# Spam and Spammer Classification for Tweets Using Sentiment, Similarity Measure and Classifier Computation

Bindu P S<sup>1</sup>, Rahul Shekar C<sup>2</sup>, Puneeth Vishnukeerthy K<sup>3</sup>, Savitha Vasanthan, Oshin Sharma<sup>4</sup>, Anusha Sreedhar<sup>5</sup>

<sup>1, 2, 3, 4, 5</sup> Dept of Computer Science and Engineering

<sup>1, 2, 3, 4, 5</sup> Jain Global Campus, Karnataka, India

Abstract- In today's world the numbers of ecommerce companies are increasing day by day and also huge number of products is coming into the market. When customers want to buy the products they generally just see a rating of the products and then purchase them. Later they come to know that products are not good. The rating is obtained from the reviews given by the users. There is no sentiment analysis performed on those reviews and if they are performed then the reviews which are not genuine are also taken into consideration. Twitter is a social media platform in which the number of users is increasing in millions which spans across different domains of users like college students, companies, politics, government programmers, film stars. In this paper first the tweets are collected for a set of hash tags related to various products. Once the tweets are collected the sentiment analysis is performed on those tweets as well as on products, sequence of data mining processes namely data cleaning, tokenization, frequency computation, feature vector computation are done. After that there is N\*N comparison made in order to find the similarity between tweets. The rate variation of the sentiments and early time frame are measured for each user which are one of the important factors for spam user and tweet classification. The classifier will take into consideration weights and the factors namely Number Of Followers, Number of friends, Number of retweets, similarity measure, positive Rate Deviation, Negative Rate Deviation, Neutral Rate Deviation, Early Time Frame Ratio

*Keywords*- Tokenization, Frequency computation, Feature Vector Computation, Sentiment Analysis, Data Cleaning, Similarity Measure

## I. INTRODUCTION

Text mining is an approach which is responsible to find out short meaningful conclusions mining the data meaning the data it has it has lot of concepts like data processing data processing voice removal stop words removal tokenization frequency competition frequency computation this in this regard in this regard there is lot of work done in the literature. In this work first the list of hash tags are submitted for each of the products. Data Collection is performed using the twitter API. Once the tweets are Collected then set of trained positive and negative keywords are taken and then sentiment analysis is performed on tweets and also on products. The Tweets are taken and then set of words known as stop words are removed. Once each of the tweets has been cleaned then they are converted into set of words known as tokens. After that the repeated words per each tweet are combined and weight is assigned known as frequency so that the redundancy is removed. The Inverse Document Frequency and Feature Vector is computed for each of the tokens across all collected tweets. After that each tweet is compared against another tweet to measure similarity by making use of feature vector, intersection sum, union sum and then similarity measure. If the similarity measure of the tweet exceeds a certain threshold then the tweets are grouped as similar otherwise they are not grouped. For each of the tweet users the rate deviation is computed along with early time frame. Finally the classification measure will be based on tweet/user characteristics, similarity measure, rate deviations and time frame. Once we get the classification measure the tweets and user classification is performed.

#### **II. BACKGROUND**

As per the article [1] there are lot of fake reviews given for products and also The companies hire freelancers from places like the Philippines, Bangladesh, and Eastern Europe to write fake reviews for \$1 to \$10 each, and The Attorney General's Office slammed them with combined fines of more than \$350,000.But this big reveal just scratched the surface.

 Consumers' purchase decisions [2] are increasingly influenced by user-generated online reviews. Accordingly, there has been growing concern about the potential for posting deceptive opinion spam---fictitious reviews that have been deliberately written to sound authentic, to deceive the reader. But while this practice has received considerable public attention and concern, relatively little is known about the actual prevalence, or rate, of deception in online review communities, and less still about the factors that influence.

 Websites containing consumer reviews [3] are becoming targets of opinion spam fictitious opinions that have been deliberately written to sound authentic. Integrating work from psychology and computational linguistics

Spam campaigns spotted [4] in popular product review websites (e.g., amazon.com) have attracted mounting attention from both industry and academia, where a group of online posters are hired to collaboratively craft deceptive reviews for some target products. The goal is to manipulate perceived reputations of the targets for their best interests. Many efforts have been made to detect such colluders by extracting point wise features from individual reviewers/reviewer-groups, however, pairwise features which can potentially capture the underlying correlations among colluders and spammers and tweet users.

## **III. PROPOSED SYSTEM MODULES**



Fig1 shows the various modules used in the classification of tweets as spam and users as spam. In this section each of the modules are described in depth.

#### **III.A Hashtag Collection**

This module is responsible for taking input the hash tags and then save the hash tags in the format of (HashTagID, Hashtag and ProductID). HashTagID is an auto generated ID for the hash tag, Hash Tag is the actually hash tag in twitter on which the tweet has been performed. Product ID is the unique ID for the product to which the hashtag belongs.

