
IJSART - Volume 4 Issue 5 – MAY 2018 ISSN [ONLINE]: 2395-1052

Page | 1703 www.ijsart.com

A Study On Hierarchical Approach To Software

Testing

Dr P.J.Arul Leena Rose

Dept of Computer Application

FSH,SRMIST

Abstract- To produce high quality software both software

developers and testers need continuous improvement in their

work methodologies and processes. So, far much work has

been done in the effective ways of eliciting and documenting

the requirements. However important aspect is to make sure

that whatever is documented in specifications actually works

correctly in the developed software. Software testing is done

to ensure this phenomenon. A structured way to design test

cases is proposed with the help of use cases. Some work is

done to trace user needs to system requirements and use cases

and benefits of using use case modeling approach in

structuring the relationships among test cases is analyzed.

As test cases are subject to changes in future so,

challenges imposed due to traceability among requirements,

test cases are main subjects of this work along with the

challenges faced by software testers to perform application

acceptance testing. A green path scheme is proposed to help

testers define application acceptance criteria and weight

assignment approach is used to prioritize the test cases and to

determine the percentage of application running successfully.

Keywords- Test Artifacts, specifications, acceptance criteria

I. INTRODUCTION

 Testing has gone through considerable state of

modernization during last decade and there is still a

tendency to move it farther upstream in the development

process. Other than the mechanisms of verification,

validation, inspection and reviews; testing is still an important

and relied technology to identify errors in the software product

and then referring those errors back to the development

process for fixation. Goal of effective testing is to reveal high

severity errors as early as possible. In reality this is not

completely possible but planned efforts to tackle this issue can

considerably reduce the severity of this issue. Although new

ways of software inspection are invented like code reviews,

requirements analysis, change impact analysis, peer reviews

etc; still testing is the main source of software quality

assurance. It consists of not just running a test but it covers

test case designing, expected outcomes, test case modeling,

real test data preparation and requirement verification.

However it must be clarified that software quality assurance in

itself is an umbrella activity and covers all phases of software

development life cycle (SDLC) whereas testing is one phase

of the whole SDLC.

Another important requisite to maintenance testing

and to reduce ripple effects of ever changing requirements is

to use strong traceability of test artifacts to other phases of

software development specifically to use cases and

requirements. Requirements traceability is used to ensure that

each step in the development process is correct, is in

accordance with the needs of prior steps and is not redundant

or superfluous. One major objective of requirement

traceability is to develop software that meets the user

expectations. This is possible because there is relation

between each requirement and artifact in the system so it

becomes possible to know whether everything is being

developed against requirements. Although a strong trend in

industry these days is requirements traceability to artifacts like

design documents, source code etc. Another important area is

requirements traceability to test cases. As test cases are

written directly or indirectly alongside requirements, therefore

exploring links between requirements and test cases is a good

approach to get better test case coverage.

II. MOTIVATION

User tolerance for system failures have been

decreasing since 1990s. It is now less acceptable to deliver

software with poor quality as compared to deliver it with

higher quality after some time. So, software companies now

invest more money, time and resources on testing. Software

testing is gradually undergoing a transition towards becoming

a science. In other words testing is adopting a more formal

and structured approach. Philosophy of testing is based on

requirements of the system. Therefore, test plan document

and test strategy must start evolving along with the hierarchy

of specification documents. ‘Better quality means catching

errors earlier; the earlier an error is caught, the cheaper it is to

fix’. Also, engineers tend to continue with iterative designs

until a level of quality is reached, so main challenge faced by

industry is to achieve higher quality while delivery dates and

budget goals are still in control. Recent advances in the field

of software engineering have made development process more

IJSART - Volume 4 Issue 5 – MAY 2018 ISSN [ONLINE]: 2395-1052

Page | 1704 www.ijsart.com

efficient and reliable; still few of these processes provide

strong focus on testing activities.

III. TESTING METHODOLOGIES

Testing involves preparation of real data in simulated

environment and to use this data as combinational input to

exercise the functionality of the system. Depending on the

nature of software, an appropriate strategy is adopted to verify

different execution paths of the system. For example for a

safety critical system boundary values of the application at

both user level and code level need to be tested. This can be

ensured by following both black box and white box testing

approaches. Where black box testing is used to ensure user

oriented test cases and white box testing is used to inspect the

code level checks in the system like variable outflow, loop

conditions etc. Different levels of test used by organizations

are as follows:

A. COMPONENT TESTING

Stand alone test cases designed specifically for

individual modules are used for module testing. It is possible

that hardware specified in requirements may not be available

at the time of module testing. Also, it is possible to carry out

module testing without the availability of system interfaces.

This is due to the reason that modules not only use inputs from

interfaces but interaction among modules and function calls

can also be used as input to the module. In such cases dummy

test data similar to real data is prepared for test case execution

and the outputs from modules is manually verified by code

level printing or console outputs etc. Component testing

involves one or more of the following activities:

To test individual functions or methods within an object.

• To test attributes and methods of object classes.

• To test a set of objects that are coupled with each

other and to test interfaces of these objects.

