Ρ-CLOSED M-SETS IN MULTI-SET TOPOLOGICAL SPACES

MPremkumar¹ , ARenuga²and Dr. A Prasanna³

 $1, 2, 3$ Assistant Professor, Dept of Mathematics

¹KongunaduCollege of Engineering & Technology, Namakkal-Trichy Main Road,ThottiamTaluk,Trichy,Tholurpatti-621215.Tamilnadu, India. ²Mahendra Institute of Engineering and Technology, Tiruchengode, Namakkal-637 503, Tamilnadu, India.

3 Jamal Mohamed College (Autonomous), Tiruchirappalli-620020, Tamilnadu, India.

Abstract- The purpose of this paper is to introduce a new class of sets called P *-open M-sets in multiset topological spaces and also we introduce a* P -continuous M-set functions *in multi-set topology. Also some of its interesting properties are discussed.*

I. INTRODUCTION

The concept of generalized closed sets in a topological space was introduced by Levine $N^{[8]}$.Ganambal $Y^{[2]}$, introduced by On Generalized Pre regularclosed sets in Topological Spaces. Girish K P ,Sunil Jacob John $^{[3]}$, introduced the concept of On Multi-set.. Jafari S, Noiri T, Rajesh N and Thivagarn $ML^{[5]}$., introduced the Another Generalization of closed sets.James MunkersR^[6], introduced the notation on Topology. Levine $N^{[7]}$., introduced the Semi open sets, Semi-continuity in Topological spaces. Mashour A.S, Abd El-Monsef M E and El-deep S $N^{[9]}$, discussed the On pre-continuous and weak pre-continuous mapping . Noiri T, Maki H and Umehara $J^{[10]}$, introduced the Generalized pre-closed functions. Sundaram P and Sheik John $M^{[11]}$ discussed the On ω -closed sets in Topology.Devamanoharan C,Pious Missier S and JafariS^[4], introduced the notions of P -closed sets and P-open sets in topological spaces.Devamanoharan C, Pious Missier $S^{[1]}$, introduced the notions of P -continuous functions. In this paper we introduce new class of M-sets called P -closed Msets in multi-set topological spaces.

Key words and Phrases:

 ρ –closed, ρ –open, ρ –closed M-Sets, ρ –continuous, ρ – continuous M-set function

II. PRELIMINARIES

Definition : 2.1

Let X be any non-empty set.A family τ of subsets of X

is said to be a topology on X if and only if τ satisfies the following axioms:

- (i) $\mathbf{\Phi}$ and X are in $\mathbf{\tau}$
- (ii) The union of the elements of any sub-collection of τ is in τ .
- (iii) The finite intersection of the elements of any sub collection of τ is in τ . Then τ is a topology on X. The ordered pair (x, τ) is called a topological space.

Definition: 2.2

Let (x, τ) be a topological space. A subset A of x is said to be a preopen set if $A \subseteq \inf(cl(A))_{and}$ pre-closed set if $cl(\inf(A)) \subseteq A.$

Definition: 2.3

Let (x, τ) be a topological space. A subset A of X is said to be Semi Open set if $A \subseteq cl(\inf(A))$ and Semi closed set if $\inf(cl(A)) \subseteq A$.

Definition: 2.4

Let (x, τ) be a topological space. A Subset A of X is said to be regular open set if $A = \inf(\text{cl}(A))$ and regular closed set if $A = cl(int(A))$

Thought-out this paper (x, τ), (y, δ) and (z, η) will always denote topological spaces and (M, τ), (N, δ) and (P, η) denote Multiset topological spaces. Then $\inf(A)$, $cl(A)$ denote the interior and closure of the set A, respectively. **Definition: 2.5**

IJSART - *Volume 4 Issue 5 – MAY 2018 ISSN* **[ONLINE]: 2395-1052**

Let (x, τ) be a topological space. A subset set if $A \subseteq X$ is said to begeneralised pre-closed (briefly gp-closed) if whenever A⊆U and U is open in X.

Definition: 2.6

Let (x, τ) be a topological space. A subset set if A \subseteq X is said to be generalised pre-regular closed (briefly gpr-closed) if whenever A⊆U and U is regular open in X.

Definition: 2.7

Let(x, τ) be a topological space. A subset A⊆X is said to be $\hat{\mathbf{\theta}}$ -closed set if cl(A)⊆U whenever A⊆U and U is a \hat{g} –closed set if cl(A)⊆U whenever A⊆U and U is a \hat{g} -open set in(x, τ). The complement of $a\hat{J}$ closed set is said to be a \hat{g} – open set.

Definition: 2.8

Let (x, τ) be a topological space. A subset $A \subseteq X$ is said to be \mathscr{L} -closed set if cl(A)⊆U whenever A⊆U and U is semi open set in (x, τ) . The complement of a $\hat{\mathcal{G}}$ -closed set is said to be a g^o open set.

