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Abstract-Year 2009 marks the completion of 50 years of the 
invention of CORDIC (Coordinate Rotation Digital 
Computer) by Jack E. Volder. The beauty of CORDIC lies in 
the fact that by simple shift-add operations, it can perform 
several computing tasks such as the calculation of 
trigonometric, hyperbolic and logarithmic functions, real and 
complex multiplications, division, square-root, solution of 
linear systems, eigenvalue estimation, singular value 
decomposition, QR factorization and many others. As a 
consequence, CORDIC has been utilized for applications in 
diverse areas such as signal and image processing, 
communication systems, robotics and 3-D graphics apart from 
general scientific and technical computation. In this article, 
we present a brief overview of the key developments in the 
CORDIC algorithms and architectures along with their 
potential and upcoming applications.. 
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I. INTRODUCTION 
 
COORDINATE Rotation Digital Computer is 

abbreviated as CORDIC. The key concept of CORDIC 
arithmetic is based on the simple and ancient principles of 
two-dimensional geometry. But the iterative formulation of a 
computational algorithm for its implementation was first 
described in 1959 by Jack E. Volder [1], [2] for the 
computation of trigonometric functions, multiplication and 
division. This year therefore marks the completion of 50 years 
of the CORDIC algorithm. Not only a wide variety of 
applications of CORDIC have emerged in the last 50 years, 
but also a lot of progress has been made in the area of 
algorithm design and development of architectures for high-
performance and low-cost hardware solutions of those 
applications. CORDIC-based computing received increased 
attention in 1971, when John Walther [3], [4] showed that, by 
varying a few simple parameters, it could be used as a single 
algorithm for unified implementation of a wide range of 
elementary transcendental functions involving logarithms, 
exponentials, and square roots along with those suggested by 
Volder [1]. During the same time, Cochran [5] benchmarked 
various algorithms, and showed that CORDIC technique is a 
better choice for scientific calculator applications. The 
popularity of CORDIC was very much enhanced thereafter 

primarily due to its potential for efficient and low-cost 
implementation of a large class of applications which include: 
the generation of trigonometric, logarithmic and 
transcendental elementary functions; complex number 
multiplication, eigenvalue computation, matrix inversion, 
solution of linear systems and singular value decomposition 
(SVD) for signal processing, image processing, and general 
scientific computation. Some other popular and upcoming 
applications are: 
 
1) direct frequency synthesis, digital modulation and coding 

for speech/music synthesis and communication;  
2) direct and inverse kinematics computation for robot 

manipulation;  
3) planar and three-dimensional vector rotation for graphics 

and animation.  
 
Although CORDIC may not be the fastest technique 

to perform these operations, it is attractive due to the 
simplicity of its hardware implementation, since the same 
iterative algorithm could be used for all these applications 
using the basic shift-add operations of the form a±b.2-i.  

 
Keeping the requirements and constraints of different 

application environments in view, the development of 
CORDIC algorithm and architecture has taken place for 
achieving high throughput rate and reduction of hardware-
complexity as well as the latency of implementation. Some of 
the typical approaches for reduced-complexity implementation 
are focused on minimization of the complexity of scaling 
operation and the complexity of barrel-shifter in the CORDIC 
engine. Latency of implementation is an inherent drawback of 
the conventional CORDIC algorithm. Angle recoding 
schemes, mixed-grain rotation and higher radix CORDIC have 
been developed for reduced latency realization. Parallel and 
pipelined CORDIC have been suggested for high-throughput 
computation. The objective of this article is not to present a 
detailed survey of the developments of algorithms, 
architectures and applications of CORDIC, which would 
require a few doctoral and masters level dissertations. Rather 
we aim at providing the key developments in algorithms and 
architectures alongwith an overview of the major application 
areas and upcoming applications. We shall however discuss 
here the basic principles of CORDIC operations for the benefit 
of general readers. 
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II. BASIC CORDIC TECHNIQUES 
 

In this Section, we discuss the basic principle 
underlying the CORDIC-based computation, and present its 
iterative algorithm for different operating modes and planar 
coordinate systems. At the end of this section, we discuss the 
extension of two-dimensional rotation to multidimensional 
formulation. 
 
