
IJSART - Volume 4 Issue 5 – MAY 2018 ISSN [ONLINE]: 2395-1052

Page | 1134 www.ijsart.com

Review Paper on Cordic Algorithms

Minakshi Dahake1, Prof. Amol Boke2
Department of Electronics & Communication Engineering

1MTech,GHRAET, Maharashtra,India
2Prof GHRAET, Maharashtra,India

Abstract-Year 2009 marks the completion of 50 years of the
invention of CORDIC (Coordinate Rotation Digital
Computer) by Jack E. Volder. The beauty of CORDIC lies in
the fact that by simple shift-add operations, it can perform
several computing tasks such as the calculation of
trigonometric, hyperbolic and logarithmic functions, real and
complex multiplications, division, square-root, solution of
linear systems, eigenvalue estimation, singular value
decomposition, QR factorization and many others. As a
consequence, CORDIC has been utilized for applications in
diverse areas such as signal and image processing,
communication systems, robotics and 3-D graphics apart from
general scientific and technical computation. In this article,
we present a brief overview of the key developments in the
CORDIC algorithms and architectures along with their
potential and upcoming applications..

Keywords-Arithmetic circuits, CORDIC, CORDIC algorithms,
digital signal processing chip, VLSI..

I. INTRODUCTION

COORDINATE Rotation Digital Computer is

abbreviated as CORDIC. The key concept of CORDIC
arithmetic is based on the simple and ancient principles of
two-dimensional geometry. But the iterative formulation of a
computational algorithm for its implementation was first
described in 1959 by Jack E. Volder [1], [2] for the
computation of trigonometric functions, multiplication and
division. This year therefore marks the completion of 50 years
of the CORDIC algorithm. Not only a wide variety of
applications of CORDIC have emerged in the last 50 years,
but also a lot of progress has been made in the area of
algorithm design and development of architectures for high-
performance and low-cost hardware solutions of those
applications. CORDIC-based computing received increased
attention in 1971, when John Walther [3], [4] showed that, by
varying a few simple parameters, it could be used as a single
algorithm for unified implementation of a wide range of
elementary transcendental functions involving logarithms,
exponentials, and square roots along with those suggested by
Volder [1]. During the same time, Cochran [5] benchmarked
various algorithms, and showed that CORDIC technique is a
better choice for scientific calculator applications. The
popularity of CORDIC was very much enhanced thereafter

primarily due to its potential for efficient and low-cost
implementation of a large class of applications which include:
the generation of trigonometric, logarithmic and
transcendental elementary functions; complex number
multiplication, eigenvalue computation, matrix inversion,
solution of linear systems and singular value decomposition
(SVD) for signal processing, image processing, and general
scientific computation. Some other popular and upcoming
applications are:

1) direct frequency synthesis, digital modulation and coding

for speech/music synthesis and communication;
2) direct and inverse kinematics computation for robot

manipulation;
3) planar and three-dimensional vector rotation for graphics

and animation.

Although CORDIC may not be the fastest technique

to perform these operations, it is attractive due to the
simplicity of its hardware implementation, since the same
iterative algorithm could be used for all these applications
using the basic shift-add operations of the form a±b.2-i.

Keeping the requirements and constraints of different

application environments in view, the development of
CORDIC algorithm and architecture has taken place for
achieving high throughput rate and reduction of hardware-
complexity as well as the latency of implementation. Some of
the typical approaches for reduced-complexity implementation
are focused on minimization of the complexity of scaling
operation and the complexity of barrel-shifter in the CORDIC
engine. Latency of implementation is an inherent drawback of
the conventional CORDIC algorithm. Angle recoding
schemes, mixed-grain rotation and higher radix CORDIC have
been developed for reduced latency realization. Parallel and
pipelined CORDIC have been suggested for high-throughput
computation. The objective of this article is not to present a
detailed survey of the developments of algorithms,
architectures and applications of CORDIC, which would
require a few doctoral and masters level dissertations. Rather
we aim at providing the key developments in algorithms and
architectures alongwith an overview of the major application
areas and upcoming applications. We shall however discuss
here the basic principles of CORDIC operations for the benefit
of general readers.