Definition: 2.9

Let (X, τ) be a topological space. A subset $A \subseteq X$ is said to be a $\neq_{gs-closed}$ set if $\mathcal{S}cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a *g-open set in (X, τ) . The complement of a \neq gs-closed set is said to be \neq gs-closed set is said to be $\neq_{gs-open}$ set.

Definition: 2.10

Let (X, τ) be a topological space. A subset $A \subseteq X$ is said to be a \tilde{g} -closed set if **cl**(A) $\subseteq U$ whenever $A \subseteq U$ and **U** is a \neq gs-open set in (X, τ) . The complement of a \tilde{g} . closed set is said to be a \overline{a} - open set.

Definition: 2.11

Let (X, τ) be a topological space. A subset A of X is said to be ρ -closed set if ρ **cl**(A) \subseteq **int**(U) whenever

 $A \subseteq U$ and U is $\tilde{g}_{\text{-open}}$ in (X, τ) . **Definition: 2.12**

Let (X,τ) and (N,δ) be any two topological spaces. A function $f: (X, \tau) \to (Y, \delta)$ is said to be ρ . continuous if $f^{-1}(V)$ is ρ -closed in (x, τ) for every ρ closed set V of (Y, δ) .

Definition: 2.13

Let (X, τ) and (N, δ) be any two topological spaces. A function $f: (X, \tau) \to (Y, \delta)$ is said to be ρ . irresolute if $f^{-1}(V)$ is ρ -closed in (x, τ) for every ρ closed set V of (Y, δ) .

Definition: 2.14

A M-set M drawn from the set X is represented by a function count M or C_M defined as $C_M: X \to W$ where W represents the set of whole numbers.

Example: 2.14.1

Let $X = \{x, y, z\}_{\text{be any set and}} W = 3$. Then $M = \left\{ \frac{3}{x}, \frac{2}{y}, \frac{3}{z} \right\}$ is an M-set drawn from X . Clearly, a set is a special case of a M-set.

Definition: 2.15

A sub M-set N of M is a whole sub M-set of M with each element in N having full multiplicity as in M.

$$
i.e., C_N(x) = C_M(x)_{for every} x_{in} N.
$$

Definition: 2.16

A sub M-set N of M is a partial whole sub M-set of M with atleast one element in N having full multiplicity as in M.

$$
i.e., CN(x) = CM(x) for some x in N.
$$

Definition: 2.17

A sub M-set N of M is a full sub M-set of M if each element in M is an element in N with the same or lesser multiplicity as in M.

i.e.,
$$
M^* = N^*
$$
 with $C_N \leq C_M(x)$ for every x in N.

Page | 700 www.ijsart.com

Example: 2.17.1

Let $M = \left\{ \frac{2}{w}, \frac{3}{w}, \frac{5}{w} \right\}$ be an M-set. Following are the some of the sub M-set of M which are whole sub M-sets, partial whole sub M-sets and full sub M-sets.

- a) A Sub M-set $\left\{\frac{2}{x}, \frac{3}{y}\right\}$ is a whole sub M-set a partial whole sub M-set of M but it is not full sub M-set of M.
- b) A sub M-set $\left\{\frac{1}{x}, \frac{3}{y}, \frac{2}{z}\right\}$ is a partial whole sub M-set and full sub M-set of M but it is not a whole sub Mset of M.
- c) A sub M-set $\left\{\frac{1}{x}, \frac{3}{y}\right\}$ is partial whole sub M-set of M which neither whole sub M-set nor full sub M-set of M.

Definition: 2.18

A sub M-set R of $M \times M$ is said to be an M-set relation on M if for every member $\left(\frac{m}{x}, \frac{n}{y}\right)$ of R has a count, product of $c_1(x,y)$ _{and} $c_2(x,y)$, We denote $\frac{d}{dx}$ related to $\frac{m}{y_{\text{by}}} \frac{m}{x} R \frac{n}{y}$.

Definition: 2.19

A M-set relation \hat{f} is called an M-set function if for every element \overline{x} in Dom F, there is exactly one Ran f such that $\left(\frac{m}{s}, \frac{n}{s}\right)$ is in f with the pair occurig as the product of $c_1(x,y)$ and $c_2(x,y)$

Example: 2.19.1

Let
$$
M_1 = \left\{ \frac{8}{\alpha}, \frac{6}{\gamma} \right\}
$$
 and $M_2 = \left\{ \frac{2}{\alpha}, \frac{5}{\alpha} \right\}$ be two M-sets.

Then an M-set function from M_1 to M_2 may be defined as

$$
f = \left\{ \frac{\left(\frac{a}{x'a}\right)}{16}, \frac{\left(\frac{a}{y'b}\right)}{30} \right\}
$$

Definition: 2.20

Let $M \in [x]_{and} \tau \subseteq \rho^*(M)$. Then τ is called

Multiset topology of M if $\mathfrak T$ satisfies the following properties

- a) A M-set M and the empty M-set φ are in τ .
- b) The M-set union of the elements of any sub collection of τ is in τ .
- c) The M-set intersection of the elements of any finite subcollection of τ is in τ .

