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Abstract- We present a practical framework to automatically 
detect shadows in real-world scenes from a single photograph 
Previous works on shadow detection requires human 
intervention to detect shadow.But our framework 
automatically learns the most relevant features in a supervised 
manner using multiple convolutional deep neural network 
(ConvNets).Framework explain procedure of labeling image 
data, balancing classes, defining layers in CNN, setting 
training options ,training on GPU and testing test image on 
trained network .The proposed framework learns features at 
the pixel level and gives probability to each pixel to be shadow 
or nonshadow. 
 
Keywords- Convolutional neural networks 
(ConvNets),Stochastic Gradient Descent with Momentum 
(SGDM) 
 

I. INTRODUCTION 
 
 Shadow is natural phenomenon whose detection and 
removal is important in many computer vision tasks. Shadows 
provide useful clues for the scene characteristics which can 
help in visual scene understanding. Recently, shadows have 
been used for tasks related to object shape, size, movement, 
number of light sources and illumination conditions. Shadows 
have a particular practical importance in augmented reality 
applications, where the illumination conditions in a scene can 
be used to seamlessly render virtual objects and their casted 
shadows. In digital photography, information about shadows 
and their removal can help to improve the visual quality of 
photographs. Beside the above mentioned assistive roles, 
shadows can also cause complications in many fundamental 
computer vision tasks. They can degrade the performance of 
object recognition, stereo, shape reconstruction, image 
segmentation and scene analysis. Shadows are also a serious 
concern for aerial imaging and object tracking in video 
sequences. Despite the ambiguities generated by shadows, the 
Human Visual System (HVS) does not face any real difficulty 
in filtering out the degradations caused by shadows. We need 
to equip machines with these same visual comprehension 
abilities. Inspired by the hierarchical architecture of the human 
visual cortex, many deep representation learning architectures 
have been proposed in the last decade. We draw our 

motivation from the recent successes of these deep learning 
methods in many computer vision tasks where learned features 
out-performed hand-crafted features.On that basis, we propose 
to use multiple convolutional neural networks (ConvNets)  
tolearn useful feature representations for the task of shadow 
detection. 
 

II. SHADOW DETECTION FRAMEWORK 
 

 
Figure 1. Block diagram of shadow detection 

 
A. Defining Classes 
 
 A class is a category in which we need to classify 
pixels in an image.In our framework, our interest is to detect 
shadow so we have considered two classes: shadow class and 
nonshadowclass.We aim to classify each pixel in test image in 
either shadow pixel or nonshadow pixel. 
 
B. Labeling Images 
 
 For training images need a number of images.For 
indicating a region of interest there is a need to label data 
according to class present in an image.In our case region of 
interest is a shadow. In our framework, we have labeled 700 
images with shadow and nonshadow class. 
 
There are two types of labeling : 
 
1. Rectangular Labeling 
2. Pixel Labeling 
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 If an object is of fixed size then rectangular labeling 
is beneficial. If a region of interest is non-regular size object 
then pixel label labeling is beneficial. Shadow does not have 
fixed size so we have labeled 700 images with pixel labeling. 
 
 We have labeled images using image labeler app in 
Matlab. 
 

 
Figure 2. Image and corresponding class labeling 

 
C. Pixel Label Datastore 
 
 It contains pixel labeled data of 700 labeled images. 
All pixel labeled data is stored in a PixelLabelDatastore object 
so that whenever we need we can read pixel label data for 
reading pixel-wise classification of image data.  
 
D. Image Datastore: 
 
 It contains original 700 images.All images are stored 
in Image data store  object to manage a collection of a number 
of image files. 
 

 
 

 
 

 
 

 
Figure 3. Some Images from Image datastore 

 
E. Prepare Training and Test Sets 
 
 We have labeled all 700 images with respective 
classes.At the end of testing test image we need to calculate 
the accuracy of shadow detection .so we need to calculate the 
intersection of a union of shadow detected by CNN and 
original manually labeled image of the same image.so we have 
to split whole data into Training and Test Sets.We have 
trained Convolutional Neural Network using 95% of the 
images from the dataset. The rest 5% of the images are used 
for testing. 
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F. Analyzing  Dataset Statistics 
 
 To see the distribution of class labels in the dataset, 
we have use countEachLabel. This function counts the number 
of pixels by a class label. Visualizing the pixel counts by class, 
we have observed that nonshadow class pixels are more than 
shadow class pixels. So here class imbalance problem arises.  
 
G. Balance Classes Using Class Weighting 
 
 The class imbalance biases learning process in favor 
of dominant class to fix this class weighting is used.We have 
used Inverse of frequency weighting where class weights are 
inverse of class frequency is used.  
 