## **III.B** Tweet Retrieval

## ISSN [ONLINE]: 2395-1052

Twitter stores the reviews of the Products in the form of tweets which are associated with Hash Tags. This Module is responsible for collecting tweets from Twitter by Passing the Hash Tag, APPID and Secret Key. APPID and Secret Key are unique generated IDs by twitter when application is created. Hash tag is a concept under which the users will be able to Tweet. First a HTTP Request is sent from our application to the twitter application by passing the APPID, Secret Key, Oauth Key and OAuth Token. Once the authentication is successful then the list of hash tags are obtained. For each hash tag the tweets are collected and stored in the tweet matrix format which will contain the following

| Parameter Name | Parameter Description                |
|----------------|--------------------------------------|
| REVIEWID       | Unique ID for Tweet                  |
| REVIEWDETAILS  | The tweet description which the user |
|                | has tweeted                          |

| Parameter       | Parameter Description               |  |  |
|-----------------|-------------------------------------|--|--|
| Name            |                                     |  |  |
| LOOKUPID        | Unique Id for the Product for       |  |  |
|                 | which tweet has been performed      |  |  |
| HASHTAG         | Hashtag on which tweet is           |  |  |
|                 | performed                           |  |  |
| TWEETSCREENNAME | Name of the screen                  |  |  |
| USERID          | User who has performed tweet        |  |  |
| LANGUAGE        | This is the language code for the   |  |  |
|                 | tweet, In this work it is always en |  |  |
| NOOFFOLLOWERS   | Number of Followers for tweet       |  |  |
| NOOFTWEETS      | The number of tweets performed      |  |  |
|                 | by the user                         |  |  |
| NOOFFRIENDS     | The number of friends for the user  |  |  |
| NOOFRETWEETS    | Number of retweets performed by     |  |  |
|                 | the user                            |  |  |

#### **III.C Polarity Computation per Tweet per Feature**

This module is responsible for computing the sentiments of each tweet per feature. The positive sentiments, negative sentiments and neutral sentiments are found out per feature type. The feature types can be battery, memory, screen, touch. The sentiment analyzer module is trained with a set of positive, negative and neutral sentiments. The polarity computation matrix can be defined as below

| Parameter Name | Parameter Description            |
|----------------|----------------------------------|
| REVIEWID       | Unique Id for the tweet          |
| POSITIVERATING | Positive Sentiment for tweet     |
| NEGATIVERATING | Negative Sentiment for tweet     |
| NEUTRALRATING  | Neutral Sentiment for tweet      |
| PRODUCTID      | Unique ID for the product        |
| FEATURETYPE    | Feature Type for which sentiment |
|                | has been computed. Ex- Battery,  |
|                | Memory, Camera etc               |

The algorithm used for computation of tweet wise sentiment is given in the Fig 2

## Sentiment Analysis Per Feature Per

Tweet Input: Set of tweets collected  $\{T1, T2, \dots, Tn\}$ Where.  $Ti = i^{th}$  tweet n = number of tweetsOutput: Tweet based sentiment matrix {*ST*1, *ST*2,...., *ST*fn} Where., fn = n \* ff = number of features $STi = i^{th}$  sentiment Each ST has the following PS : positive sentiment NS : negative sentiment NuS: Nuetral Sentiment T: tweet idft : feature type *P*: product Details 1) Count the number of tweets Nc

2) for 
$$k: 1 - - > Nc$$

- a) Obtain the  $k^{th}$  tweet
- b) Divide the review into a set of statements

c) if the sentences can be treated as  $S_f - --> \{s1, s2, ..., sm\}$   $si = i^{th}$  sentence  $m = number \ of \ sentences$ d) for j - --> 1:m1) Obtain the  $j^{th}$  sentence 2) Check whether the sentence sj has ft  $if \ sj \in ft$   $PS : Number \ of \ positive \ sentiments$   $NS : Number \ of \ negative \ sentiments$   $if \ PS = NS = 0 \parallel sj \notin ft$   $Nus : Neutral \ Sentiments \ exist$ 3) Repeat the above process for all sentences

$$PS_{Ti} = \sum_{j=1}^{m} PS_{j}$$
$$NS_{Ti} = \sum_{j=1}^{m} NS_{j}$$
$$NuS_{Ti} = \sum_{j=1}^{m} NuS_{j}$$

Where.

 $PS_{Ti} = positive sentiments for i<sup>th</sup> tweet$   $NS_{Ti} = negative sentiments for i<sup>th</sup> tweet$   $NuS_{Ti} = nuetral sentiments for i<sup>th</sup> review$  $PS_{i} = positive sentiment for j<sup>th</sup> sentence$ 

 $NS_{j}$  = negative sentiments for  $j^{th}$  sentence  $NuS_{i}$  = nuetral sentiments for  $j^{th}$  sentence

Fig2: Tweet Based Sentiments

 $NS_{j}$  = negative sentiments for  $j^{th}$  sentence  $NuS_{j}$  = nuetral sentiments for  $j^{th}$  sentence d) The sentiment set is a factor having the following  $ST_{i}$  = {PS, NS, NuS, P, FT, Ti}

m

#### Fig2: Tweet Based Sentiments

Fig2 shows the Tweet Based Sentiment computation algorithm details.

## **III.D** Polarity Computation per Product per Feature

This module is responsible for computing the polarity of each of the product per feature. For each of the product the reviews are found out and then the total polarity is computed based on summation of polarity across the reviews associated with the product.