IJSART - Volume 4 Issue 5 –MAY 2018 ISSN [ONLINE]: 2395-1052

Page | 1135 www.ijsart.com

II. BASIC CORDIC TECHNIQUES

In this Section, we discuss the basic principle
underlying the CORDIC-based computation, and present its
iterative algorithm for different operating modes and planar
coordinate systems. At the end of this section, we discuss the
extension of two-dimensional rotation to multidimensional
formulation.

The CORDIC Algorithm

As shown in Fig. 1, the rotation of a two-dimensional vector
P0=[x0 y0]an angle ϴ, to obtain a rotated vector Pn = [xnyn]
could be performed by the matrix product Pn = RP0, where R
is the rotation matrix:
R = ቂߠݏܥ ߠ݊݅ܵ−

ߠ݊݅ܵ ߠݏܥ ቃ (1)
By factoring out the cosine term in (1), the rotation matrix R
can be rewritten as,
R=ൣ(1 + ଵ/ଶ൧ି(ߠଶ݊ܽݐ ቂ 1 ߠ݊ܽݐ−

ߠ݊ܽݐ 1
ቃ (2)

and can be interpreted as a product of a scale-factor ܭ =
ൣ(1 + ଵ/ଶ൧with a pseudorotation matrix Rc, given byି(ߠଶ݊ܽݐ

Rc=ቂ 1 ߠ݊ܽݐ−
ߠ݊ܽݐ 1 ቃ (3)

The pseudo rotation operation rotates the vector P0

by an angle ϴ and changes its magnitude by a factor K= cosϴ,
to produce a pseudo-rotated vector ܲ

′ = 	ܴ ܲ.

To achieve simplicity of hardware realization of the

rotation, the key ideas used in CORDIC arithmetic are to (i)
decompose the rotations into a sequence of elementary
rotations through predefined angles that could be implemented
with minimum hardware cost; and (ii) to avoid scaling, that
might involve arithmetic operation, such as square-root and
division. The second idea is based on the fact the scale-factor
contains only the magnitude information but no information
about the angle of rotation.

Figure 1: Rotation of vector on a two-dimensional plane.

Figure 2: Hardware implementation of a CORDIC

iteration.

TABLE I GENERALIZED CORDIC ALGORITHM

m Rotation Mode Vectoring Mode
ݔ 0

= ߱ݏܥݔ)	ܭ
− (߱݊݅ݏݕ

ݔ = ଶݔටܭ + 	 ଶݕ

ݕ
= ߱ݏܥݕ)	ܭ
+ (߱݊݅ݏݕ

ݕ = 0

߱ = 0 ߱
= ߱ + tanିଵ ൬

ݕ
ݔ
൰

ݔ 1 = 	 ݔ ݔ = 	 ݔ
ݕ = 	 ݕ + ߱ݔ	 ݕ = 0

߱ = 0 ߱ = ߱ + ൬
ݕ
ݔ
൰

-
1

ݔ
= K୦	(ݔݏܥℎ߱
− (ℎ߱݊݅ݏݕ

ݔ = ଶݔටܭ − ଶݕ

ݕ
= K୦	(ݕݏܥℎ߱
+ (ℎ߱݊݅ݏݕ

ݕ = 0

߱ = 0 ߱
= ߱ + tanhିଵ ൬

ݕ
ݔ
൰

Generalization of the CORDIC Algorithm

In 1971, Walther found how CORDIC iterations

could be modified to compute hyperbolic functions [3] and
reformulated the CORDIC algorithm in to a generalized and
unified form which is suitable to perform rotations in circular,
hyperbolic and linear coordinate systems. The unified
formulation includes a new variable m, which is assigned
different values for different coordinate systems. The
generalized CORDIC is formulated as follows:

ାଵݔ = 	 ݔ ߪ݉− . 2ି ݕ.
ାଵݕ = 	 ݕ − .ߪ 2ି. ݔ

߱ାଵ = 	߱ − ߪ (4)ߙ.

