixels = sum(Pixel Count of all classes)

A frequency of class = Pixel Count of class / (Total Number
Of Pixels)

 Class Weights of class = 1 / (frequency of class)
Class weights of each class are calculated by this procedure.

Figure 4. The pixel count of each class and corresponding

class weights

H. Creating CNN:

 A number of filters: It is specified as a positive
integer. This number corresponds to the number of neurons in
the layer that connect to the same region in the input. This
parameter determines the number of channels (feature maps)
in the output of the convolutional layer. We have used 64
number of filters.

Filter Size: It specifies Height and width of filters.Height and
width of the filters, specified as a vector of two positive
integers [h w], where h is the height and w is the width.
FilterSize defines the size of the local regions to which the
neurons connect in the input.We have used Filter Size of 3
Number of Classes: It specifies Number of classes to classify
inputs. In case number of classes are 2

 Normalization: Normalization is the Data
Transformation. Data transformation to apply every time data
is forward propagated through the input layer, specified as one
of the following.

 ‘Zero-center’-The layer subtracts the mean image of
the training set. ‘none’ -No transformation. We have used
Zero-center Normalization

Stride: It specifies Step size for traversing input. The step size
for traversing the input vertically and horizontally, specified as
a vector of two positive integers [a b] where a is the vertical
step size and b is the horizontal step size. When creating the
layer, you can specify stride as a scalar to use the same value
for both dimensions.

Padding:It specifies size of padding to apply to input borders,
specified as a vector of four non-negative integers [t b l r],
where t is the padding applied to the top, b is the padding
applied to the bottom, l is the padding applied to the left, and r
is the padding applied to the right.

Cropping: It specifies Output layer size reduction. Output
layer size reduction, specified as 'Cropping' and a scalar or
scalar vector. We can trim the edges of the full transposed
convolution by the same amount or specify vertical and
horizontal amounts. If we specify a vector, [vertical,
horizontal], the vertical valuetrims the top and bottom, and the
horizontal value trims the sides.

I. Defining Layers in CNN:

 We have used following layers in our Convolutional
Neural Network.

Image input layer
Convolution layer
RELU layer
Max pooling
Convolution layer
RELU layer
Transposed convolution
Convolution layer
Softmax layer
Pixel classification layer

Image input layer: An image input layer inputs images to a
network and applies data normalization. Input size is Size of
the input data, specified as a row vector of three integer values
[h w c], where h is the height, w is the width, and c is the
number of channels. Set c to 1 for grayscale images, 3 for

IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 969 www.ijsart.com

RGB images. In our case, input size is 360*480*3 images
with zero-center normalization.

Convolution layer: A 2-D convolutional layer applies sliding
filters to the input. The layer convolves the input by moving
the filters along the input vertically and horizontally and
computing the dot product of the weights and the input, and
then adding a bias term. We have used 64 3x3 convolutions
with stride [1 1] and padding [1 1 1 1]

RELU layer: It is Rectified Linear Unit (ReLU) layer. A
ReLU layer performs a threshold operation to each element of
the input, where any value less than zero is set to zero.This
operation is equivalent to f(x)=0, for x<0 and f(x)=x,
for x≥0

Max pooling layer: A max pooling layer performs down-
sampling by dividing the input into rectangular pooling
regions, and computing the maximum of each region.We
haveused 2x2 max-pooling with stride [2 2] and padding [0 0
0 0]

Transposed convolution: It creates a transposed 2-D
convolution layer. A transposed 2-D convolution layer
upsamples feature maps. This layer is the transpose of
convolution and does not perform deconvolution. We have
used 64 4x4 transposed convolutions with stride [2 2] and
output cropping [1 1]

Convolution layer: A 2-D convolutional layer applies sliding
filters to the input. The layer convolves the input by moving
the filters along the input vertically and horizontally and
computing the dot product of the weights and the input, and
then adding a bias term.We have used 2 1x1 convolutions
with stride [1 1] and padding [0 0 0 0]

Softmax layer: A softmax layer applies a softmax function to
the input. The softmax function is often used in the final layer
of a neural network-based classifier.Softmax classifiers give
probabilities for each class label.

Pixel classification layer: It creates pixel classification layer
for semantic segmentation.pixel classification layer creates a
pixel classification output layer for semantic image
segmentation networks. The layer outputs the categorical label
for each image pixel processed by a CNN. The layer
automatically ignores undefined pixel labels during training.
The loss function is cross entropy loss function.

Figure 5. Layers in our Convolutional Neural Network

J. Setting Training Options:

 It specifies options for training deep learning neural
network.
Training options used are:
Solver Name sgdm
Initial Learn Rate 1e-3,
Max Epochs 100,
Mini Batch Size 1

Initial Weights and Biases: Initial weights is a Gaussian
distribution with a mean of 0 and a standard deviation of 0.01.
The default for the initial bias value is 0. We can manually
change the initialization for the weights and biases.