The CORDIC Algorithm 

 
As shown in Fig. 1, the rotation of a two-dimensional vector 
P0=[x0 y0]an angle ϴ, to obtain a rotated vector Pn = [ xnyn] 
could be performed by the matrix product Pn = RP0, where R 
is the rotation matrix: 
R =  ቂߠݏܥ ߠ݊݅ܵ−

ߠ݊݅ܵ ߠݏܥ ቃ   (1) 
By factoring out the cosine term in (1), the rotation matrix R 
can be rewritten as,  
R=ൣ(1 + ଵ/ଶ൧ି(ߠଶ݊ܽݐ ቂ 1 ߠ݊ܽݐ−

ߠ݊ܽݐ 1
ቃ  (2) 

and can be interpreted as a product of a scale-factor ܭ =
ൣ(1 +  ଵ/ଶ൧with a pseudorotation matrix Rc, given byି(ߠଶ݊ܽݐ

Rc=ቂ 1 ߠ݊ܽݐ−
ߠ݊ܽݐ 1 ቃ    (3) 

 
The pseudo rotation operation rotates the vector P0 

by an angle ϴ and changes its magnitude by a factor K= cosϴ, 
to produce a pseudo-rotated vector ܲ

′ = 	ܴ ܲ. 
 
To achieve simplicity of hardware realization of the 

rotation, the key ideas used in CORDIC arithmetic are to (i) 
decompose the rotations into a sequence of elementary 
rotations through predefined angles that could be implemented 
with minimum hardware cost; and (ii) to avoid scaling, that 
might involve arithmetic operation, such as square-root and 
division. The second idea is based on the fact the scale-factor 
contains only the magnitude information but no information 
about the angle of rotation. 

 

 
Figure 1: Rotation of vector on a two-dimensional plane. 

 
Figure 2: Hardware implementation of a CORDIC 

iteration. 
 
TABLE I GENERALIZED CORDIC ALGORITHM 

m Rotation Mode Vectoring Mode 
ݔ 0

= ߱ݏܥݔ)	ܭ
−  (߱݊݅ݏݕ

ݔ = ଶݔටܭ + 	  ଶݕ

ݕ
= ߱ݏܥݕ)	ܭ
+  (߱݊݅ݏݕ

ݕ = 0 

߱ = 0 ߱
= ߱ + tanିଵ ൬

ݕ
ݔ
൰ 

ݔ 1 = 	 ݔ ݔ = 	  ݔ
ݕ = 	 ݕ + ߱ݔ	 ݕ  = 0 

߱ = 0 ߱ = ߱ + ൬
ݕ
ݔ
൰ 

-
1 

ݔ
= K୦	(ݔݏܥℎ߱
−  (ℎ߱݊݅ݏݕ

ݔ = ଶݔටܭ −  ଶݕ

ݕ
= K୦	(ݕݏܥℎ߱
+  (ℎ߱݊݅ݏݕ

ݕ = 0 

߱ = 0 ߱
= ߱ + tanhିଵ ൬

ݕ
ݔ
൰ 

 
Generalization of the CORDIC Algorithm 

 
In 1971, Walther found how CORDIC iterations 

could be modified to compute hyperbolic functions [3] and 
reformulated the CORDIC algorithm in to a generalized and 
unified form which is suitable to perform rotations in circular, 
hyperbolic and linear coordinate systems. The unified 
formulation includes a new variable m, which is assigned 
different values for different coordinate systems. The 
generalized CORDIC is formulated as follows: 

ାଵݔ = 	 ݔ ߪ݉− . 2ି  ݕ.
ାଵݕ = 	 ݕ − .ߪ 2ି.  ݔ

߱ାଵ = 	߱ − ߪ     (4)ߙ.
 
Multidimensional CORDIC 
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The CORDIC algorithm was extended to higher 
dimensions using simple Householder reflection [7]. The 
Householder reflection matrix is defined as 

H୫ = 	 I୫ିଶ. ୳୳


୳୳
   (5) 

 
III. ADVANCED CORDIC ALGORITHMS AND 

ARCHITECTURES 
 

CORDIC computation is inherently sequential due to 
two main bottlenecks: 1) the micro-rotation for any iteration is 
performed on the intermediate vector computed by the 
previous iteration and 2) the (i+1)th iteration could be started 
only after the completion of the ith iteration, since the value of 
σ୧ାଵwhich is required to start the th iteration could be known 
only after the completion of the th iteration. To alleviate the 
second bottleneck some attempts have been made for 
evaluation of values corresponding to small micro-rotation 
angles [9], [10]. However, the CORDIC iterations could not 
still be performed in parallel due to the first bottleneck. A 
partial parallelization has been realized in [11] by combining a 
pair of conventional CORDIC iterations into a single merged 
iteration which provides better area-delay efficiency. But the 
accuracy is slightly affected by such merging and cannot be 
extended to a higher number of conventional CORDIC 
iterations since the induced error becomes unacceptable [11]. 
Parallel realization of CORDIC iterations to handle the first 
bottleneck by direct unfolding of micro-rotation is possible, 
but that would result in increase in computational complexity 
and the advantage of simplicity of CORDIC algorithm gets 
degraded [12], [13]. Although no popular architectures are 
known to us for fully parallel implementation of CORDIC, 
different forms of pipelined implementation of CORDIC have 
however been proposed for improving the computational 
throughput [14]. 