Multidimensional CORDIC

IJSART - Volume 4 Issue 5 –MAY 2018 ISSN [ONLINE]: 2395-1052

Page | 1136 www.ijsart.com

The CORDIC algorithm was extended to higher
dimensions using simple Householder reflection [7]. The
Householder reflection matrix is defined as

H୫ = 	 I୫ିଶ. ୳୳

୳୳
 (5)

III. ADVANCED CORDIC ALGORITHMS AND

ARCHITECTURES

CORDIC computation is inherently sequential due to
two main bottlenecks: 1) the micro-rotation for any iteration is
performed on the intermediate vector computed by the
previous iteration and 2) the (i+1)th iteration could be started
only after the completion of the ith iteration, since the value of
σ୧ାଵwhich is required to start the th iteration could be known
only after the completion of the th iteration. To alleviate the
second bottleneck some attempts have been made for
evaluation of values corresponding to small micro-rotation
angles [9], [10]. However, the CORDIC iterations could not
still be performed in parallel due to the first bottleneck. A
partial parallelization has been realized in [11] by combining a
pair of conventional CORDIC iterations into a single merged
iteration which provides better area-delay efficiency. But the
accuracy is slightly affected by such merging and cannot be
extended to a higher number of conventional CORDIC
iterations since the induced error becomes unacceptable [11].
Parallel realization of CORDIC iterations to handle the first
bottleneck by direct unfolding of micro-rotation is possible,
but that would result in increase in computational complexity
and the advantage of simplicity of CORDIC algorithm gets
degraded [12], [13]. Although no popular architectures are
known to us for fully parallel implementation of CORDIC,
different forms of pipelined implementation of CORDIC have
however been proposed for improving the computational
throughput [14].

To handle latency bottlenecks, various techniques

have been developed and reported in the literature. Most of the
well known algorithms could be grouped under, high-radix
CORDIC, the angle-recoding method, hybrid micro-rotation
scheme, redundant CORDIC and differential CORDIC which
we discuss briefly in the following subsections

Parallel Angle Recoding

The AR methods [19], [21] could be used to reduce
the number of iterations by more than 50%, when the angle of
rotation is known in advance. However, for unknown rotation
angles, their hardware implementation involves more cycle
time than the conventional implementation, which results in a
reduction in overall efficacy of the algorithm. To reduce the
cycle time of CORDIC iterations in such cases, a parallel

angle selection scheme is suggested in [22], which can be used
in conjunction with the AR method, to gain the advantages of
the reduction in iteration count, without further increase in the
cycle time. The parallel AR scheme in [22] is based on
dynamic angle selection, where the elementary angles can be
tested in parallel and the direction for the micro-rotations can
be determined quickly to minimize the iteration period.

Implementation of Hybrid CORDIC

To derive the efficiency of hybrid CORDIC, the
coarse and fine rotations are performed by separate circuits as
shown in Fig. 5. The coarse rotation phase is performed by the
CORDIC processor-I and the fine rotation phase is performed
by CORDIC processor-II. To have fast implementation,
processor-I performs a pair of ROM look-up operations
followed by addition to realize the rotation through angle .
Since could be expressed as a linear combination of angels of
small enough magnitude , where , the computation of fine
rotation phase can be realized by a sequence of shift-and-add
operations. For implementation of the fine rotation phase, no
computations are involved to decide the direction of micro-
rotation, since the need of a micro-rotation is explicit in the
radix-2 representation of . The radix-2 representation could
also be recoded to express where as shown in [9]. Since the
direction of micro-rotations are explicit in such a
representation of , it would be possible to implement the fine
rotation phase in parallel for low-latency realization. The
hybrid decomposition could be used for reducing the latency
by ROM-based realization of coarse operation. This can also
be used for reducing the hardware complexity of fine rotation
phase since there is no need to find the direction of
microrotation. Several options are however possible for the
implementation of these two stages. A form of hybrid
CORDIC is suggested in [23] for very-high precision
CORDIC rotation where the ROM size is reduced to nearly
bits. The coarse rotations could be implemented as
conventional CORDIC through shift-add operations of micro-
rotations if the latency is tolerable.

