Factors Affecting Cost Overrun in Kerala Based Construction Project

Jomin P Jose¹, Annie Sonia Xavier²

¹Dept of Civil Engineerig ²Asst.Professor, Dept of Civil Engineerig ^{1,2}Toc H Institute Of Science & Technology

Abstract- Construction cost overrun in construction projects which leads to deliver projects within time and cost. In order to find mitigation measures of cost overruns, the first step is to identify the causes of these overruns. This paper assesses the causes leads to cost overruns in Kerala based construction industry. Framework consisting of two phases: a qualitative phase and a quantitative phase. In phase one factors leads to cost overrun are determined and ranked them based on the proyority. In second phase cause- effect relationship are determined using Bayesian Belief network. Factors were identified from the published literature and brainstorming sessions with experts. Two set of questionnaire was distributed all over Kerala in order to identify the cause and relationship between the factors. Data received from the questionnaires was analysed using SPSS and Bayesian lab. Findings from the study revealed that material price escalation, improper planning and scheduling, change in material specification and type, fluctuation in price of labour etc were the major factor leads to cost overruns in Kerala.

Keywords- Cost overrun, Bayesian belief network

I. INTRODUCTION

A cost overrun, also known as a cost increase, underrated or budget overrun, involves unexpected costs incurred in excess of budgeted amounts due to an underestimation of the actual cost during budgeting. Cost overrun reduces the profit leading to enormous losses, and leaving the project in great troubles. Construction cost is one of the peak criteria of success of a project throughout its lifecycle and is of high concern to those who are involved in the construction industry. Cost overrun is common in infrastructure, building, and technology projects all over world. Cost overrun should be distinguished from cost escalation, which is used to express an anticipated growth in a budgeted cost due to factors such as inflation. BayesiaLab is a graphical user interface, which provides an environment for machine learning, knowledge modelling, analysis, diagnosis, optimization and simulation. Bayesian networks have become practical for gaining deep insights into problem domains. BayesiaLab supports the research process from model generation to analysis, simulation, and optimization. The entire process is fully contained in a uniform environment, which provides flexibility in moving back and forth between different elements of the research task. Bayesian networks can serve as predictive model and also it can represent causal relationships.

II. METHODOLOGY

The study was conducted in Kerala based construction project. Framework consisting of two phases: a qualitative phase and a quantitative phase. In phase one factors leads to cost overrun are determined and ranked them based on the proyority. In second phase cause- effect relationship are determined using Bayesian Belief network.

Phase 1: Qualitative analysis

The purpose of this phase was to identify significant factors lead to cost overrun that are applicable to the context of construction projects in Kerala. A set of factors is identified from the published literature and brainstorming sessions with experts. The study comprises two types of questionnaires.

(1) Questionnaire 1 -for evaluating the influence level of factors on the construction Cost overrun.

(2) Questionnaire 2- for identifying cause-effect relationships among the factor identified.

A questionnaire (type 1) incorporating factors and then carefully designed to evaluate the relative importance of cost overrun. Factors are identified and ranked using SPSS

Phase 2: Quantitative analysis

The purposes of this phase are to determine the cause and- effect relationships among factors identified in the qualitative phase. Questionnaire 2 was to determine the cause-effect relationships among the factors

2.1 IDENTIFICATION OF FACTORS

The major factors causing delays on construction projects have been reviewed and critically appraised in many scientific journals and reports. Through literature study, factors affecting cost overrun are identified. Out of 60 factor identified from literature review ,it is prioritized to 20 factors through the opinion from experts through an online survey with the help of Google form.

2.2. QUESTIONNARE PREPARATION

A questionnaire (type 1) incorporating 20 factors was then carefully designed to evaluate the relative importance of cost overrun factors. To facilitate the answers, a five-point Likert- type scale (from 1 = "not prominent" to 5 = "always prominent") was adopted for rating by the respondents. Both online and Offline surveys were carried out. Online survey was carried out with the help of Google form. One hundred and twenty copies of the questionnaire(online and offline) were distributed to a random sample of construction personnel involved in construction projects in Kerala based construction projects. Responses were received from 100 professionals. To elicit the relative importance of factors, mean value method was used with the help of SPSS software.