The positive sentiment for the product is computed using the following

$$PS_{product,f_{j}} = \sum_{i=1}^{N_{proces}} PST_{i}$$
Where,  

$$N_{tweets} = Number of tweets belonging to a product$$

$$PST_{i} = Positive Sentiment for i^{th} tweet$$

$$f_{j} = j^{th} feature$$

$$0 \le f \le N_{f} - 1$$

$$N_{f} = Number of features$$

The negative sentiments for the product is computed using the following

$$NS_{product,f_{j}} = \sum_{i=1}^{N_{product}} NST_{i}$$

Where,

 $N_{tweets} = Number of tweets$  $NST_i = Negative Sentiment$  for the  $i^{th}$  tweet  $f_{j} = j^{th}$  feature  $0 \leq f \leq N_f - 1$  $N_{f} = Number of features$ 

The Neutral Sentiments are computed using the following equation

$$NP_{product,f_{j}} = \sum_{i=1}^{N_{tweets}} NPT_{i}$$
  
Where,  
$$NPT_{i} = Neutral Sentiments for i^{th} tweet$$
$$N_{tweets} = Number of tweets$$
$$f_{j} = j^{th} feature$$
$$0 \le j \le N_{f}$$
$$N_{f} = Number of features$$

#### **III.E Data Cleaning**

I

(

The Data Cleaning algorithm is responsible for removal of stop words. Each of website is cleaned by removing the stop words from description. Stop words are the set of words which do not have any specific meaning. The data mining forum has defined set of keywords which do not have any meaning like a, able, about, across, after, all, almost, also, am, among, an etc.

#### **III.F** Tokenization

Tokenization is a process of converting the clean data into a set of words known as tokens.

## **III.G Frequency Computation**

This is a process in which the frequency computation is performed. For each of the tweets the frequency is computed. Frequency is number of times a  $i^{th}$  token appears in  $j^{ih}$  tweet. The frequency computation can be done using algorithm defined in fig3.

Page | 980

ISSN [ONLINE]: 2395-1052

Frequency Computation Algorithm Input: set of tokens  $\{t1, t2, \dots, tn\}$ *Output* : {*w*1, *w*2,....*wm*}  $m \leq n$ m = number of words after freq computation n = number of words before freq computation Details : 1) measure the count of set of tokens  $N_{token}$ 2) find the unique set of tokens  $\{u1, u2, \dots, uk\}$ k < n if tokens repeat  $k \leq n$  if tokens are not repeated 3) measure the count of unique token ui in the set of {t1, t2,....,tn} call it as ci 4)Now a map is created with key as u and value as c *Each c will contain*{*tokenname,url, frequency*} Fig3: Frequency Computation Algorithm

## **III.H TF-IDF Computation**

The TF-IDF computation is performed by measuring the inverse document frequency which depends on frequency and number of tweets in which token is present.

The inverse document frequency is given by the formula

$$IDFT = \log(\frac{textFrequency}{NoOftweets})$$

The TF-IDF is defined as

$$v_i = tfi * idft_i$$

Where tf is the frequency of the i<sup>th</sup> word and the IDFT is the inverse document frequency of the i<sup>th</sup> word. The TF-IDF Computation is done using the algorithm used in fig4

Text Frequency - Inverse Document Frequency  $\{w1, w2, \dots, wn\}$ set of words which belong to frequency set each w has the following wid : unique id for word w f: frequency of word w tweetId : unique id for the tweet Output :  $\{o1, o2, \dots, ot\}$ o are set of words t total words *each*  $o \in \{ fv1, fv2, ..., fvn \}$ fv is a feature vector Details 1) Find the set of tweets  $\{t1, t2, t3, \dots, tn\}$ 2) for each tweet a) find the set of tokens  $\{t1, t2, \dots, tk\}$ b) measure the count of tokens  $N_{token}$ c) for  $k = 1: N_{token}$ 1. obtain the kth token tk 2. measure number of websites in which tk is present 3. measure the  $IDF = \log(N/f)$ 4. obtain feature vector with fv = f \* IDF5. form the value o which will have {tokenname , freq , n, IDF , fv, tweetid }

## Fig4: TF-IDF Algorithm

## **III.I Similarity Measure**

This module is responsible for measuring the similarity between tweets. It does a N\*N Comparison between tweets and group them if they exceed a certain threshold. The similarity measure algorithm can be described using the following steps

- 1. Consider that there are 2 tweets to be compared t1 and t2
- 2. Find the list of unique words in tweet t1
- 3. Find the list of words in the tweet t2
- 4. Find the intersection word set between t1 and t2
- 5. Find the union word set between t1 and t2
- 6. For each of the word in the intersection set
  - a. Obtain the word
  - b. Find the TF-IDF for word in tweet t1
  - c. Find the TF-IDF for word in tweet t2
  - d. If  $TF-IDF(t1) \ge TF-IDF(t2)$  then

Intersectionsum= intersectionsum+

#### TF-IDF(t1)

Else

Intersectionsum= intersectionsum+

TF-IDF(t2)

- 7. For each of the word in the union set
  - a. Obtain the word
  - b. Find the TF-IDF for word in tweet t1
  - c. Find the TF-IDF for word in tweet t2

www.ijsart.com

Else

unionsum = unionsum +

TF-IDF(t2)

e. Compute the similarity measure using the following equation

 $similarity measure = \frac{\text{int} er \sec tionsum}{unionsum}$ 

## **III.J User Based Early Time Frame Ratio**

User Based Early Time Frame Ratio provides the measure of how frequently the user performs the tweet. User Based is computed for all the users who have tweeted for the given hashtag.The user based early time frame ratio is given by the following equation

user behaveweight=
$$(1-(L-F)/T)*(L-F)$$
  
Where  
 $L = Last Tweet performed by user$   
 $F = First Tweet performed by user$   
 $T = diffrence between first and last tweet performed
by user$ 

## **III.K Rate Deviation**

The rate deviation will provide the variance of the sentiments performed by the user for the given product. If the variance is large then the tweet is closer to spam. The rate deviation computed for sentiments can be defined as below

$$RateDevPidsive=positive-\frac{avgPositiv}{Ntweets}$$

Where

positive positive entiments tal for user and production avgPosite Average positive entiments Ntweets Number of tweets

In a similar fashion the rate deviation would be computed for negative and neutral sentiments per product and per user.