Component testing is mostly performed as a white

box testing However for functional testing, it is necessary for

functional test cases generated at module level to use key

index of related module or use case as a reference. This is

helpful in back tracking system features, tracing errors,

maintenance purpose and selection of test cases during

integration testing.

B. SYSTEM TESTING

System testing is the process of testing integrated

system components. In an iterative system development,

system testing is concerned with testing an increment to be

delivered to customer while in a waterfall process it is

concerned with testing the entire system. For large team

projects we use distinctively two approaches for system

testing i.e. integration testing and release testing.

B.1 INTEGRATION TESTING

Integration testing is the most important phase of

testing and involves careful selection of test cases.

Traditionally individual modules are unit tested and then

chained up for integration testing to verify behavior of system

under full length test case execution. Whereas unit testing

involves testing of standalone software components,

integration testing focuses on issues raised during integration

of these units. Another approach is to integrate individual

modules into system one by one. This approach is more

popular in organizations that built a product line approach for

software development. Some of the benefits that can be

achieved in testing of one by one module integration are as

follows:

• Single test specification can be used to ensure the

core functionality of the system each time a module

is integrated into the system.

• By focusing on a single module, all of its possible

interactions with other modules can be tested. This

makes a one to many combination of testing rather

than a many to many combination of all modules

integration testing.

• Based on the number of faults produced and time

consumed in integration testing of one module, a

general estimation can be made about the testing of

other modules.

B.2 RELEASE TESTING

Release testing is the process of testing a release of

the system where requirements are much clear in the initial

phases of development. Release testing is usually performed

as black box testing where tests are derived from system

specifications. Tester is only concerned with the functionality

of the system and not the implementation details. During test

case generation tester predicts the expected output values from

the system and during test case execution he compares the

actual output of the system with expected results. During

testing of system releases the main focus of tester is to use a

combination of inputs along with test cases that can break the

IJSART - Volume 4 Issue 5 – MAY 2018 ISSN [ONLINE]: 2395-1052

Page | 1705 www.ijsart.com

system i.e. Testing is performed with the aim of using inputs

that have a high probability of system failures. Some

examples of this are:

• Selection of input values that have high probability of

producing system failures.

• Designing input values that can result in buffer

overflow for system variables.

• Repeating a series of inputs many time to judge the

behavior of system.

• Making combinations of inputs that can lead to

invalid output values.

• Performing boundary levels computation with results

too large or too small.

In release testing best way to verify system

specification is to use scenario based testing. These scenarios

are derived from requirements specifications, functional

specifications and design documents etc. Later these scenarios

are converted to actual test cases where each test case defines

the procedure of executing the scenario on the system with

expected outcome from the system.

IV. TESTCASE PRIORITIZATION

Prioritization concept reveals from our daily life.

From purchasing a chocolate to advanced cars we need

prioritization. It is often not clear which choice is better

because several aspects need to be considered. It is relatively

easy to make a prioritization factor based on single factor i.e.

To purchase a ticket by considering a single factor of traveling

time. However, prioritization becomes difficult even in

making common life decisions, such as to prioritize among the

accessories of a computer or selection of mobile sets etc.

Prioritization techniques help to handle these problems.

Purpose of prioritization is to assign unique value to a part of

the system to distinct it uniquely from other parts of the

system within same domain. Prioritization can be done with

different measurement scales. Least powerful scale of

measurement is ordinal scale and a relatively higher powerful

scale of measurement is ratio scale. In ordinal scale of

measurement test cases are prioritized in ascending or

descending order without defining how much important one

test case is from other. While in ratio scale of measurement

we assign values to the test cases by considering other test

cases in the system as well.

In this paper we get input from structured test case

generation approach as a new parameter to PORT technique to

prioritize the test cases. Software engineers can benefit in

following ways from effectively prioritized test cases:

• To select an optimized set of test cases that represents

a major portion of the functionality.

• To limit the project scope against conflicting

constraints such as budget, schedule, resources etc..

• To ensure that most critical and complex

functionality of system is fully tested and working

properly.

• To minimize the ripple effects.

• To reduce the cost of regression testing.

• To assure that most critical defects are identified in

early stages of system Testing.

• To make sure that system is thoroughly tested and all

required features of the system are verified.

• To verify that a representative set of test cases is

derived for change impact analysis. Also to make

sure that requirement mapping to test cases is twofold

i.e. Affected test cases can be traced back to the

origin of requirements.

• To make sure that any pre-mature termination of

testing process due to need for urgent deployment or

any overflow of timelines makes it sure that the test

cases with higher priority for critical functionality are

already executed.

Test case prioritization is a strategic decision as

wrongly prioritized test cases can lead to incorrect order of

defects identification. Although test case prioritization

doesn’t help in the production of new test cases and no matter

in which order test cases are executed, all test cases will be

executed at least once in the system. However, it is important

that test cases with higher importance and with complex

functionality are executed first. Although there are many

factors that are important for prioritization like cost, quality,

budget, schedule etc. However, it is important to make a vital

selection as an input for test case prioritization.

We use following factors as an input for test case

prioritization.