Questionnaire 2 determine the cause-effect relationships among the 20 identified factors. For that questionnaire was designed in matrix form, in which the left column presented 20 identified factors as causes and the top row presented those factors as effects. Participants were asked to rate the factors using the following number values: 'very strong relationship' = 4, 'strong relationship' = 3, 'somewhat relationship' = 2, 'weak relationship' = 1, 'no relationship' = 0. Fifty five responses were received and the data received is converted to .csv (Comma separated value)format in order to generate relationship using BayesiaLab software.

2.3 QUESTIONNAIRE SURVEY

Questionnaire survey was conducted in Kerala based construction project by dividing into 3 region-Northern ,Central, Southern Kerala.

Table 2.1 List of places where survey was conducted	Table 2.1	List of places	where survey was	conducted
---	-----------	----------------	------------------	-----------

Northern kerala	Central	Southern kerala
	kerala	
Kasargod	Palakad	Thiruvanathapuram
Kannur	Thrissur	Kollam
Wayanad	Ernakulam	Alappuzha
Kozhikode	Idukki	Pathanamthitta
	Malappuram	
	Kottayam	

Two set of questionnaire was prepared and distributed all over Kerala. Both online and offline survey were conducted . One hundred and twenty copies of the questionnaire 1(online and offline) were distributed to a random sample of construction personal involved in construction projects in Kerala based construction projects. Responses were received from 100 professionals.

III. RESULT AND DISCUSSION

Factors are identified through literature study and prioritized using relative importance based on the opinion. Factors were identified and ranked based on the priority using SPSS. Through the second set of questionnaire cause effect relationship among the factors are identified using BayesiaLab software. As a result of survey more than seventy six percent of response was from central region and seventy percent of response from southern Kerala. About sixty five percent of response was from northern part of Kerala.

Survey was carried out with the help of online and offline survey. Out of one hundred twenty responses ,one hundred responses are responded from both online and offline survey.

3.1 FACTORS INFLUENCING COST OVERRUN

The collected data were statistically analysed and Table 3.1 shows the 20 most significant factors influencing cost overrun. The results revealed that the top main causes for cost overrun in construction of building projects includes material price escalation, improper planning and scheduling, change in material specification and type, fluctuation in price of labour etc. It is noticeable that contractors, site engineer and project manager rated the factor "material price escalation" as very important, whereas the engineering consultant rated 'improper planning and scheduling' as the important factor. Increased material cost is primarily due to increased transport charges such as when distance for haulage from the depot to a remote job site is longer than the haulage associated with other construction projects the estimator has previously worked on. Material transport costs fluctuated widely depending on distance. Bulk materials with low initial cost, such as sand and gravel, tend to be the most adversely affected by distance and difficult transport conditions. Ferry crossing or bridges with tolls increase the basic cost of materials. But an individual consumer building a house is more affected by retail prices, rather than a person buying a home from within large residential complexes.

IJSART - Volume 4 Issue 5 - MAY 2018

Table 3.1 –Ranked factors that leads to cost overrun based on the analysis

CAUSES	Representati	Rank
	on	
Unexpected inflation/Material	X2	1
price escalation		
Improper planning and	X3	2
scheduling		
Changes in material specification	X15	3
and type		
Fluctuation in prices of labour	X6	4
Design risk/Frequent design	X4	5
changes		
Inadequate monitoring and	X10	6
control		
Inaccurate estimates	X1	7
Inadequate labour/skill	X8	8
availability		
Delay in inspection and approval	X11	9
of completed works		
Insufficient numbers of	X13	10
equipment, tools and plant		
Poor contract documentation and	X5	11
management		
Delay in issuing EOT and TOC	X19	12
Work suspension because of	X12	13
litigation		
Bureaucracy and political	X14	14
interference in tendering method.		
Additional work/Direct change	X9	15
orders by client		
Long project maintenance period	X18	16
Omission and error in the bill of	X20	17
quantities		
Rework due to poor work/wrong	X17	18
materials by the contractor		
Project material monopoly by	X16	19
some suppliers		
Change in the scope of the	X7	20
project		