## **III.L Classification of Tweets and Users**

First the various user characteristics, similarity measure, early time frame and rate deviation are normalized with respect to total value across tweets/users. After that the total measure is computed for each of the tweets using the following equation

$$TM = w1 * N_{followers} + w2 * N_{friends} + w3 * N_{retweets}$$
$$+ w4 * P_{spam} + w4 * N_{tweets} + w5 * SM_{tweet}$$
$$+ w6 * PRD_{tweet} + w7 * NRD_{tweet}$$
$$+ w7 * NuRD_{tweet} + w8 * ETF_{user}$$

Where,

 $w_i = adjustable weights for spam identification$   $N_{followers} = Number of followers$   $N_{friends} = Number of friends$   $N_{retweets} = Number of retweets$   $SM_{tweet} = similarity measure for tweet$   $PRD_{tweet} = positive rate deviation of user$  who tweeted for specific product  $NRD_{tweet} = negative rate deviation of user$  who tweeted for specific product  $NuRD_{tweet} = neutral rate deviation of user$  who tweeted for specific product Surveet = neutral rate deviation of user who tweeted for specific product  $NuRD_{tweet} = neutral rate deviation of user$  who tweeted for specific product $ETF_{tweet} = early time frame for a tweet$ 

The threshold is found out. Once the total measure exceeds the threshold it is treated as spam otherwise it is treated as non-spam.

## IV. EXPERIMENT RESULTS AND ANALYSIS

A complete web application has been created using Spring Framework along with ExtJS and Angular JS framework in order to execute the various stages for Spam Identification. This section describes the output of each section

#### Hash tag Submission

| <br>isii ray niput  |        |  |
|---------------------|--------|--|
| Enter Hash Tag Deta | ails:: |  |
| nokia               |        |  |
| Product Name:       |        |  |
| NOKIALUMINA         | ~      |  |

www.ijsart.com

#### Fig5: Hashtag Submission Input

Asjhdhash Fig 5 shows the Hashtag Submission Screen in which the user will be able to select the product and then provide a hashtag in twitter which corresponds to the product.

## View Hashtags

| HashTags    |   |                 | * |
|-------------|---|-----------------|---|
| HASH TAG ID | - | HASHTAG         |   |
| 1           |   | nokia           |   |
| 3           |   | SamsungGalaxyS5 |   |
| 4           |   | iphone          |   |
| 5           |   | iphone8         |   |
| 6           |   | nokia12         |   |
| 7           |   | vivo            |   |
|             |   |                 |   |

Fig6: View Hashtags

Fig5 shows the hash tags which have been submitted in the application. Hashtag ID is the unique ID generated for the hashtag and Hashtag is the hash tag used in twitter application for performing the tweet.

#### Data collection using Twitter

| Tweet I | Tweet Details    | User ID        | Screen Name     | Language |
|---------|------------------|----------------|-----------------|----------|
| 316     | RT @tcarriermu   | Brianna Joi ?? | brijoi_99       | en       |
| 317     | @unlock_by_im    | hitibiti       | hitibiti 1      | en       |
| 318     | I found a new o  | Ang ??         | Angiee_Avaca    | en       |
| 319     | Phone screensid  | Koi            | baezaariat      | en       |
| 320     | Suicide Squad T  | ICase Mania    | kawungdesig     | en       |
| 321     | Nothing like Tip | Jaclyn Martin  | MyMichelle407   | en       |
| 322     | Helloo???? #sa   | Nunik Abiman   | NunikAb1man     | en       |
| 323     | RT @peersecuri   | Telecom Asso   | WhatsTAdoing    | en       |
| 324     | Deploying Micro  | Colin Durrant  | colinsit        | en       |
| 325     | RT @velvetwink   | tabs           | sadandb0ugie    | en       |
| 326     | For those with   | Alex Knight    | ZeroDistraction | en       |

Fig 7: Data Collection part1 Grid

Fig 7 shows the data collected from twitter for the set of hashtag. TweetID is the unique ID for the tweet. Tweet Details is the details of the statements which the user has tweeted.User ID is the unique User ID for tweet. Screen Name is the name of the screen on which the tweet has been performed. Language is the unique language code here the language code is en because only tweets related to english language are retrived.

| Number of Follov | Number of Friend | User Id of Twitter | Number of Retwo | Number of Twee |
|------------------|------------------|--------------------|-----------------|----------------|
| 1273             | 1326             | 3387212892         | 146             | 20213          |
| 61               | 45               | 840166370          | 0               | 192            |
| 1463             | 721              | 180582612          | 0               | 62666          |
| 3925             | 516              | 128672289          | 0               | 70682          |
| 209              | 1370             | 8621151607349166   | 0               | 1941           |
| 442              | 599              | 3290367761         | 0               | 9044           |
| 33               | 93               | 2256322704         | 0               | 94             |
| 4565             | 2807             | 44405289           | 3               | 7359           |
| 12792            | 13610            | 76624704           | 0               | 122860         |
| 141              | 183              | 2483137189         | 4383            | 9219           |
| 887              | 384              | 12971712           | 0               | 26297          |

Fig 8: Data Collection using Twitter Part2

Fig 8 shows the remaining columns of the data collection. The first column indicates the number of followers for tweet, The Second Column indicates Number of friends, User Id of Twitter is the unique ID for user in twitter application. Number of Retweets perfomed on the tweet as well as Number of Tweets have been given in the above matrix.