Procedure for class Weighting: 
 
Total Number Of Pixels = sum(Pixel Count of all classes) 
 
A frequency of class = Pixel Count of class / (Total Number 
Of Pixels) 
 
 Class Weights of class = 1 / (frequency of class) 
Class weights of each class are calculated by this procedure. 
  

 
Figure 4. The pixel count of each class and corresponding 

class weights 
 

H. Creating CNN: 
 
 A number of filters: It is specified as a positive 
integer. This number corresponds to the number of neurons in 
the layer that connect to the same region in the input. This 
parameter determines the number of channels (feature maps) 
in the output of the convolutional layer. We have used 64 
number of filters.  
 
Filter Size: It specifies Height and width of filters.Height and 
width of the filters, specified as a vector of two positive 
integers [h w], where h is the height and w is the width. 
FilterSize defines the size of the local regions to which the 
neurons connect in the input.We have used Filter Size of 3 
Number of Classes: It specifies Number of classes to classify 
inputs. In case number of classes are 2 
 

 Normalization: Normalization is the Data 
Transformation. Data transformation to apply every time data 
is forward propagated through the input layer, specified as one 
of the following. 
 
 ‘Zero-center’-The layer subtracts the mean image of 
the training set.  ‘none’ -No transformation. We have used 
Zero-center Normalization 
 
Stride: It specifies Step size for traversing input. The step size 
for traversing the input vertically and horizontally, specified as 
a vector of two positive integers [a b] where a is the vertical 
step size and b  is the horizontal step size. When creating the 
layer, you can specify stride as a scalar to use the same value 
for both dimensions. 
 
Padding:It specifies size of padding to apply to input borders, 
specified as a vector of four non-negative integers [t b l r], 
where t is the padding applied to the top, b is the padding 
applied to the bottom, l is the padding applied to the left, and r 
is the padding applied to the right. 
 
Cropping: It specifies Output layer size reduction. Output 
layer size reduction, specified as 'Cropping' and a scalar or 
scalar vector. We can trim the edges of the full transposed 
convolution by the same amount or specify vertical and 
horizontal amounts. If we specify a vector, [vertical, 
horizontal], the vertical valuetrims the top and bottom, and the 
horizontal value trims the sides. 
 
I. Defining Layers in CNN: 
 
 We have used following layers in our Convolutional 
Neural Network. 
 
Image input layer 
Convolution layer 
RELU layer 
Max pooling 
Convolution layer 
RELU layer 
Transposed convolution 
Convolution layer 
Softmax layer 
Pixel classification layer 
 
Image input layer: An image input layer inputs images to a 
network and applies data normalization. Input size is Size of 
the input data, specified as a row vector of three integer values 
[h w c], where h is the height, w is the width, and c is the 
number of channels. Set c to 1 for grayscale images, 3 for 
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RGB images. In our case, input size is  360*480*3 images 
with zero-center normalization.  
 
Convolution layer: A 2-D convolutional layer applies sliding 
filters to the input. The layer convolves the input by moving 
the filters along the input vertically and horizontally and 
computing the dot product of the weights and the input, and 
then adding a bias term. We have used 64 3x3 convolutions 
with stride [1 1 ] and padding  [1 1 1 1]  
 
RELU layer: It is Rectified Linear Unit (ReLU) layer. A 
ReLU layer performs a threshold operation to each element of 
the input, where any value less than zero is set to zero.This 
operation is equivalent to f(x)=0,    for x<0  and      f(x)=x,     
for x≥0 
 
Max pooling layer: A max pooling layer performs down-
sampling by dividing the input into rectangular pooling 
regions, and computing the maximum of each region.We 
haveused 2x2 max-pooling with stride [2 2] and   padding [0 0 
0 0] 
 
Transposed convolution: It creates a transposed 2-D 
convolution layer. A transposed 2-D convolution layer 
upsamples feature maps. This layer is the transpose of 
convolution and does not perform deconvolution. We have 
used 64 4x4 transposed convolutions with stride [2 2] and 
output cropping [1 1 ] 
 
Convolution layer: A 2-D convolutional layer applies sliding 
filters to the input. The layer convolves the input by moving 
the filters along the input vertically and horizontally and 
computing the dot product of the weights and the input, and 
then adding a bias term.We have used 2  1x1 convolutions 
with stride [1 1 ] and padding [0 0 0 0] 
 
Softmax layer: A softmax layer applies a softmax function to 
the input. The softmax function is often used in the final layer 
of a neural network-based classifier.Softmax classifiers give 
probabilities for each class label. 
 
Pixel classification layer: It creates pixel classification layer 
for semantic segmentation.pixel classification layer creates a 
pixel classification output layer for semantic image 
segmentation networks. The layer outputs the categorical label 
for each image pixel processed by a CNN. The layer 
automatically ignores undefined pixel labels during training. 
The loss function is cross entropy loss function. 
 