 
To handle latency bottlenecks, various techniques 

have been developed and reported in the literature. Most of the 
well known algorithms could be grouped under, high-radix 
CORDIC, the angle-recoding method, hybrid micro-rotation 
scheme, redundant CORDIC and differential CORDIC which 
we discuss briefly in the following subsections 
 
Parallel Angle Recoding 
 

The AR methods [19], [21] could be used to reduce 
the number of iterations by more than 50%, when the angle of 
rotation is known in advance. However, for unknown rotation 
angles, their hardware implementation involves more cycle 
time than the conventional implementation, which results in a 
reduction in overall efficacy of the algorithm. To reduce the 
cycle time of CORDIC iterations in such cases, a parallel 

angle selection scheme is suggested in [22], which can be used 
in conjunction with the AR method, to gain the advantages of 
the reduction in iteration count, without further increase in the 
cycle time. The parallel AR scheme in [22] is based on 
dynamic angle selection, where the elementary angles can be 
tested in parallel and the direction for the micro-rotations can 
be determined quickly to minimize the iteration period.  
 
Implementation of Hybrid CORDIC 
 

To derive the efficiency of hybrid CORDIC, the 
coarse and fine rotations are performed by separate circuits as 
shown in Fig. 5. The coarse rotation phase is performed by the 
CORDIC processor-I and the fine rotation phase is performed 
by CORDIC processor-II. To have fast implementation, 
processor-I performs a pair of ROM look-up operations 
followed by addition to realize the rotation through angle . 
Since could be expressed as a linear combination of angels of 
small enough magnitude , where , the computation of fine 
rotation phase can be realized by a sequence of shift-and-add 
operations. For implementation of the fine rotation phase, no 
computations are involved to decide the direction of micro-
rotation, since the need of a micro-rotation is explicit in the 
radix-2 representation of . The radix-2 representation could 
also be recoded to express where as shown in [9]. Since the 
direction of micro-rotations are explicit in such a 
representation of , it would be possible to implement the fine 
rotation phase in parallel for low-latency realization. The 
hybrid decomposition could be used for reducing the latency 
by ROM-based realization of coarse operation. This can also 
be used for reducing the hardware complexity of fine rotation 
phase since there is no need to find the direction of 
microrotation. Several options are however possible for the 
implementation of these two stages. A form of hybrid 
CORDIC is suggested in [23] for very-high precision 
CORDIC rotation where the ROM size is reduced to nearly 
bits. The coarse rotations could be implemented as 
conventional CORDIC through shift-add operations of micro-
rotations if the latency is tolerable. 
 
Parallel CORDIC Based on Coarse-Fine Decomposition 
 

In [31], the authors have proposed two angle 
recoding techniques for parallel detection of direction of 
micro-rotations, namely the binary to bipolar recoding (BBR) 
and micro-rotation angle recoding (MAR) to be used for the 
coarse part of the input angle . BBR is used to obtain the 
polarity of each bit in the radix-2 representation of to 
determine the rotation direction. MAR is used to decompose 
each positional binary weight into a linear combination of 
arctangent terms. It is further shown in [32] that, the rotation 
direction can be decided once the input angle is known to 
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enable parallel computation of the micro-rotations. Although 
the CORDIC rotation can be executed in parallel according to 
[32], the method for decomposition of each positional binary 
weight produces many extra stages of micro-rotation, 
especially when the bit-width of input angle increases. A more 
efficient recoding scheme has been proposed in [33] for the 
reduction of number of micro-rotations to be employed in 
parallel CORDIC rotations. 
 
Redundant-Number-Based CORDIC Implementation 
 

Addition/subtraction operations are faster in the 
redundant number system, since unlike the binary system, it 
does not involve carry propagation. The use of redundant 
number system is therefore another way to speed up the 
CORDIC iterations. A CORDIC implementation based on the 
redundant number system called as redundant CORDIC was 
proposed by Ercegovac and Lang and applied to matrix 
triangularization and singular value decomposition [34]. 
Rotation mode redundant CORDIC has been found to result in 
fast implementation of sinusoidal function generation, unitary 
matrix transformation, angle calculation and rotation [34]–
[38]. 
 