## **Data Cleaning Results**

| Tweet ID | Tweet Details                                                                             |  |  |
|----------|-------------------------------------------------------------------------------------------|--|--|
| 316      | rt tcarriermusic holding ladies kehlani sza jorja smith cardi b ella mai h e r jessie rey |  |  |
| 317      | unlock imei nokia alive score touch good camera bad shopper memory good camera            |  |  |
| 318      | obsession princess nokia touch absolutely awesome sound good clear score memory           |  |  |
| 319      | phone screenside rakho k unlock imei nokia alive score touch good camera bad              |  |  |
| 320      | suicide squad theatrical poster samsung galaxy sis since cases covers movie super-        |  |  |
| 321      | tiptoeing tulips flowers tulips photography samsunggalaxys spring https t tsr ygau ca     |  |  |
| 322      | helloo samsung samsunggalaxys https t qtg cp vhw touch absolutely awesome shop            |  |  |
| 323      | rt peersecurity columbine neveragain countdown til schoolshooting peersafe free saf       |  |  |
| 324      | deploying microsoft exchange iphone ipad https t alwmtbbpzr sound adjustable sour         |  |  |
| 325      | rt velvetwink dont smoke weed youtube kids mom bought year ipad iphone macbo t            |  |  |
| 326      | annle airnods issue weird stereo imaning listening nodcas https://www.camera              |  |  |
| 14 4     | Page 1 of 1 b b at                                                                        |  |  |

Fig9: Data Cleaning Results

Fig shows the subpart of the data cleaning outout where the first column is the tweet id and the second column is the tweet details but in a clean format which will not contain even a single stop word

#### **Tokenization Output**

| Token ID | Tweet ID | Token Name    |
|----------|----------|---------------|
| 1571     | 316      | rt            |
| 1572     | 316      | tcarriermusic |
| 1573     | 316      | holding       |
| 1574     | 316      | ladies        |
| 1575     | 316      | kehlani       |
| 1576     | 316      | sza           |
| 1577     | 316      | jorja         |
| 1578     | 316      | smith         |
| 1579     | 316      | cardi         |
| 1580     | 316      | b             |
| 1581     | 316      | ella          |
| 1582     | 316      | mai           |
| 1583     | 316      | h             |
| 1584     | 316      | e             |
| 1585     | 316      | r             |
| .FAC     |          |               |

Fig 10: Tokenization output

Fig 10 shows the output for tokenization. As shown in the fig Token ID is the auto generated unique Id for each row of the tokenization matrix. Tweet ID is the unique ID for the tweet. Token Name is the name of the token.

#### **Frequency Computation**

| Frequency Info | rmation  |                |     |
|----------------|----------|----------------|-----|
| Freq ID        | Tweet ID | Token Name     | Fre |
| 1412           | 320      | camera         | 1   |
| 1413           | 320      | bad            | 1   |
| 1414           | 320      | shopper        | 1   |
| 1415           | 320      | display        | 1   |
| 1416           | 320      | awesome        | 1   |
| 1417           | 320      | earn           | 2   |
| 1418           | 320      | extra          | 1   |
| 1419           | 320      | cash           | 1   |
| 1420           | 320      | score          | 1   |
| 1421           | 321      | tiptoeing      | 1   |
| 1422           | 321      | tulips         | 2   |
| 1423           | 321      | flowers        | 1   |
| 1424           | 321      | photography    | 1   |
| 1425           | 321      | samsunggalaxys | 1   |
| 1426           | 321      | spring         | 1   |
|                |          | Lu             | *   |

Fig 11: Frequency Computation

Fig 11 shows the output of frequency computation. As shown in the frequency computation matrix the first column indicates FreqID which is the unique ID for each row of frequency computation. Tweet ID is the unique ID for the tweet. Token Name is the word which is present in the tweet and Frequency is number of time word is repeated in the tweet. For example display is repeated 1 in the tweet number 230 where as earn is present twice in the tweet number 320.

## ISSN [ONLINE]: 2395-1052

## **Feature Vector Computation**

| Tweet IC | Token Name | Freq | No of Tweets | IDFT             | Feature Vector |
|----------|------------|------|--------------|------------------|----------------|
| 318      | score      | 1    | 1            | 0                | 1              |
| 318      | memory     | 2    | 1            | 6.93147180559945 | 13.86294361119 |
| 318      | capacity   | 1    | 1            | 0                | 1              |
| 318      | nice       | 1    | 1            | 0                | 1              |
| 318      | camera     | 1    | 1            | 0                | 1              |
| 318      | bad        | 1    | 1            | 0                | 1              |
| 319      | phone      | 1    | 1            | 0                | 1              |
| 319      | screenside | 1    | 1            | 0                | 1              |
| 319      | rakho      | 1    | 1            | 0                | 1              |
| 319      | ki         | 1    | 1            | 0                | 1              |
| 319      | awaaz      | 1    | 1            | 0                | 1              |
| 319      | nhe        | 1    | 1            | 0                | 1              |
| 319      | aati       | 1    | 1            | 0                | 1              |
| 319      | missed     | 1    | 1            | 0                | 1              |

Fig 12: Feature Vector Computation

Fig 12 shows the feature vector computation in which the first column indicates the tweet id which is the unique ID for tweet. The second column is the token name, the third column is the frequency of the token , Number of tweets are number of tweets in which word is present, IDFT is the inverse document frequency for word and Feature Vector is TF-IDF for the word in the tweet.