Solver for training network: Stochastic Gradient Descent with
Momentum (sgdm)

Stochastic Gradient Descent

 The gradient descent algorithm updates the network
parameters (weights and biases) to minimize the loss function
by taking small steps in the direction of the negative gradient
of the loss,

θℓ+1 = θℓ− α∇E(θℓ)

 where ℓ stands for the iteration number, α>0 is the
learning rate, θ is the parameter vector, and E(θ) is the loss
function. The gradient of the loss function, ∇E(θ), is evaluated
using the entire training set, and the standard gradient descent
algorithm uses the entire data set at once. The stochastic
gradient descent algorithm evaluates the gradient and updates
the parameters using a subset of the training set. This subset is
called a mini-batch. Each evaluation of the gradient using the
mini-batch is an iteration. At each iteration, the algorithm
takes one step towards minimizing the loss function. The full
pass of the training algorithm over the entire training set using
mini-batches is an epoch. We can specify the mini-batch size

IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 970 www.ijsart.com

and the maximum number of epochs using the'MiniBatchSize'
and 'MaxEpochs' name-value pair arguments, respectively.
Stochastic Gradient Descent with Momentum

 The stochastic gradient descent algorithm might
oscillate along the path of steepest descent towards the
optimum. Adding a momentum term to the parameter update
is one way to reduce this oscillation. The stochastic gradient
descent with momentum update is

θℓ+1=θℓ−α∇E(θℓ)+γ(θℓ−θℓ−1),

 where γ determines the contribution of the previous
gradient step to the current iteration. We can specify this value
using the 'Momentum' name-value pair argument. To use
stochastic gradient descent with momentum to train a neural
network, specify solverName as 'sgdm'. To specify the initial
value of the learning rate α, use the'InitialLearnRate' name-
value pair argument. We can also specify different learning
rates for different layers and parameters.

Initial Learn Rate: Initial learning rate used for training, The
default value is 0.01 for the 'sgdm' solver and 0.001 for
the'rmsprop' and 'adam' solvers. If the learning rate is too low,
then training takes a long time. If the learning rate is too high,
then training might reach a suboptimal result or diverge.
Max Epochs: It specifies a Maximum number of epochs to use
for training. It is an iteration is one step taken in the gradient
descent algorithm towards minimizing the loss function using
a mini-batch. An epoch is the full pass of the training
algorithm over the entire training set

Mini Batch Size: It is the size of the mini batch. Size of the
mini-batch to use for each training iteration. A mini-batch is a
subset of the training set that is used to evaluate the gradient
of the loss function and update the weights.

K. Training Network on GPU:

 We have train network using training data(image and
pixel datastore), layers and training options. For training 700
images it takes around 1 hour. We have this network on
CUDA-capable NVIDIA™ GPU Titan x.

Figure 6.Training network on NVIDIA™ GPU Titan x

III. RESULT ON TEST IMAGE

 First, resize input image to a size of CNN.In our case
size is 360*480. Then apply to trained CNN. We have tested
our network for a number of images .some of tested images
results are given below:

Figure 7. Input Image and Image with shadow detected

Figure 8. Input Image andImage with shadow detected

IV. CONCLUSION

 We presented a use of convolutional neural network
to learn the most relevant features to detect shadows from a
single image. We showed that our framework performs best
on a number of images and it does not depend on the object
shape, the environment and the type of scene. In our
framework Pre-processing is used to resize an image to fit to
kernel of Neural Network.A labeled dataset of shadow created
to indicate a region of interest. Class balancing using Inverse

IJSART - Volume 4 Issue 6 – JUNE 2018 ISSN [ONLINE]: 2395-1052

Page | 971 www.ijsart.com

of frequency weighting is used to balance weights of
classes.CNN is trained to detect shadow in the image. A
network is tested on test Image.

V. FUTURE SCOPE

 Proposed shadow detection framework can be
modified together with the scene geometry and object
properties for high-level scene understanding tasks.

REFERENCES

[1] Salman H. Khan, Mohammed Bennamoun,

FerdousSohel, Roberto Togneri "Automatic Shadow
Removal from aSingle Image” ieee transactions on
pattern analysis and machine intelligence, vol. 38, no. 3,
march 2016

[2] S. H. Khan, M. Bennamoun, F. Sohel, and R. Togneri,
“Automatic feature learning for robust shadow
detection,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2014, pp. 1939–1946

[3] J. Zhu, K. G. Samuel, S. Z. Masood, and M. F. Tappen,
“Learning to recognize shadows in monochromatic
natural images,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2010, pp. 223–230.