 
Figure  5. Layers in our Convolutional  Neural Network 

 
J. Setting Training Options: 
 
 It specifies options for training deep learning neural 
network. 
Training options used are: 
Solver Name              sgdm 
Initial Learn Rate        1e-3, 
Max Epochs                 100, 
Mini Batch Size                1  
 
Initial Weights and Biases: Initial weights is a Gaussian 
distribution with a mean of 0 and a standard deviation of 0.01. 
The default for the initial bias value is 0. We can manually 
change the initialization for the weights and biases. 
 
Solver for training network: Stochastic Gradient Descent with 
Momentum (sgdm ) 
 
Stochastic Gradient Descent 
 
 The gradient descent algorithm updates the network 
parameters (weights and biases) to minimize the loss function 
by taking small steps in the direction of the negative gradient 
of the loss, 
 
θℓ+1 = θℓ− α∇E(θℓ) 
  
 where ℓ stands for the iteration number, α>0 is the 
learning rate, θ is the parameter vector, and E(θ) is the loss 
function. The gradient of the loss function, ∇E(θ), is evaluated 
using the entire training set, and the standard gradient descent 
algorithm uses the entire data set at once. The stochastic 
gradient descent algorithm evaluates the gradient and updates 
the parameters using a subset of the training set. This subset is 
called a mini-batch. Each evaluation of the gradient using the 
mini-batch is an iteration. At each iteration, the algorithm 
takes one step towards minimizing the loss function. The full 
pass of the training algorithm over the entire training set using 
mini-batches is an epoch. We can specify the mini-batch size 
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and the maximum number of epochs using the'MiniBatchSize' 
and 'MaxEpochs' name-value pair arguments, respectively. 
Stochastic Gradient Descent with Momentum 
 
 The stochastic gradient descent algorithm might 
oscillate along the path of steepest descent towards the 
optimum. Adding a momentum term to the parameter update 
is one way to reduce this oscillation. The stochastic gradient 
descent with momentum update is 
 

θℓ+1=θℓ−α∇E(θℓ)+γ(θℓ−θℓ−1), 

 
 where γ determines the contribution of the previous 
gradient step to the current iteration. We can specify this value 
using the 'Momentum' name-value pair argument. To use 
stochastic gradient descent with momentum to train a neural 
network, specify solverName as 'sgdm'. To specify the initial 
value of the learning rate α, use the'InitialLearnRate' name-
value pair argument. We can also specify different learning 
rates for different layers and parameters. 
 
Initial Learn Rate: Initial learning rate used for training, The 
default value is 0.01 for the 'sgdm' solver and 0.001 for 
the'rmsprop' and 'adam' solvers. If the learning rate is too low, 
then training takes a long time. If the learning rate is too high, 
then training might reach a suboptimal result or diverge. 
Max Epochs: It specifies a Maximum number of epochs to use 
for training. It is an iteration is one step taken in the gradient 
descent algorithm towards minimizing the loss function using 
a mini-batch. An epoch is the full pass of the training 
algorithm over the entire training set 
 
Mini Batch Size: It is the size of the mini batch. Size of the 
mini-batch to use for each training iteration. A mini-batch is a 
subset of the training set that is used to evaluate the gradient 
of the loss function and update the weights. 
 
K. Training Network on GPU: 
 
 We have train network using training data(image and 
pixel datastore), layers and training options. For training 700 
images it takes around 1 hour. We have this network on 
CUDA-capable NVIDIA™ GPU Titan x. 
 

 
Figure 6.Training  network on NVIDIA™ GPU Titan x 

III. RESULT  ON  TEST  IMAGE 
  
 First, resize input image to a size of CNN.In our case 
size is 360*480. Then apply to trained CNN. We have tested 
our network for a number of images .some of tested images 
results are given below: 
   

 
 

Figure 7.  Input Image and Image with  shadow detected 
 

 
Figure 8. Input Image andImage with  shadow   detected 

 
IV. CONCLUSION 

 
 We presented a use of convolutional neural network 
to learn the most relevant features to detect shadows from a 
single image. We showed that our framework performs best 
on a number of images and it does not depend on the object 
shape, the environment and the type of scene. In our 
framework Pre-processing is used to resize an image to fit to 
kernel of Neural Network.A labeled dataset of shadow created 
to indicate a region of interest. Class balancing using Inverse 
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of frequency weighting is used to balance weights of 
classes.CNN is trained to detect shadow in the image. A 
network is tested on test Image.  
 

V. FUTURE SCOPE 
 
 Proposed shadow detection framework can be 
modified together with the scene geometry and object 
properties for high-level scene understanding tasks. 
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