#### **Similarity Measure**

Fig 13 shows the similarity measure. As shown in the fig there is Main Tweet ID is the tweet which is taken under consideration, Compared Tweet ID is the tweet with which the main tweet id is compared. Union Sum and Intersection Sum for each similarity measure are also shown.

| Main Tweet ID | Compared Tweet ID | Union Sum        | Intersection Sum  |
|---------------|-------------------|------------------|-------------------|
| 316           | 316               | 0                | 0                 |
| 316           | 317               | 6.27627029936053 | 1.15721450192176  |
| 316           | 318               | 6.8038526048155  | 1.25951335249648  |
| 316           | 319               | 4.10175379350269 | 1.14503059387579  |
| 316           | 320               | 5.6411701495491  | 0.177339901477833 |
| 316           | 321               | 5.51269019203228 | 1.62845498172277  |
| 316           | 322               | 6.81987616972626 | 0.602553611114138 |
| 316           | 323               | 6.70567742306084 | 2.52809372606878  |
| 316           | 324               | 5.92693109872883 | 1.17503059387579  |
| 316           | 325               | 5.57165153333017 | 1.61446896773676  |
| 316           | 326               | 4.96249369559847 | 1.59397222310208  |
| 316           | 327               | 5.96362932078432 | 0.657630239466629 |
| 317           | 317               | 0                | 0                 |
| 317           | 316               | 6.27627029936053 | 1.15721450192176  |
| 317           | 318               | 7.47277432736255 | 1.58857863426658  |

Fig 13: Similarity Measure Part1

| Similarity Measure | Group ID | Similarity |
|--------------------|----------|------------|
| 0                  | 1        | true       |
| 0.184379328283498  | 1        | true       |
| 0.185117671656356  | 1        | true       |
| 0.27915634421782   | 1        | true       |
| 0.0314367226615222 | 1        | true       |
| 0.295401142635667  | 1        | true       |
| 0.0883525735832127 | 1        | true       |
| 0.377007954091954  | 1        | true       |
| 0.198252784502219  | 1        | true       |
| 0.289764885344829  | 1        | true       |
| 0.321203878710389  | 1        | true       |
| 0.110273493554448  | 1        | true       |
| 0                  | 2        | true       |
| 0.184379328283498  | 2        | true       |
| 0.212582176936587  | 2        | true       |

Fig 14: Similarity Measure Part2

Fig 14 shows the similarity measure parameters in which each of the tweet similarity measure is shown along with group id to which the tweet belongs and similarity status will be true if the tweets are similar otherwise it will be false.

## **Tweet Based Sentiments Measure**

Tweet based sentiments measure contains the tweet id, positive, negative, nuetral sentiment along with feature type for each of the sentiments. Fig 15 shows the sentiment analysis for each tweet

| Review ID | Product Name   | Positive Rating | Negative Rating | Neutral Rating | Feature Type |
|-----------|----------------|-----------------|-----------------|----------------|--------------|
| 316       | NOKIALUMINA    | 0               | 0               | 1              | BATTERY      |
| 316       | NOKIALUMINA    | 1               | 1               | 0              | MEMORY       |
| 316       | NOKIALUMINA    | 4               | 0               | 0              | тоисн        |
| 316       | NOKIALUMINA    | 0               | 0               | 1              | SCREEN       |
| 316       | NOKIALUMINA    | 1               | 1               | 0              | CAMERA       |
| 317       | NOKIALUMINA    | 0               | 0               | 1              | BATTERY      |
| 317       | NOKIALUMINA    | 1               | 0               | 0              | MEMORY       |
| 317       | NOKIALUMINA    | 2               | 0               | 0              | TOUCH        |
| 317       | NOKIALUMINA    | 0               | 0               | 1              | SCREEN       |
| 317       | NOKIALUMINA    | 0               | 2               | 0              | CAMERA       |
| 318       | NOKIALUMINA    | 0               | 0               | 1              | BATTERY      |
| 318       | NOKIALUMINA    | 2               | 0               | 0              | MEMORY       |
| 318       | NOKIALUMINA    | 4               | 0               | 0              | TOUCH        |
| 318       | NOKIALUMINA    | 0               | 0               | 1              | SCREEN       |
| 318       | NOKIALUMINA    | 0               | 1               | 0              | CAMERA       |
| 319       | SAMSUNGGALAXY1 | 0               | 0               | 1              | BATTERY      |
| 319       | SAMSUNGGALAXY1 | 0               | 1               | 0              | MEMORY       |
| 319       | SAMSUNGGALAXY1 | 5               | 0               | 0              | TOUCH        |
| 319       | SAMSUNGGALAXY1 | 0               | 0               | 1              | SCREEN       |
| 319       | SAMSUNGGALAXY1 | 1               | 0               | 0              | CAMERA       |

