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Abstract- An exact solution to the deflection of unsymmetrical 
laminated plates is developed for a variety of boundary 
conditions. The procedure, based on a generalized Levy type 
solution considered in conjunction with the state space 
concept, is applicable to rectangular plates with two opposite 
edges simply supported and the remaining ones subjected to a 
combination of clamped, simply supported boundary 
conditions. The solutions are obtained for the first order shear 
deformation theory, Numerical results are presented for 
rectangular plates with different edge conditions, aspect 
ratios, and loadings. 
 

I. INTRODUCTION 
 
 Laminated composite plates are becoming 
increasingly used in the aeronautical and aerospace industry as 
well as in other fields of modern technology. The accurate 
knowledge of deflection is an essential element in their design. 
In addition to the need for improved methods of analysis, there 
is an interest in the development of consistent shear 
deformation theories for these structures. A special case of 
unsymmetric laminates those which have an even number of 
orthotropic layers with principal material directions alternating 

at 00 to 090  to the laminate axes. Such laminates are called 
unsymmetric cross ply laminates. 
 In the this paper we present the levy type solution for 
deflection of unsymmetric cross ply laminates the levy type 
solution involves choosing a solution form that satisfies the 
simply supported boundary conditions on two parallel edges 
of a rectangular laminate, and then the partial differential 
equations of equilibrium are reduced to ordinary differential 
equations are then solved using the  state-space approach, 
cross-ply plate strips under sinusoidal loading. One of the 
goals of this paper is the employment of a powerful analytical 
technique based on the state space concept allowing one to 
obtain exact Levy type solutions associated with the case of 
unsymmetric angle-ply and cross-ply laminated plates. This 
technique was used in a series of papers. Khdeir (1988,1989) 
developed an exact approach to the elastic state of stress and 

the free vibration of shear deformable unsymmetric angle-ply 
and cross-ply laminated plates, respectively. In the first-order 
shear deformation theory (FSDT), a constant state of 
transverse shear stresses is accounted for, an often the 
transverse normal stresses is neglected. The FSDT allow the 
computation of interlaminar shear stresses through constitutive 
which is quite simpler then deriving them though equilibrium 
equations. Comparisons with available exact solutions 
(obtained for simply supported edge conditions) are made, and 
appropriate conclusions concerning the various effects are 
formulated. 
 

II. GOVERNING EQUATIONS 
 

The displacement model for unsymmetric laminate is given as 
follows:- 
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   Where ( 0 0 0, ,u v w ) are the displacement 
components in the direction of  p ,q ,r respectively of a point 
on the mid-plane (i.e., r=0)   
 
Equations of equilibrium 
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For the static case, the governing equations 

appropriate for the displacement field  and unsymmetric cross-
ply laminate construction are given by 
 

   [ ]C F   
 

where the coefficients m nC   for the first-order theory (FSDT),  
are listed below. 
 

[ ]C   stress resultants 
    deflections 
 F   loadings 

 

Where    0 0 0, , , ,T
p qu v w     
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And the coefficients are defined as m n n mC C   
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III. THE LEVY-TYPE SOLUTION 
 

A generalized Levy-type solution, in conjunction 
with the state space concept is used to analyze the bending 
problem of unsymmetric cross-ply laminated rectangular 
plates. The Levy type solution can be developed for 
rectangular laminates with the following boundary conditions: 
The edges q= 0, b are simply supported, while the remaining 
ones (p = ±a/2) may have arbitrary combinations of  clamped, 

and simply supported edge conditions (see Fig. 1). The 
generalized displacements may be expressed as products of 
undetermined functions and known trigonometric functions so 
as to identically satisfy the simply supported boundary 
conditions at q = 0, b: 
 

 
 

For this case one may be able to develop the Levy-
type solutions for the unsymmetric cross-ply lamination 
scheme (see [18]). A uniformly distribution of the transverse 
load is considered, which for the present case takes the form 
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The displacement field is represented as 
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Where  
m

b


 
,m=1for all numerical problems 

 the displacement fields are substituting in stress resultants 
then we obtained second order partial differential equations 
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By solving the equilibrium equations we obtained the 
following co-efficients. 
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[A],[B],[D] and [E] matrix for unsymmetric cross-ply 

laminates as given below 
 

1 1 1 2 1 1 1 1 2 2

1 2 2 2 1 2 1 2 2 1

6 6 4 4 1

1 1 1 1 2

1 1 1 1 2

1 1 1 2 1 1 3 1 2 3

1 2 2 2 1 2 3 2 2 3

6 6 4 4 3

4 4

5 5

0 0
0 0

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0 0 0

0 0
0 0

0 0 0 0

0
0

A A Q H Q H
A A Q H Q H

A Q H

B Q H
B Q H

D D Q H Q H
D D Q H Q H

D Q H

A
K

A

   
      
      

   
        
      

   
      
      

6 6 1

5 5 1

0
0

Q H
K

Q H
   

   
     

 
The second order differential equations are converted into 
single order 
 

. .

1 2 3 4 5
. . .

6 7 8 9 1 0

, , , ,

, , , ,

m mm m m

mm m m m

S U S U S V S V S W

S W S P S P S Q S Q

    

      
 
using state space approach the equation may be converted to 
the form  

.
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Where matrix T  is the 10*10 matrix is given as fallows 
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l  is load vector defined as fallows 
 

   5 50 , 0 , 0 , 0 , 0 , , 0 , 0 , 0 , 0 T
ml q K A   

0

2( ) ( , ) s in
b

m
m qq p q p q d q

b b


 
 

 

The solution of S  is  2

p
T p T

a

S e K e l d 



    
  


     

  
Finally the deflection can determined by the using 

boundary condition on edges 2
ap  

 
 
 For simply supported and clamped the boundary 

conditions as given below the boundary conditions at the 

edges are 2
ap  
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IV. NUMERICAL EXAMPLE 
 

Numerical results for various composite plates are 
presented with different cross-ply lamination schemes under 
various boundary conditions on two opposite sides while the 
edges q= (0, b) are simply supported. 
 

 It was assumed that the thickness and the material 
for all the laminate are the same, having the following 
characteristics:- 
 

1 2 12 13 2 23 2 1225 , 0.5 , 0.2 , 0.25E E G G E G E v      
 

The shear correction co-efficient for the first-order 
theory is taken to be K=5/6. The notations CC, for example, 
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refers to the boundary conditions used on the edges  

2
ap    ,while the order two edges (i.e., q=0,b) are simply 

supported. 
  

Figure 2 contain plots of deflection versus side-to-
side thickness ratio b/h of two layers and ten layers 
unsymmetric (0/90/……)even cross-ply laminates (a=b/2) 
with various boundary conditions. the material properties used 
are as above .figure 3 contain plot of deflection versus 

1 2/E E  for the same load b/h=10 and a=b/2. 
 

The following table contains nondimensionalized 

center deflection ( w   ) of unsymmetric cross-ply plates with 
various boundary conditions. 
 

 
  

 
Figure 2: Nondimensionalized center transverse deflection 

( w ) versus side-to-side thickness ratio b/h for unsymmetric 
cross-ply laminates. 

 
V. SUMMARY 

 
Analytical solutions for deflections of unsymmetric 

rectangular cross-ply laminates with various boundary 
conditions are presented based on the first-order shear 

deformation laminate theory. The levy solutions with the 
states space approach were developed for unsymmetric 
rectangular cross-ply laminates when two opposite edges are 
simply supported and other two edges having a variety of 
boundary conditions of choice.   
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