3.2 CAUSE-EFFECT RELATIONSHIP AMONG VARIABLES

The purposes of this phase are to determine the cause and- effect relationships among factors identified in the qualitative phase, to develop the BBN-based model, and to estimate the probability of delays in construction. Firstly, the study used questionnaire 2 to determine the cause-effect relationships among the 20 identified factors.. The questionnaire was designed in matrix form, in which the left column presented 20 identified factors as causes and the top row presented those factors as effects. Table 3.2 shows the cause – effect relationship generated using Bayesian lab software. Sample out of the analysis was represented in fig 3.1.

Table 3.2 Cause-effect relationship with mean values

Relationship N Mean x18-x2 55 3.964 x20-x8 55 3.945 x12-x17 55 3.945 x5-x16 55 3.935 x11-x6 55 3.927 x6-x16 55 3.926 x3-x2 55 3.926 x10-x2 55 3.908 x9-x3 55 3.907 x7-x4 55 3.906 x8-x2 55 3.905 x4-x8 55 3.853 x2-x10 55 3.799 x15-x16 55 3.709 X2-x3 55 3.691 X3-x6 55 3.691 X3-x16 55 3.091 x1-x15 55 3.091 x14-x3 55 3.091	Descriptive Statistics				
x20-x8 55 3.945 x12-x17 55 3.945 x5-x16 55 3.935 x11-x6 55 3.926 x3-x2 55 3.926 x3-x2 55 3.926 x10-x2 55 3.926 x10-x2 55 3.926 x10-x2 55 3.908 x9-x3 55 3.907 x16-x2 55 3.907 x16-x2 55 3.907 x16-x2 55 3.906 x8-x2 55 3.905 x4-x8 55 3.853 x2-x10 55 3.799 x15-x16 55 3.709 X2-x3 55 3.691 X3-x6 55 3.691 X1-x15 55 3.109 X14-x3 55 3.091	Relationship	N	Mean		
x12-x17 55 3.945 x5-x16 55 3.935 x11-x6 55 3.927 x6-x16 55 3.926 x3-x2 55 3.926 x10-x2 55 3.908 x9-x3 55 3.907 x7-x4 55 3.907 x16-x2 55 3.907 x16-x2 55 3.907 x16-x2 55 3.907 x16-x2 55 3.906 x8-x2 55 3.905 x4-x8 55 3.853 x2-x10 55 3.799 x15-x16 55 3.709 X2-x3 55 3.691 X3-x6 55 3.691 X3-x16 55 3.272 X17-x5 55 3.091	x18-x2	55	3.964		
x5-x16 55 3.935 x11-x6 55 3.927 x6-x16 55 3.926 x3-x2 55 3.926 x10-x2 55 3.908 x9-x3 55 3.907 x7-x4 55 3.906 x8-x2 55 3.906 x8-x2 55 3.906 x4-x8 55 3.905 x4-x8 55 3.853 x2-x10 55 3.799 x15-x16 55 3.709 X2-x3 55 3.691 X3-x6 55 3.691 X1-x15 55 3.109 X17-x5 55 3.091	x20-x8	55	3.945		
x11-x6 55 3.927 x6-x16 55 3.926 x3-x2 55 3.926 x10-x2 55 3.908 x9-x3 55 3.907 x7-x4 55 3.907 x16-x2 55 3.907 x16-x2 55 3.907 x16-x2 55 3.907 x16-x2 55 3.906 x8-x2 55 3.905 x4-x8 55 3.853 x2-x10 55 3.799 x15-x16 55 3.709 X2-x3 55 3.691 X3-x6 55 3.691 X3-x16 55 3.272 X17-x5 55 3.091	x12-x17	55	3.945		