Definition: 2.21

A sub M-set N of an M-topological space M in $\llbracket x \rrbracket^W$ is said to be closed if the M-set $M \ominus N$ is open. i.e., $N^c = M \ominus N$

Example: 2.21.1

Let
$$
X = \{x, y, z\}
$$
, $W = 2$ and $M = \{\frac{2}{x}, \frac{1}{y}, \frac{1}{z}\}$ be
\na
\n
$$
\tau = \left\{M, \varphi, \{\frac{1}{x}\}, \{\frac{2}{x}\}, \{\frac{1}{x}, \frac{1}{y}\}, \{\frac{2}{x}, \frac{1}{y}\}\right\}
$$
\nClearly, τ is an M-

topology and (M, τ) is an M-topological space.

Then the complement of any sub M-set N is a Mtopological space (M, τ) is shown as:
 $(2 \t1)$ alan ing (1)

a). If
$$
N = \left(\frac{1}{x}, \frac{1}{y}\right)
$$
, then
$$
N^c = \left(\frac{1}{z}\right)
$$
 and b). If
$$
N = \left(\frac{1}{x}\right)
$$
 then
$$
N^c = \left\{\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right\}
$$

Definition: 2.22

Given a sub M-set A of an M-topological space M in $[x]^{W}$, the interior of A is defined as the M-set union of all open M-sets contained in A and is denoted by Int (A).

i.e., Int $(A) = \cup \{G \subseteq M: G$ is open M-set and $G \subseteq A$ and $C_{int(A)}(x) = \max\{C_G(x): G \subseteq A, G \in \tau\}$

Definition: 2.23

Given a sub M-set A of a M-topological space M in $[x]^{W}$, the closure of A is defined as the M-set intersection of all closed M-sets containing A and is denoted by $cl(A)$.

i.e.
 $cl(A) = \bigcap \{ K \subseteq M : K \text{ is a closed } M$ set and $A \subseteq K$ and $C_{c}(x) = min\{C_K(x): A \subseteq K, K \in \tau^c\}$

Example: 2.23.1

Let $X = \{a, b, c\}$, $W = 3$ and $M = \{\frac{2}{a}, \frac{2}{b}, \frac{1}{c}\}$ be the M-set on X. Let $\tau = \left\{ M, \varphi, \left\{ \frac{2}{\alpha} \right\}, \left\{ \frac{2}{\alpha}, \frac{2}{\alpha} \right\} \right\}$. Clearly, τ is a M-topology and the ordered pair $(M, \tau)_{\text{is an M}}$. topological space. Then $\tau^c = \left\{ \varphi, M, \left\{ \frac{2}{b}, \frac{1}{c} \right\}, \left\{ \frac{2}{a}, \frac{1}{c} \right\}, \left\{ \frac{1}{c} \right\} \right\}$ Let $A = \left\{ \frac{2}{b}, \frac{1}{c} \right\}$ be the sub M-set of M. Then *Int* (*A*) = $\frac{2}{n}$ $\frac{2}{n}$ $cl(A) = \frac{2}{n} \frac{1}{n}$

Definition: 2.24

Let M and N be two M-topological spaces. The M-set function $f: M \to N$ is said to be continuous if for each open sub M-set V of N, the M-set $f^{-1}(V)$ is an open sub M-set of M, where $f^{-1}(V)$ is the M-set of all points $\frac{M}{N}$ in M for which $f\left(\frac{m}{x}\right) \in \mathbb{R}^n$ V for some n.

Let $M = \left\{ \frac{5}{\alpha}, \frac{4}{b}, \frac{4}{\alpha}, \frac{3}{d} \right\}$ and $N = \left\{ \frac{7}{\alpha}, \frac{5}{\alpha}, \frac{6}{\alpha}, \frac{4}{w} \right\}$ be

Example: 2.24.1

two M-sets, then $\tau = \left\{ M, \varphi, \left\{ \frac{\mathbf{E}}{\alpha} \right\}, \left\{ \frac{\mathbf{E}}{\alpha}, \frac{4}{b} \right\}, \left\{ \frac{\mathbf{E}}{\alpha}, \frac{4}{b}, \frac{4}{c} \right\} \right\}$

 $\sigma=\left\{N,\varphi,\left\{\frac{7}{x}\right\},\left\{\frac{5}{x}\right\},\left\{\frac{7}{x},\frac{5}{y}\right\},\left\{\frac{5}{y},\frac{6}{z},\frac{4}{w}\right\}\right\}_{\text{be two M-}}$

topologies on M and N respectively.