Parallel CORDIC Based on Coarse-Fine Decomposition

In [31], the authors have proposed two angle
recoding techniques for parallel detection of direction of
micro-rotations, namely the binary to bipolar recoding (BBR)
and micro-rotation angle recoding (MAR) to be used for the
coarse part of the input angle . BBR is used to obtain the
polarity of each bit in the radix-2 representation of to
determine the rotation direction. MAR is used to decompose
each positional binary weight into a linear combination of
arctangent terms. It is further shown in [32] that, the rotation
direction can be decided once the input angle is known to

IJSART - Volume 4 Issue 5 –MAY 2018 ISSN [ONLINE]: 2395-1052

Page | 1137 www.ijsart.com

enable parallel computation of the micro-rotations. Although
the CORDIC rotation can be executed in parallel according to
[32], the method for decomposition of each positional binary
weight produces many extra stages of micro-rotation,
especially when the bit-width of input angle increases. A more
efficient recoding scheme has been proposed in [33] for the
reduction of number of micro-rotations to be employed in
parallel CORDIC rotations.

Redundant-Number-Based CORDIC Implementation

Addition/subtraction operations are faster in the
redundant number system, since unlike the binary system, it
does not involve carry propagation. The use of redundant
number system is therefore another way to speed up the
CORDIC iterations. A CORDIC implementation based on the
redundant number system called as redundant CORDIC was
proposed by Ercegovac and Lang and applied to matrix
triangularization and singular value decomposition [34].
Rotation mode redundant CORDIC has been found to result in
fast implementation of sinusoidal function generation, unitary
matrix transformation, angle calculation and rotation [34]–
[38].

Pipelined CORDIC Architecture

Since the CORDIC iterations are identical, it is very
much convenient to map them into pipelined architectures.
The main emphasis in efficient pipelined implementation lies
with the minimization of the critical path. The earliest
pipelined architecture that we find was suggested by
Deprettere, Dewilde and Udo in 1984 [14]. Pipelined
CORDIC circuits have been used thereafter for high-
throughput implementation of sinusoidal wave generation,
fixed and adaptive filters, discrete orthogonal transforms and
other signal processing applications [40]–[44]. A generic
architecture of pipelined CORDIC circuit is shown in Fig. 7. It
consists of stages of CORDIC units where each of the
pipelined stages consists of a basic CORDIC engine of the
kind shown in Fig. 2. Since the number of shifts to be
performed by the shifters at different stages is fixed (shift-
operation through -bit positions is performed at the th stage) in
case of pipelined CORDIC the shift operations could be
hardwired with adders; and therefore shifters are eliminated in
the pipelined implementation. The critical-path of pipelined
CORDIC thus amounts to the time required by the
add/subtract operations in each of the stages.

IV. APPLICATIONS OF CORDIC

CORDIC technique is basically applied for rotation
of a vector in circular, hyperbolic or linear coordinate systems,

which in turn could also be used for generation of sinusoidal
waveform, multiplication and division operations, and
evaluation of angle of rotation, trigonometric functions,
logarithms, exponentials and squareroot [6], [64], [65]. Table
IV shows some elementary functions and operations that can
be directly implemented by CORDIC. The table also indicates
whether the coordinate system is circular (CC), linear (LC), or
hyperbolic (HC), and whether the CORDIC operates in
rotation mode (RM) or vectoring mode (VM), the initialization
of the CORDIC and the necessary pre- or postprocessing step
to perform the operation. The scale factors are, however,
obviated in Table IV for simplicity of presentation. In this
Section, we discuss how CORDIC is used for some basic
matrix problems like QR decomposition and singular-value
decomposition. Moreover, we make a brief presentation on the
applications of CORDIC to signal and image processing,
digital communication, robotics and 3-D graphics.