x6-x16 55 3.926 x3-x2 55 3.926 x10-x2 55 3.908 x9-x3 55 3.907 x7-x4 55 3.907 x16-x2 55 3.907 x16-x2 55 3.906 x8-x2 55 3.905 x4-x8 55 3.853 x2-x10 55 3.799 x15-x16 55 3.709 X2-x3 55 3.691 X3-x6 55 3.691 X3-x16 55 3.272 X17-x5 55 3.091	x5-x16	55	3.935		
x3-x2 55 3.926 x10-x2 55 3.908 x9-x3 55 3.907 x7-x4 55 3.907 x16-x2 55 3.907 x16-x2 55 3.907 x16-x2 55 3.906 x8-x2 55 3.905 x4-x8 55 3.853 x2-x10 55 3.799 x15-x16 55 3.709 X2-x3 55 3.691 X3-x6 55 3.691 X3-x16 55 3.272 X17-x5 55 3.091	х11-хб	55	3.927		
x10-x2 55 3.908 x9-x3 55 3.907 x7-x4 55 3.907 x16-x2 55 3.906 x8-x2 55 3.905 x4-x8 55 3.853 x2-x10 55 3.799 x15-x16 55 3.709 X2-x3 55 3.691 X3-x6 55 3.691 X1-x15 55 3.272 X17-x5 55 3.091	x6-x16	55	3.926		
x9-x3 55 3.907 x7-x4 55 3.907 x16-x2 55 3.906 x8-x2 55 3.905 x4-x8 55 3.853 x2-x10 55 3.799 x15-x16 55 3.709 X2-x3 55 3.691 X3-x6 55 3.691 x1-x15 55 3.272 X17-x5 55 3.091	x3-x2	55	3.926		
x7-x4 55 3.907 x16-x2 55 3.906 x8-x2 55 3.905 x4-x8 55 3.853 x2-x10 55 3.799 x15-x16 55 3.709 X2-x3 55 3.709 X2-x6 55 3.691 X3-x6 55 3.691 x1-x15 55 3.272 X17-x5 55 3.091			1		
x16-x2 55 3.906 x8-x2 55 3.905 x4-x8 55 3.853 x2-x10 55 3.799 x15-x16 55 3.782 X2-x3 55 3.709 X2-x6 55 3.691 X3-x6 55 3.691 x1-x15 55 3.272 X17-x5 55 3.091	x9-x3	55	3.907		
x8-x2 55 3.905 x4-x8 55 3.853 x2-x10 55 3.799 x15-x16 55 3.782 X2-x3 55 3.709 X2-x6 55 3.709 X3-x6 55 3.691 X3-x16 55 3.272 X17-x5 55 3.109 X14-x3 55 3.091	x7-x4	55	3.907		
x4-x8 55 3.853 x2-x10 55 3.799 x15-x16 55 3.782 X2-x3 55 3.709 X2-x6 55 3.709 X3-x6 55 3.691 X3-x16 55 3.272 X17-x5 55 3.109 X14-x3 55 3.091			1		
x2-x10 55 3.799 x15-x16 55 3.782 X2-x3 55 3.709 X2-x6 55 3.709 X3-x6 55 3.691 X3-x16 55 3.6.91 x1-x15 55 3.272 X17-x5 55 3.091	x8-x2	55			
x15-x16 55 3.782 X2-x3 55 3.709 X2-x6 55 3.709 X3-x6 55 3.691 X3-x16 55 3.691 x1-x15 55 3.272 X17-x5 55 3.109 X14-x3 55 3.091	x4-x8	55	3.853		
X2-x3 55 3.709 X2-x6 55 3.709 X3-x6 55 3.691 X3-x16 55 3.6.91 x1-x15 55 3.272 X17-x5 55 3.109 X14-x3 55 3.091			1		
X2-x6 55 3.709 X3-x6 55 3.691 X3-x16 55 3.691 x1-x15 55 3.272 X17-x5 55 3.109 X14-x3 55 3.091	x15-x16	55	3.782		
X3-x6 55 3.691 X3-x16 55 3.6.91 x1-x15 55 3.272 X17-x5 55 3.109 X14-x3 55 3.091			1		
X3-x16 55 3.6.91 x1-x15 55 3.272 X17-x5 55 3.109 X14-x3 55 3.091			1		
x1-x15 55 3.272 X17-x5 55 3.109 X14-x3 55 3.091		55			
X17-x5 55 3.109 X14-x3 55 3.091	X3-x16	55			
X14-x3 55 3.091			1		
	X17-x5	55	3.109		
X10 16 0.000	X14-x3	55	3.091		
A13-X10 DD 3.0/3	X13-x16	55	3.073		
X19-x5 55 3.055	X19-x5	55	3.055		