Consider two M-set function
$$
f: M \to N
$$
 and
\n
$$
g: M \to N
$$
 are given by
\n
$$
f = \begin{cases} \left(\frac{\mathbf{g} \cdot \mathbf{g}}{a^{\prime} y}\right) & \left(\frac{\mathbf{a} \cdot \mathbf{g}}{b^{\prime} y}\right) & \frac{\mathbf{a} \cdot \mathbf{a}}{b^{\prime} y} & \frac{\mathbf{a} \cdot \mathbf{a}}{b^{\prime} y} \\ \frac{\mathbf{a} \cdot \mathbf{g}}{25}, \frac{\mathbf{a} \cdot \mathbf{g}}{24}, \frac{\mathbf{a} \cdot \mathbf{a}}{16}, \frac{\mathbf{a} \cdot \mathbf{a}}{16} \end{cases}
$$
\nand
\n
$$
g = \begin{cases} \left(\frac{\mathbf{g}}{a^{\prime} x}\right) & \left(\frac{\mathbf{a} \cdot \mathbf{g}}{b^{\prime} x}\right) & \left(\frac{\mathbf{a} \cdot \mathbf{a}}{b^{\prime} x}\right) \\ \frac{\mathbf{a} \cdot \mathbf{g}}{25}, \frac{\mathbf{a} \cdot \mathbf{g}}{24}, \frac{\mathbf{a} \cdot \mathbf{g}}{12} \end{cases}
$$
\nThe M-set function f' is

continuous since the inverse of each member of the Mtopology σ on N is a member of the M-topology τ on M.

The M-set function g is not continuous. Since $\left\{\frac{5}{y}, \frac{6}{z}, \frac{4}{w}\right\} \in \mathbf{6}$. i.e., an open M-se of N, but its inverse image $g^{-1}\left(\left\{\frac{5}{v},\frac{6}{s},\frac{4}{w}\right\}\right) = \left\{\frac{4}{c},\frac{3}{d}\right\}$ is not an open sub M-set of M, because the M-set $\left\{\frac{4}{e}, \frac{3}{d}\right\}$ does not belong to τ .

Definition: 2.25

Let M and N be two M-sets drawn from a set X. Then, the following are defined

a)
$$
M = N
$$
 if $C_M(x) = C_N(x)_{\text{for all}} x \in X$
\nb) $M \subseteq N$ if $C_M(x) \le C_N(x)_{\text{for all}} x \in X$
\nc) $P = M \cup N$ if $C_P(x) = Max \{C_M(x), C_N(x)\}$
\nfor all $x \in X$
\nd) $P = M \cap N$ if $C_P(x) = Min \{C_M(x), C_N(x)\}$
\nfor all $x \in X$
\ne) $P = M \oplus N$ if $C_P(x) = C_M(x) + C_N(x)$ for
\nall $x \in X$
\nf) $P = M \ominus N$ if
\n $C_n(x) = Max\{C_n(x) - C_n(x).0\}$

$$
C_p(x) = Max\{C_M(x) - C_N(x), 0\}_{\text{for}}
$$
 all $x \in X$

where \bigoplus and \bigoplus represents M-set addition and M-set subtraction respectively.

Definition: 2.26

A domain X is defined as a set of elements from which M-sets are constructed. The M-set space $\left[x\right]^W$ is the set of all M-sets whose elements are in X such that no elements in the M-set occurs more than W times.

The set $\left[\mathfrak{X}\right]$ ^{or} is the set of all M-sets over a domain X such that there is no limit on the number of occurrences of an element in an M-set.

III. BASIC PROPERTIES OF P-CLOSED M-SETS

Throughout this paper X denote a non – empty set, $M \in [x]^W$ and $C_M : X \to W$ where W is the set of all whole numbers.

Definition: 3.1

Let (M, τ) be an M-topological space. A sub M-set A of M is said to be a pre open M-set if $A \subseteq int \left(cl(A) \right)_{\text{with}} C_A(x) \leq C_{int \left(cl(A) \right)}(x)_{\text{for all}}$ $x \in X$. The complement of the pre open M-set is said to be a pre closed M-set if $A \supseteq cl(int(A))$ _{with} $C_A(x) \geq C_{\text{cl}(int(A))}(x)$ for all $x \in X$.

Definition: 3.2

Let $(M, \tau)_{\text{be a }M\text{-topological space. Then the}}$ preclosure of a M-set is denoted by $\mathcal{P}cl(A)$ and defined as $\textit{pcl}(a) =$ $\bigcap \{B : B \supseteq A, each B \subseteq M \text{ is a preclosed } M - set\}$

, for all $x \in X$

Example: 3.2.1

Let
$$
X = \{x, y\}, W = 2_{\text{and}}
$$

$$
M = \left\{\frac{2}{x}, \frac{1}{y}\right\}, \tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}\right\}
$$
Clearly, τ is
M-topology and the ordered pair (M, τ) is a M-topological
space. Now, the preopen M-sets are:
$$
M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}
$$

$$
Let^{2} = \left\{\frac{2}{x}\right\}
$$
 be a sub M-set of M. Then $pcl(A) = \left\{\frac{2}{x}\right\}$.

Definition: 2.3

Let (x, τ) be a topological space. A subset A of X is said to be Semi Open set if $A \subseteq cl(\inf(A))$ and Semi closed set if $\inf(cl(A)) \subseteq A$.