Fig 15: Tweet Based Sentiments

## **Product Based Sentiments**

| Product Name   | Positive Rating | Negative Ratin | Neutral Rating | Feature Typ |
|----------------|-----------------|----------------|----------------|-------------|
| NOKIALUMINA    | 0               | 0              | 3              | BATTERY     |
| NOKIALUMINA    | 4               | 1              | 0              | MEMORY      |
| NOKIALUMINA    | 10              | 0              | 0              | TOUCH       |
| NOKIALUMINA    | 0               | 0              | 3              | SCREEN      |
| NOKIALUMINA    | 1               | 4              | 0              | CAMERA      |
| SAMSUNGGALAXY1 | 0               | 0              | 4              | BATTERY     |
| SAMSUNGGALAXY1 | 2               | 2              | 1              | MEMORY      |
| SAMSUNGGALAXY1 | 13              | 0              | 1              | TOUCH       |
| SAMSUNGGALAXY1 | 0               | 0              | 4              | SCREEN      |
| SAMSUNGGALAXY1 | 2               | 1              | 1              | CAMERA      |
| IPHONE6        | 0               | 0              | 4              | BATTERY     |

Fig16: Product Based Sentiments

Fig 16 shows the product based sentiments. As shown in the fig the first column is the product name, the second column is the total positive sentiments across all tweets , third column is the total negative sentiments across all tweets, neutral rating is the total neutral sentiments across all the tweets and finally feature type for which sentiments have been computed.

#### **Sentiments Graph**

| ProductInfo |                                  |  |
|-------------|----------------------------------|--|
| Product ID  | <ul> <li>Product Name</li> </ul> |  |
| 1           | NOKIALUMINA                      |  |
| 2           | SAMSUNGGALAXY1                   |  |
| 3           | SAMSUNGGALAXY2                   |  |
| 4           | IPHONE6                          |  |
| 5           | IPHONE7                          |  |
| 6           | MICROMAX                         |  |
| 7           | ONE PLUS 5T                      |  |

Fig17: Product Information

Fig 17 shows the product information which indicates the product name and an associated product id.

| Find Graphs    |   |
|----------------|---|
| Feature Types: |   |
| тоисн          | ~ |

Fig18: Feature Type Selection

Fig 18 shows that the feature TOUCH has been selected



Fig 19: Sentiments Graph

Fig 19 shows the graph related to sentiments. As shown in the fig the yaxis indicates the product id and x axis represents the positive rating for each of the product. In a similar fashion negative and neutral graphs are obtained for each of the feature types.

## **Classification Measure**

| Classifier Information |                       |                   |                     |
|------------------------|-----------------------|-------------------|---------------------|
| Tweet ID               | Followers Probability | Tweet Probability | Friends Probability |
| 316                    | 0.045976596359        | 0.059426753652    | 0.061077844311      |
| 317                    | 0.002203120485        | 0.000564485069    | 0.002072777521      |
| 318                    | 0.052838774920        | 0.184239694472    | 0.033210502072      |
| 319                    | 0.141758162380        | 0.207806946106    | 0.023767848917      |
| 320                    | 0.007548396417        | 0.005706591245    | 0.063104560110      |
| 321                    | 0.015963594336        | 0.026589598774    | 0.027590971902      |
| 322                    | 0.001191852065        | 0.000276362481    | 0.004283740211      |
| 323                    | 0.164872869112        | 0.021635654288    | 0.129295255642      |
| 324                    | 0.462005200809        | 0.361211643680    | 0.626900046061      |
| 325                    | 0.005092458826        | 0.027104103394    | 0.008429295255      |
| 326                    | 0.032035538861        | 0.077313874278    | 0.017687701520      |
| 327                    | 0.068513435423        | 0.028124292556    | 0.002579456471      |

Fig 20: Classifier Part1

Fig 20 shows the part1 of classifier. As shown in the classifier tweet id is the unique id for the tweet. Followers Probability is the number of followers for the tweet to the number of followers across all the tweets. Tweet Probability is the number of tweets to the total number of tweets across all users. Friends Probability is the ratio of number of friends for the user who has performed tweet to the total number of friends across all tweets

| 0.051257761077 | 0.0982331257824843                                                                                                                                                                                 |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                                                                                                    |
| 0.169882865285 | 0.0696636039578272                                                                                                                                                                                 |
| 0.063254258351 | 0.086034406114221                                                                                                                                                                                  |
| 0.097473775163 | 0.087518332864903                                                                                                                                                                                  |
| 0.067567048693 | 0.0187688706237814                                                                                                                                                                                 |
| 0.058293140048 | 0.114126408633914                                                                                                                                                                                  |
| 0.078235530065 | 0.0761373329340819                                                                                                                                                                                 |
| 0.097473775163 | 0.109877260169983                                                                                                                                                                                  |
| 0.060672451887 | 0.0755503296806349                                                                                                                                                                                 |
| 0.042470716321 | 0.111230473120075                                                                                                                                                                                  |
| 0.162160916863 | 0.0817664978162157                                                                                                                                                                                 |
| 0.051257761077 | 0.0710933583018973                                                                                                                                                                                 |
|                | 0.169882865285<br>0.063254258351<br>0.097473775163<br>0.067567048693<br>0.058293140048<br>0.078235530065<br>0.097473775163<br>0.060672451887<br>0.042470716321<br>0.162160916863<br>0.051257761077 |