Pipelined CORDIC Architecture 
 

Since the CORDIC iterations are identical, it is very 
much convenient to map them into pipelined architectures. 
The main emphasis in efficient pipelined implementation lies 
with the minimization of the critical path. The earliest 
pipelined architecture that we find was suggested by 
Deprettere, Dewilde and Udo in 1984 [14]. Pipelined 
CORDIC circuits have been used thereafter for high-
throughput implementation of sinusoidal wave generation, 
fixed and adaptive filters, discrete orthogonal transforms and 
other signal processing applications [40]–[44]. A generic 
architecture of pipelined CORDIC circuit is shown in Fig. 7. It 
consists of stages of CORDIC units where each of the 
pipelined stages consists of a basic CORDIC engine of the 
kind shown in Fig. 2. Since the number of shifts to be 
performed by the shifters at different stages is fixed (shift-
operation through -bit positions is performed at the th stage) in 
case of pipelined CORDIC the shift operations could be 
hardwired with adders; and therefore shifters are eliminated in 
the pipelined implementation. The critical-path of pipelined 
CORDIC thus amounts to the time required by the 
add/subtract operations in each of the stages. 
 

IV. APPLICATIONS OF CORDIC 
 

CORDIC technique is basically applied for rotation 
of a vector in circular, hyperbolic or linear coordinate systems, 

which in turn could also be used for generation of sinusoidal 
waveform, multiplication and division operations, and 
evaluation of angle of rotation, trigonometric functions, 
logarithms, exponentials and squareroot [6], [64], [65]. Table 
IV shows some elementary functions and operations that can 
be directly implemented by CORDIC. The table also indicates 
whether the coordinate system is circular (CC), linear (LC), or 
hyperbolic (HC), and whether the CORDIC operates in 
rotation mode (RM) or vectoring mode (VM), the initialization 
of the CORDIC and the necessary pre- or postprocessing step 
to perform the operation. The scale factors are, however, 
obviated in Table IV for simplicity of presentation. In this 
Section, we discuss how CORDIC is used for some basic 
matrix problems like QR decomposition and singular-value 
decomposition. Moreover, we make a brief presentation on the 
applications of CORDIC to signal and image processing, 
digital communication, robotics and 3-D graphics. 
 
Matrix Computation 
 
Singular Value Decomposition and Eigenvalue Estimation 

 
Signal Processing and Image Processing Applications 

 
V. CONCLUSION 

 
The beauty of CORDIC is its potential for unified 

solution for a large set of computational tasks involving the 
evaluation of trigonometric and transcendental functions, 
calculation of multiplication, division, square-root and 
logarithm, solution of linear systems, QR-decomposition, and 
SVD, etc. Moreover, CORDIC is implemented by a simple 
hardware through repeated shift-add operations. These 
features of CORDIC has made it an attractive choice for a 
wide variety of applications. In the last fifty years, several 
algorithms and architectures have been developed to speed up 
the CORDIC by reducing its iteration counts and through its 
pipelined implementation. Moreover, its applications in 
several diverse areas including signal processing, image 
processing, communication, robotics and graphics apart from 
general scientific and technical computations have been 
explored. Latency of computation, however, continues to be 
the major drawback of the CORDIC algorithm, since we do 
not have efficient algorithms for its parallel implementation. 
But, CORDIC on the other hand is inherently suitable for 
pipelined designs, due to its iterative behavior, and small cycle 
time compared with the conventional arithmetic. For high-
throughput applications, efficient pipelined-architectures with 
multiple-CORDIC units could be developed to take the 
advantage of pipelineability of CORDIC, because the digital 
hardware is getting cheaper along with the progressive device-
scaling. Research on fast implementation of shift-
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accumulation operation, exploration of new number systems 
for CORDIC, optimization of CORDIC for constant rotation 
have scope for further reduction of its latency. Another way to 
use CORDIC efficiently, is to transform the computational 
algorithm into independent segments, and to implement the 
individual segments by different CORDIC processors. With 
enhancement of its throughput and reduction of latency, it is 
expected that CORDIC would be useful for many high-speed 
and real-time applications. The area-delay-accuracy trade-off 
for different advanced algorithms may be investigated in detail 
and compared with in future work. 
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