Definition: 3.4

Let (M, τ) be M-topological space. A sub M-set A of M is said to be semi open M-set if $A \subseteq cl(int(A))$ with $C_A(x) \leq C_{\text{cl}(int(A))}(x)$ for all $x \in X$. The complement of the semi-open M-set is said to be a semi closed M-set if $A \supseteq int(cl(A))$ _{with} $C_A(x) \geq C_{int(cl(A))}(x)$ _{for all} $x \in X$

Example: 3.4.1

Let
$$
X = \{x, y\}, W = 2_{\text{and}}
$$

\n
$$
M = \left\{\frac{2}{x}, \frac{2}{y}\right\}, \tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}\right\}
$$

Clearly, τ is a M-topology and the ordered pair (M, τ) is a M-topological space. Now, the semi open M-sets are: M, φ , $\left\{\frac{1}{x}\right\}$, $\left\{\frac{2}{v}\right\}$, $\left\{\frac{1}{x}\right\}$, $\left\{\frac{1}{x}, \frac{2}{y}\right\}$, $\left\{\frac{1}{x}, \frac{1}{y}\right\}$ and the semi closed Msets are $\varphi, M, \{\frac{1}{x}, \frac{2}{y}\}, \{\frac{2}{x}\}, \{\frac{2}{x}, \frac{1}{y}\}, \{\frac{1}{x}\}, \{\frac{1}{x}, \frac{1}{y}\}$

Definition: 3.5

Let (M, τ) be a M-topological space. A sub M-set A of M is said to be a regular open M-set if $A = int(cl(A))$ with $C_A(x) = C_{inc(cI(A))}(x)$ for all $x \in X$ The complement of the regular open M-set is said to be a regular closed M-set if $A = cl(int(A))$ _{with} $C_A(x) = C_{\text{cl}(int(A))}(x)$ _{for all} $x \in X$.

Example: 3.5.1

Let $\mathbf{x} = \{x, y, z\}$, $\mathbf{w} = z_{\text{and}}$. Clearly, is a M-topology and the ordered pair (M, τ) be a Mtopological space. Now, the closed M-sets are: $M, \varphi, \left\{\frac{1}{y}, \frac{2}{z}\right\}, \left\{\frac{1}{x}, \frac{2}{z}\right\}, \left\{\frac{2}{z}\right\}$. Let $A = \left\{\frac{1}{x}\right\}$ be a sub M-set of M. Then $int(cl(A)) = \left\{ \frac{1}{\infty} \right\} A = int(cl(A))_{\text{with}}$ $C_A(x) = C_{int}(\sigma i(A))(x)$, for all $x \in X$. Hence A is a
regular open M-set. Its complement regular open M-set. Its complement is a regular closed M-set, since $A = cl(int(A))_{with} C_A(x) = C_{int(ci(A))}(x)$

Definition: 3.6

Let (M, τ) be a M-topological space. A sub M-set $\mathbf{A} \subseteq \mathbf{M}$ is said to be a generalized pre closed (briefly gpclosed) if $\rho c l(A) \subseteq U$ whenever $A \subseteq U$ and U is open Mset in $(M, \tau)_{\text{with}} C_{\rho c l}(x) \leq C_U(x)_{\text{for all}} x \in X_{\text{The}}$ complement of gp-closed M-set is said to be a gp-open M-set.

Example: 3.6.1

Page | 703 www.ijsart.com

Let
$$
X = \{x, y\}, W = 2_{\text{and}}
$$

$$
M = \left\{\frac{1}{x}, \frac{1}{y}\right\}, \tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}\right\}
$$
Clearly, τ is a M-topological space. Here, the pre closed M-sets are:

$$
M, \varphi, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}
$$
 and the gp-closed M-sets are:

$$
M, \varphi, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}
$$

Definition: 3.7

Let (M, τ) be a M-topological space. A sub M-set $\mathbf{A} \subseteq \mathbf{M}$ is said to be a generalized pre regular closed M-set (briefly gpr-closed) if $\rho cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open $M_{\text{-set}}$ in (M, τ) . Then complement of gprclosed M-set is said to be a gpr-open M-set.

Example: 3.7.1

Let
$$
X = \{x, y\}, W = 2_{\text{and}}
$$

$$
M = \left\{\frac{1}{x}, \frac{2}{y}\right\}, \tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}\right\}
$$
Clearly, τ is

a M-topology and the ordered pair (M, τ) is a M-topological space. Here, the pre closed M-sets are: and the regular open M-sets are: M , φ , $\left\{\frac{1}{x}\right\}$, $\left\{\frac{1}{x}, \frac{1}{y}\right\}$ Hence the gpr-closed M-sets are: M , φ , $\left\{\frac{1}{x}\right\}$, $\left\{\frac{1}{y}\right\}$, $\left\{\frac{2}{x}\right\}$, $\left\{\frac{1}{x}, \frac{1}{y}\right\}$ and the gpr-open M-sets are: $M, \varphi, \left\{\frac{2}{\omega}\right\}, \left\{\frac{1}{\omega}, \frac{1}{\omega}\right\}, \left\{\frac{1}{\omega}\right\}, \left\{\frac{1}{\omega}\right\}$