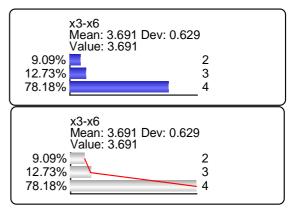


Fig 4.6 Sample output from the relationship

www.ijsart.com

(source:bayesialab)

Delay in inspection and approval of completed work have definite relationship between design risk or frequent design change. The mean value obtained from the relationship was 3.691.About 78.18% response shows very strong relationship between two factors. Relative curve shows the variation of response rate in the form a curve. Frequent design change in construction will cause delay in inspection of work. It has been suggested that a major cause of rework relates to the quality of contract documentation that is produced by design consultants and that higher fees paid to consultants would result in improved contract documentation quality. Material price escalation have relationship toward material monopoly by some suppliers. Different type of taxes exhibit of materials increases the price of the material to a great extend .This will increases the monopoly among suppliers.

IV. CONCLUSION

A cost overrun, involves unexpected costs incurred in excess of budgeted amounts due to an underestimation of the actual cost during budgeting. Factors affecting cost overrun in Kerala based construction project are identified and causeeffect relationship was developed using Bayesian network. Cost overrun should be distinguished from cost escalation, which is used to express an anticipated growth in a budgeted cost due to factors such as inflation of material price, improper planning and scheduling etc were analysed from the study. Factors leads to cost overrun are identified and ranked based on there priority. Using Bayesian networking cause-effect relationship between the factors are identified.

REFERENCES

- [1] Abhishek Bhargava, Panagiotis Ch. Anastasopoulos, Samuel Labi, Kumares C. Sinha, and Fred L. Mannering, three-stage least-squares analysis of time and cost, International Journal of Project Management 135,111-118,2015
- [2] Ahmed Senouci, Alaa Ismail and Neil Eldin ,Time Delay and Cost Overrun in Qatari Public Construction Projects Procedia Engineering ,164 ,368 - 375 ,2016.
- [3] Alemu Moges Belay, Olav Torp, Carl Thodesen, James Odeck, A framework for Organizing a Resilient Cost Benefit Analysis for Construction Projects, Procedia Engineering 145, 1169-1176,2016
- [4] Ali Touran, Jucun Liu, A method for estimating contingency based on project complexity, Procedia Engineering 123, 574 - 580,2015
- [5] Aftab Hameed Memon, Ismail Abdul Rahmanb et.al, Web-based Risk Assessment Technique for Time and

Page | 768

CostOverrun (WRATTCO) - A Framework, Procedia -Social and Behavioral Sciences ,129 , 178 - 185,2014