Matrix Computation

Singular Value Decomposition and Eigenvalue Estimation

Signal Processing and Image Processing Applications

V. CONCLUSION

The beauty of CORDIC is its potential for unified

solution for a large set of computational tasks involving the
evaluation of trigonometric and transcendental functions,
calculation of multiplication, division, square-root and
logarithm, solution of linear systems, QR-decomposition, and
SVD, etc. Moreover, CORDIC is implemented by a simple
hardware through repeated shift-add operations. These
features of CORDIC has made it an attractive choice for a
wide variety of applications. In the last fifty years, several
algorithms and architectures have been developed to speed up
the CORDIC by reducing its iteration counts and through its
pipelined implementation. Moreover, its applications in
several diverse areas including signal processing, image
processing, communication, robotics and graphics apart from
general scientific and technical computations have been
explored. Latency of computation, however, continues to be
the major drawback of the CORDIC algorithm, since we do
not have efficient algorithms for its parallel implementation.
But, CORDIC on the other hand is inherently suitable for
pipelined designs, due to its iterative behavior, and small cycle
time compared with the conventional arithmetic. For high-
throughput applications, efficient pipelined-architectures with
multiple-CORDIC units could be developed to take the
advantage of pipelineability of CORDIC, because the digital
hardware is getting cheaper along with the progressive device-
scaling. Research on fast implementation of shift-

IJSART - Volume 4 Issue 5 –MAY 2018 ISSN [ONLINE]: 2395-1052

Page | 1138 www.ijsart.com

accumulation operation, exploration of new number systems
for CORDIC, optimization of CORDIC for constant rotation
have scope for further reduction of its latency. Another way to
use CORDIC efficiently, is to transform the computational
algorithm into independent segments, and to implement the
individual segments by different CORDIC processors. With
enhancement of its throughput and reduction of latency, it is
expected that CORDIC would be useful for many high-speed
and real-time applications. The area-delay-accuracy trade-off
for different advanced algorithms may be investigated in detail
and compared with in future work.

REFERENCES

[1] J. E. Volder, “The CORDIC trigonometric computing

technique,” IRE Trans. Electron. Computers, vol. EC-8,
pp. 330–334, Sept. 1959. [2] J. E. Volder, “The birth of
CORDIC,” J. VLSI Signal Process., vol. 25, pp. 101–105,
2000. [3] J. S. Walther, “A unified algorithm for
elementary functions,” in Proc. 38th Spring Joint
Computer Conf., Atlantic City, NJ, 1971, pp. 379–385.

[2] J. S. Walther, “The story of unified CORDIC,” J. VLSI
Signal Process., vol. 25, no. 2, pp. 107–112, June 2000.

[3] D. S. Cochran, “Algorithms and accuracy in the HP-35,”
HewlettPackard J., pp. 1–11, Jun. 1972. [6] J.-M. Muller,
Elementary Functions: Algorithms and Implementation.
Boston, MA: Birkhauser Boston, 2006.

[4] S.-F. Hsiao and J.-M. Delosme, “Householder CORDIC
algorithms,” IEEE Trans. Computers, vol. 44, no. 8, pp.
990–1001, Aug. 1995.

[5] E. Antelo, J. Villalba, and E. L. Zapata, “A low-latency
pipelined 2D and 3D CORDIC processors,” IEEE Trans.
Computers, vol. 57, no. 3, pp. 404–417, Mar. 2008.

[6] D. Timmermann, H. Hahn, and B. J. Hosticka, “Low
latency time CORDIC algorithms,” IEEE Trans.
Computers, vol. 41, no. 8, pp. 1010–1015, Aug. 1992.

[7] S. Wang, V. Piuri, and J. E. E. Swartzlander, “Hybrid
CORDIC algorithms,” IEEE Trans. Computers, vol. 46,
no. 11, pp. 1202–1207, Nov. 1997.