Definition: 3.8

a) Let (M, τ) be an M-topological space. A sub M-set $\mathbf{A} \subseteq \mathbf{M}$ is said to be a $\tilde{\mathbf{g}}$ closed M-set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen M-set in (M, τ) with $\mathcal{C}_{\text{el}(A)} \leq \mathcal{C}_{\text{U}}(x)_{\text{whenever}} \quad \mathcal{C}_{\text{A}}(x) \leq \mathcal{C}_{\text{U}}(x)$ for all $x \in X$. The complement of a \tilde{g} -closed M-set is said to be a \ddot{g} -open M-set.

b) Let (M, τ) be an M-topological space. A sub M-set $A \subseteq M$ is said to be a ***g**-closed M-set if

$$
cl(A) \subseteq U \text{ whenever } A \subseteq U \text{ and } U \text{ is a } \hat{g}.
$$

open M-set in (M, τ) with
 $C_{cl(A)}(x) \le C_U(x)$ whenever
 $C_A(x) \le C_U(x)$ for all $x \in X$. The
complement of a *g-closed M-set is said to be a
*g-open M-set.
c) Let (M, τ) be an M-topological space. A sub M-set
 $A \subseteq M$ is said to be a $\neq_{gs}\text{-closed M-set}$ if

- $Sel(A) \subseteq U$ whenever $A \subseteq U$ and U is *gopen M-set in (M, τ) with $C_{\text{Sel}(A)} \leq C_U(x)$ whenever $C_A(x) \leq C_U(x)$ for all $x \in X$. The complement of a \neq gs-closed M-set is said to be $a \neq g$ s-open M-set.
- d) Let (M, τ) be an M-topological space. A sub M-set $A \subseteq M$ is said to be a \tilde{B} -closed M-set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a \neq_{gs-} open M-set in (M, τ) with $C_{\text{cl}(A)}(x) \leq C_{\text{U}}(x)_{\text{whenever}}$ $C_A(x) \leq C_U(x)$ for all $x \in X$ The complement of a \ddot{g} -closed M-set is said to be a \tilde{g} -open M-set.
- e) Let $(M, \tau)_{\text{be an M-topological space. A sub M-set}}$ $A \subseteq M$ is said to be a p-closed M-set if $\text{pol}(A) \subseteq \text{int}(U)_{\text{whenever}} A \subseteq U_{\text{and }U \text{ is}}$ a $\tilde{g}_{\text{-open}}$ M-set in $(M, \tau)_{\text{with}}$ $C_{\text{gel}(A)}(x) \leq C_{\text{int}(U)}(x)_{\text{whenever}}$ $C_A(x) \leq C_U(x)$ for all $x \in X$ The

complement of a p-closed M-set is said to be a popen M-set.

Example: 3.8.1

Let
$$
X = \{x, y\}, W = 2
$$
 and
\n
$$
M = \{\frac{2}{x}, \frac{2}{y}\}, \tau =
$$
\n
$$
\left\{M, \varphi, \{\frac{1}{x}\}, \{\frac{1}{y}\}, \{\frac{2}{y}\}, \{\frac{1}{x}, \frac{2}{y}\}, \{\frac{1}{x}, \frac{1}{y}\}\right\}.
$$

Clearly^T is an M-topology and the ordered pair $(M, \tau)_{\text{is a M}}$ topological space. Here, the pre closed M-sets are: M, φ , $\left\{\frac{2}{x}\right\}$, $\left\{\frac{1}{x}, \frac{1}{v}\right\}$, $\left\{\frac{1}{x}\right\}$, $\left\{\frac{1}{x}, \frac{2}{y}\right\}$, $\left\{\frac{2}{x}, \frac{1}{y}\right\}$ and the semi open M-sets are: M , φ , $\left\{\frac{1}{x}\right\}$, $\left\{\frac{1}{y}\right\}$, $\left\{\frac{1}{x}, \frac{1}{y}\right\}$, $\left\{\frac{2}{y}\right\}$, $\left\{\frac{1}{x}, \frac{2}{y}\right\}$ and the \tilde{g} . open M-sets are: M , φ , $\left\{\frac{1}{x}\right\}$, $\left\{\frac{1}{x}\right\}$, $\left\{\frac{1}{x},\frac{1}{y}\right\}$, $\left\{\frac{2}{x}\right\}$, $\left\{\frac{1}{x},\frac{2}{x}\right\}$ the *g-open M-sets are: M , φ , $\left\{\frac{1}{x}\right\}$, $\left\{\frac{1}{y}\right\}$, $\left\{\frac{1}{x}, \frac{1}{y}\right\}$, $\left\{\frac{1}{x}, \frac{2}{y}\right\}$ and the \pm gs-open M-sets are: and the \mathcal{Y} -open M-sets $M, \varphi, \{\frac{1}{x}, \frac{1}{y}\}, \{\frac{1}{x}\}, \{\frac{1}{y}\}, \{\frac{1}{y}\}, \{\frac{2}{x}, \frac{1}{y}\}\}$ Hence the ρ . closed M-sets are: $M, \varphi, \{\frac{2}{x}\}, \{\frac{1}{x}, \frac{1}{y}\}, \{\frac{1}{x}\}, \{\frac{1}{x}, \frac{2}{y}\}, \{\frac{2}{x}, \frac{1}{y}\}$