Fig 21: Classifier Part2

Fig 21 shows the Classifer Matrix another 3 columns. Retweet Probability is the number of retweets for the tweet to the total number of retweets. Spam Probability is the ratio of number of spam probability for tweet to the total spam probability across all the tweets. Similarity Measure is the measure of similarity for the tweet to other tweets to the total similarity addition across all the tweets.

| Rate Deviation Positive | Rate Deviation Negativ | Rate Deviation Nuetra   |
|-------------------------|------------------------|-------------------------|
| 0.055555555555555       | 0.0699708454810504     | 0.08333333333333333333  |
| 0.1388888888888892      | 0.0699708454810504     | 0.0833333333333333333   |
| 0.055555555555555       | 0.0816326530612243     | 0.08333333333333333333  |
| 0.046875                | 0.0634110787172019     | 0.09895833333333333     |
| 0.151041666666667       | 0.0634110787172019     | 0.078125                |
| 0.046875                | 0.0634110787172019     | 0.09895833333333333     |
| 0.0885416666666667      | 0.0721574344023332     | 0.0572916666666667      |
| 0.09375                 | 0.0481049562682221     | 0.08333333333333333333  |
| 0.11458333333333333     | 0.074344023323616      | 0.08333333333333333333  |
| 0.07291666666666667     | 0.074344023323616      | 0.08333333333333333333  |
| 0.0520833333333333333   | 0.074344023323616      | 0.083333333333333333333 |
| 0.0833333333333333333   | 0.244897959183676      | 0.0833333333333333333   |
|                         |                        |                         |

#### Fig 22: Classifier Part3

Fig 22 shows the outout for classification measure with additional columns,Rate Deviation Positive which is the rate deviation for positive for the tweet to the total rate deviation positive acorss all the tweets. In a same fashion for negative and neutral rate deviation.

| Early Time Frame Meas | Threshold    | Total Measure | Is Spam |
|-----------------------|--------------|---------------|---------|
| 0                     | 0.3997048984 | 0.2663025582  | false   |
| 0                     | 0.3997048984 | 0.4817936922  | true    |
| 0                     | 0.3997048984 | 0.2910672316  | false   |
| 0                     | 0.3997048984 | 0.3093595875  | false   |
| 0                     | 0.3997048984 | 0.3092206166  | false   |
| 0                     | 0.3997048984 | 0.2701649142  | false   |
| 0                     | 0.3997048984 | 0.3199093281  | false   |
| 0                     | 0.3997048984 | 0.3402088646  | false   |
| 0                     | 0.3997048984 | 0.3195547676  | false   |
| 0                     | 0.3997048984 | 0.2813071093  | false   |
| 0                     | 0.3997048984 | 0.4145935308  | true    |
| 0                     | 0.3997048984 | 0.4996311231  | true    |
|                       |              |               |         |

Fig 23: Classifier Part4

Fig 23 shows the classifier part4 with additional 4 columns. As shown in the fig early time frame is measured along with threshold and total measure for each tweet which is summation of all parameters with weight adjustabality. If the total measure exceeds the thereshold then the tweet is regarded as spam otherwise it is regarded as non spam.

## **Classifier Graph- TWEET**



Fig 24 shows the graph of amoung total tweets how many of them are spam and how many are non spam. As shown in the graph 3 tweets are treated as spam and remaining are treated as non spam.

#### **Classify User**

| Classifier Information |       |
|------------------------|-------|
| User ID                | Span  |
| hitibiti               | true  |
| Alex Knight            | true  |
| Koi                    | false |
| Nunik Abimanyu         | false |
| iPhone 8 & iPhone x    | true  |
| tabs                   | false |
| Jaclyn Martin          | false |
| Telecom Association    | false |
| ICase Mania            | false |
| Brianna Joi ??         | false |
| Ang ??                 | false |
| Colin Durrant          | false |



Fig 25 shows the user id and whether the user is a spammer or not. If user is a spammer it is marked as true otherwise it is marked as false.

#### V. CONCLUSION

In this paper a series of processes have been applied which will classify the tweet /user as a spam or non spam. Also the results are shown for each of the processes like data collection using twitter, data cleaning , tokenization, frequency computation, feature vector computation, tweet wise polarity computation, product wise polarity computation, rate deviation for positive, negative and nuetral polarity, early time frame measure and finally classification measure is done.

## REFERENCES

- J. Donfro, A whopping 20 % of yelp reviews are fake. http://www.businessinsider.com/20-percent-of-yelp-reviews-fake-2013-9.Accessed: 2015-07-30.
- [2] M. Ott, C. Cardie, and J. T. Hancock. Estimating the prevalence of deception in online review communities. In ACM WWW, 2012.
- [3] M. Ott, Y. Choi, C. Cardie, and J. T. Hancock. Finding deceptive opinion spam by any stretch of the imagination. In ACL, 2011.
- [4] Ch. Xu and J. Zhang. Combating product review spam campaigns via multiple heterogeneous pairwise features. In SIAM International Conference on Data Mining, 2014.
- [5] N. Jindal and B. Liu, Opinion spam and analysis, in Proceedings of WSDM, 2008.
- [6] Thorsten Joachims, Optimizing search engines using clickthrough data, in Proceedings of KDD, 2002.
- [7] F. Li, M. Huang, Y. Yang, and X. Zhu, Learning to identify review spam, in Proceedings of IJCAI, 2011.
- [8] E.P. Lim, V.A. Nguyen, N. Jindal, B. Liu, and H.W. Lauw, Detecting product review spammers using rating behaviors, in Proceedings of CIKM, 2010.