A. DEPENDENCY

Dependency is required to identify the stopper test

cases in the system i.e. certain test cases need to be executed

as a pre-requisite of other test cases. Dependency is important

to be identified in the system as it predicts the correct flow of

application data. A detail level analysis of test cases is

IJSART - Volume 4 Issue 5 – MAY 2018 ISSN [ONLINE]: 2395-1052

Page | 1706 www.ijsart.com

required to identify the dependency value keeping in view the

following factors:

• To identify data dependency among test cases i.e.

data produced by one test case is used by other test

cases.

• Functional dependency among test cases.

• To verify sequential dependency among test cases i.e.

login test case must run before patient scheduling test

case.

Dependency should be considered an important

factor for prioritization of requirements and test cases.

Though it is not a part of PORT technique, but test cases

dependency plays a crucial role in prioritizing of test cases.

We divide dependency factor among test cases on a scale of 1

to 100. In our case we have assigned weight to test cases on

the basis of total number of dependent test cases. Like if for a

total set of 3 dependent test cases, one test case carries two

dependent test cases and rest of the two carry one dependent

test cases each as shown in next table:

 In this section we see application of this

prioritization technique on a set of 39 test cases that we are

using to in this paper. We use following parameters as an

input to PORT technique:

1. Test Case Complexity

Test case complexity is assigned a weight of 0.3 and

we divide 39 test cases on a scale of 1 to 1000.

2. Test Case Dependency

Test case dependency is assigned a weight of 0.5 and

each individual test case is assigned a weight on the range of 0

to 100. Like test cases that doesn’t carry any dependent test

cases are assigned zero weight. We calculate dependency

value of test cases in the following simple way:

Test Case Dependency Value = (Total No. of dependent test

cases X 100)/Total No. of Test Cases

Like for a test case with 6 dependent test cases, test case

dependency value is: Test Case Dependency Value =

6X100/39= 15.4

3. Test Case Volatility

Test case volatility is assigned a weight of 0.2 as we

expect that scheduling module will not carry too many

changes in its functionality. We assign volatility values to test

cases on a scale of 1 to 1000.

We assign weight of 50% to dependency, 30% to

complexity and 20% to volatility where cumulative sum of

weight should always be one for all factors. These factor

values are assigned during verification, analysis and design

phases and evolve during different phases of software

development. These factor weights can be used to prioritize

the test cases in the system. We multiply percentage factor for

each requirement with its corresponding weight and sum the

resulting values of three factors for each test case, as shown in

following formula:

Where

IJSART - Volume 4 Issue 5 – MAY 2018 ISSN [ONLINE]: 2395-1052

Page | 1707 www.ijsart.com

PFVi: prioritization value for requirement i FactorValue ij: jth

factor value for requirement i FactorWeightj: weight for jth

factor Like, for the test case 9, I assigned following priorities:

Dependency = 21

Complexity = 20

Volatility = 40

Where,

WP9 = (21*0.5) + (20*0.3) + (40*0.2)

= 24

V. CONCLUSION

 Test case management is the most critical activity to

perform effective software testing. In this study use case

based approach for structured test case generation is followed

to prioritize, maintain and trace test cases. I see how the area

of testing in software development can help in the

improvement of software project quality. I have followed use

case based approach for structured test case generation in the

implementation of requirements and seek ways for use case

driven approach in requirements engineering to better help in

bridging the gap between system requirements and testing.

With the help of a case study; application acceptance criterion,

test case prioritization and test cases traceability to

requirements are verified for small to medium scaled projects.

A sample of 39 test cases is used as an input to my study and

results show that significant time and cost can be saved for

more balanced and stable hierarchies of test cases with a main

focus on small to medium scaled projects that are less volatile

and less prone to changes. Moreover, test case structure

approach followed in this paper runs in parallel to tool based

test case structuring techniques followed in industry.

However, industry is more focused on path based test case

structuring. While approach followed in this paper is use case

and specifications based. This provides an edge and

advancement to existing test case structuring methodologies.

REFERENCES

[1] Brian Berger, Majdi Abuelbassal, and Mohammad

Hossain, ‘Model Driven Testing’, DNA Enterprise Inc.,

March 1997

[2] Norm Brown, ‘Little Book of Testing -

Implementation Techniques’, Software Program

Managers Network, Volume2, Copyright 1998 by

Computers and Concepts associates, June 1998

[3] Ahmed M. Salem, Kamel Rekab and James A.

Whittaker, ‘Prediction of software failures through

logistic regression’, Information and Software

Technology, ELSEVIER, May 28, 2004

[4] Michael S. Deutsch and Ronald R. Willis, ‘Software

Quality Engineering – A Total Technical and

Management Approach’, Prentice Hall, Englewood

Cliffs, NJ 07632, Copyright 1998

[5] David J. Smith, ‘Achieving Quality Software’,

Chapman and Hall, Boundary row, London SE1 8HN,

Copy Right 1987, UK

[6] Lan Sommerville, ‘Software Engineering’, Pearson

Education, Copyright 2004, ISBN 81-297-0867-1

[7] Grady Booch, James Rumbaugh and Ivar Jacobson,

‘Unified modeling language user guide’, Addison Wesley,

1st Edition, October 20, 1998