Preposition: 3.9

Let (M, τ) be a M-topological space. If a sub M-set A of M is open and pre closed, then A is a P -closed M-set. **Proof**

Let A be an open and pre closed sub M-set of (M, τ) . Let $A \subseteq U$ and U be \tilde{g} -open M-set in (M, τ) . Then $\text{gcd}(A) = A = \text{Int}(A), \text{gcd}(A) \subseteq \text{int}(U)$ with $C_{\rho\sigma l(A)} \leq C_{int}(U)_{\text{ for all }} x \in X$. Hence A is ρ -closed Mset.

The converse of Proposition 3.9 need not be true as shown from the Example 3.8.1

Example: 3.9.1

 $X = \{\frac{1}{x}, \frac{1}{y}\}\,$, $W = 2$ $M = \Big\{ \! \frac{2}{\! \! \alpha} , \! \frac{2}{\! \! \gamma} \Big\} , \tau = \Big\{ M, \phi, \Big\{ \! \frac{1}{\! \! \alpha \! \! \, \gamma} , \Big\{ \! \frac{1}{\! \! \alpha \! \! \, \gamma} , \Big\{ \! \frac{2}{\! \! \alpha} \Big\} , \Big\{ \! \frac{1}{\! \! \alpha} , \! \frac{2}{\! \! \gamma} \Big\} , \Big\{ \! \frac{1}{\! \! \alpha} , \! \frac{1}{\! \! \gamma} \Big\} \Big\}$ Clearly, τ is a M-topology and the ordered pairs (M, τ) is an M-topological space. Here, the open M-sets are $=M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}$ and the pre closed M-sets are $M, \varphi, \{\frac{2}{x}\}, \{\frac{1}{x}, \frac{1}{y}\}, \{\frac{1}{x}\}, \{\frac{1}{x}, \frac{2}{y}\}, \{\frac{2}{x}, \frac{1}{y}\}$ and the -closed M-sets are . Here, the P -closed $V = \left\{ \frac{2}{w} \right\}$ is pre closed M-set but it is not an open Mset.

Preposition: 3.10

Let $(M, \tau)_{\text{be an M-topological space. Every}}$ P closed M-set is gpr-closed M-set.

Proof:

Let A be any P -closed M-set. Let $A \subseteq U$ and U be regular open M-set. Observe that every regular open M-set is open M-set and every open M-set is \tilde{g} -open M-set and therefore A is P -closed M-set. It follows that $\varphi cl(A) \subseteq int(U) = U_{\text{with}} C_{\varphi cl(A)} \leq C_U(x)_{\text{for all}}$ $x \in X$. Hence A is gpr-closed M-set.

The converse of Proposition 3.10 need not be true as shown from the Example 3.9.1

Example: 3.10.1

Let $x = \{a, b\}$, $w = \perp_{\text{and}}$. Clearly, \mathbf{I} is an M-topology and the ordered pairs (M, τ) is an M-topological. Here, the gpr-closed M-sets are M , φ , $\left\{\frac{1}{a}\right\}$, $\left\{\frac{1}{b}\right\}$ and the P -closed Msets are: M , φ , $\left\{\frac{1}{b}\right\}$. Here gpr-closed M-set $V = \left\{\frac{1}{a}\right\}$ is not ρ . closed M-set.

Remark:

The union of two P -closed M-sets need not be P closed M-set.

Example: 3.10.2

Let
$$
X = \{x, y, z\}, W = 2_{\text{and}}
$$

$$
M = \left\{\frac{2}{x}, \frac{2}{y}, \frac{1}{z}\right\}, \tau = \left\{m, \varphi, \left\{\frac{2}{x}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{2}{x}, \frac{2}{y}\right\}\right\}
$$
Clearly, τ is an M-topological space. Here, the ρ -closed M-set are:
 M, φ $\left\{\frac{1}{z}\right\}, \left\{\frac{2}{y}, \frac{1}{z}\right\}, \left\{\frac{2}{x}, \frac{1}{z}\right\}, \left\{\frac{1}{x}, \frac{1}{z}\right\}, \left\{\frac{2}{x}, \frac{1}{y}, \frac{1}{z}\right\}, \left\{\frac{2}{x}, \frac{1}{y}, \frac{1}{z}\right\}, \left\{\frac{1}{x}, \frac{2}{y}, \frac{1}{z}\right\}, \left\{\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right\}$. Let $U = \left\{\frac{2}{x}, \frac{1}{z}\right\}$ and $V = \left\{\frac{1}{x}, \frac{2}{y}, \frac{1}{z}\right\}$ be ρ -closed M-sets.
But $U \cup V = \left\{\frac{2}{x}, \frac{2}{y}, \frac{1}{z}\right\}$ is not ρ -closed M-set.