- [6] Bhanupong Jitwasinkul, Bonaventura H.W. Hadikusumo, Abdul Qayoom Memon, A Bayesian Belief Network model of organizational factors for improving safe work behaviors in Thai construction industry, Safety Science, 82, 264-273, 2015
- [7] Bhanupong Jitwasinkul, Bonaventura H.W. Hadikusumo, Abdul Qayoom Memon, A Bayesian Belief Network model of organizational factors for improving safe work behaviors in Thai construction industry, Safety Science ,82, 264-273, 2016
- [8] Daniel Baloi, Andrew D.F. Price, Modelling global risk factors affecting construction cost performance, International Journal of Project Management, 21,261-269,2003
- [9] Ismail Abdul Rahman, Aftab Hameed Memon, and Ahmad Tarmizi Abd Karim, Examining factors affecting budget overrun of construction projects undertaken through management procurement method using PLS-SEM approach *procedia-social* and behavioural science, 107, 120 - 128, 2013
- [10] Jin-Kyung Lee, Cost Overrun and Cause in Korean Social Overhead Capital Projects: Roads, Rails, Airports, and Ports, journal of urban planning and development, 134:59-62,2008
- [11] Jose Ramon San Cristoba(2014), Cost allocation between activities that have caused delays in a project using game theory, Procedia Technology, 16, 1017 - 1026, 2014
- [12] Kasimu, M. A Significant factors that causes cost overruns in building construction projects in Nigeria, Interdisciplinary Journal of Contemporary Research in Business, 3, 775-779,2015.
- [13] Marian W. Kembłowski, Beata Grzyl, Adam Kristowski, Agata Siemaszko, Risk modelling with Bayesian Networks - case study: construction of tunnel under the Dead Vistula River in Gdansk, Procedia Engineering ,196 ,585 - 591,2017
- [14] Mulenga Mukuka, Clinton Aigbavboa, Wellington Thwala, Effects of construction projects schedule overruns: A case of the Gauteng Province, South Africa, Procedia Manufacturing, 3,1690-1695,2015
- [15] Olav Torp, Alemu Moges Belava, Carl Thodesen, Ole Jonny Klakegg, Cost Development Over-time at Construction Planning Phase: Empirical Evidence from Norwegian Construction Projects, Procedia Engineering ,145 , 1177 - 1184,2016
- [16] Peter E. D. Love, Chun-Pong Sing, Brad Carey, and Jeong Tai Kim, Estimating Construction Contingency: Accommodating the Potential for Cost Overruns in Road Construction Projects, ASCE Journal of infrastructure system, 130, 1-10, 2015

IJSART - Volume 4 Issue 5 - MAY 2018

- [17] Peter E. D. Love, Xiangyu Wang, Chun-pong Sing and Robert L. K. Tiong, Determining the Probability of Project Cost Overruns, *journal of construction engineering and management* 139:321-330,2013.
- [18] Piotr Nowotarski, Jerzy Paslwaski et.al, Improving Construction Using Lean Management Methodologies – Cost Case Study, Procedia Engineering 161, 1037 – 1042,2016.
- [19] Pawel szymanki ,Risk management in construction project, Procedi Engineering, 208 ,174–182,2017.
- [20] Rita L. Sousa, Herbert H. Einstein, Risk analysis during tunne construction using Bayesian Networks: *Porto Metro casestudy, Tunnelling and Underground Space Technology*, 27, 86–100,2012.
- [21] Rybarov Daniela, Braunov Maria et.al, Analysis of the Construction Industry in the Slovak Republic by Bankruptcy Model, Procedia - Social and Behavioral Sciences ,230, 298 – 306,2016.
- [22] Shrestha, Burns, & Shields Magnitude of construction cost and schedule Overruns in Public Work Projects, *Journal of Construction Engineering*, 1-9,2013.
- [23] Shujaa Safdar Gardezi, Irfan Anjum Manarvi et.al, Time Extension Factors in Construction Industry of Pakistan, Procedia Engineering 77, 196 – 204,2014.
- [24] TreforP.WilliamS, Jie Gong, Predicting construction cost overruns using text mining, numerical data and ensemble classifiers, *automation in construction*, 43, 23-29, 2014
- [25] Van Truong Luu, Soo-Yong Kim et.al, Quantifying schedule risk in construction projects using Bayesian belief networks, *International Journal of Project Management*, 27, 39-50, 2009.
- [26] Xiaohua Jina,, Guomin Zhang et.al, Major Participants in the Construction Industry and Their Approaches to Risks: a Theoretical Framework, *Procedia Engineering* 182, 314 – 320,2017
- [27] Zayyana Shehu and Intan Rohani Endut ,Cost overrun in the Malaysian construction industry projects:A deeper insight, *International jounal for project management.*,2014.