Proposition: 3.11

Page | 705 www.ijsart.com

Let (M, τ) be an M-topological space. If a sub M-set A of (M, τ) is \tilde{g} -open and P-closed M-set, then A is preclosed M-set in (M, τ)

Proof:

If a sub M-set A of (M, τ) is \tilde{g} -open M-set and p-closed Mset. Then $\rho cl(A) \subseteq Int(A) \subseteq A_{\text{with}}$ $C_{\text{gel}(A)}(x) \leq C_A(x)$, for all $x \in X$. Hence A is pre-closed M-set in (M, τ) .

The Converseof proposition 3.11 need not be true as shown from the example 3.10.2.

Example: 3.11.1

Let $X = \{x, y\}$ $W = 2$ and $M = \{\frac{2}{x}, \frac{2}{y}\}$ $\tau = \left\{M, \varphi, \{2/\chi\}, \{1/\chi\}, \{2/\chi\}, \{1/\chi, 2/\gamma\}\right\}_{\text{Clearly } \mathcal{I}}$ is an M -topology and the ordered pair (M, τ) is an M . topological space.Here, the preclosed M -sets are and the \mathcal{Y} -open 19 -sets are M , φ , $\{^2/\chi\}$, $\{^1/\chi\}$, $\{^2/\psi\}$, $\{^1/\chi$, $^2/\psi\}$ and the ρ -closed -sets are .Here, the preclosed $M_{\text{-set}} V = \left\{ \frac{1}{x}, \frac{1}{y} \right\}$ is $\rho_{\text{-closed}} M$. sets but it is not \tilde{g} -open M -sets. topological space. Here, the precises set of sets and $\lim_{x \to 0} \lim_{x \to 0} \frac{f(x)}{f(x)} = \min \{B : B \supseteq A$, each $B \subseteq M$, φ , $\{2\}_{x}$, $\{1\}_{y}$, $\{1\}_{y}$, $\{1\}_{x}$, 1_{y} , $\{2\}_{x}$, 1_{y} , $\{2\}_{x}$, $\{2\}_{y}$ = $\min \{B : B$

Proposition: 3.12

Let (M, τ) be an M-topological space. If a sub M-set A of (M, τ) is open and regular closed then A is P-closed Mset.

Proof:

Let A be open M-set and regular closed M-set.Since regular closed M-set is pre-closed M-set.Then A is open and

pre-closed M-set.By proposition 2.1, A is \mathbf{P} -closed M-set. The Converseof proposition 3.12 need not be true as shown

from the example 3.11.1. **Example: 3.12.1**

Let $X = {x, y}$, $W = 2$ and $M = {2/x, 2/y}$. $\tau =$ $\left\{M, \varphi, \{1/\chi\}, \{1/\chi\}, \{2/\chi\}, \{1/\chi, 2/\chi\}, \{1/\chi, 1/\chi\}\right\}$.Clearly , τ is an M -topology and the ordered pair (M, τ) is an M -topological space.Here, the regular closed M -sets are $M, \varphi, \{1/\chi\}, \{1/\chi, 2/\chi\}, \{1/\chi, 1/\chi\}$ and the $\boldsymbol{\rho}$ $\cos\theta$ -sets are $M, \varphi, \{2\langle x\}, \{1\langle x\}, \{2\langle y\}, \{1\langle x, 1\langle y\}, \{2\langle x, 1\langle y\}, \{1\langle x, 2\langle x, 2\rangle\}, \{1\langle x, 2\langle x, 2\$.Here, the P-closed $M_{\text{-set}} V = \{2/\chi, 1/\chi\}$ is not open $M_{\text{-set}}$ and is not regular closed M -sets.

Definition:3.13

Let $(M, \tau)_{\text{be an M-topological space}}$. Then the semiclosure of an M-set A is denoted by $\mathcal{S}cl(A)$ and defined as $scl(A) =$ \cap {B:B \supseteq A, each $B \subseteq M$ is a semiclosed M set} M is a semiclosed $M - set$, for all $x \in X$.

Example : 3.13.1 Let $A = (x, y)$, $W = 2$ and $M = \{\frac{2}{x}, \frac{2}{y}\}$ $\left\{M, \varphi, \{1/\chi\}, \{1/\chi\}, \{2/\chi\}, \{1/\chi, 2/\chi\}, \{1/\chi, 1/\chi\}\right\}$

Clearly τ is an M -topology and the ordered pair (M, τ) is an M -topological space.Now the semi open M-set are:

$$
M, \varphi, \{^{2}/_{x}\}, \{^{1}/_{x}\}, \{^{1}/_{x}, {^{1}}/_{y}\}, \{^{2}/_{x}, {^{1}}/_{y}\}, \{^{1}/_{x}, {^{2}}/_{y}\}
$$

Let $A = \{^{2}/_{x}, {^{1}}/_{y}\}$ be a sub M-set of (M, τ) . Then

$$
scl(A) = \{^{2}/_{x}, {^{1}}/_{y}\}_{\text{and}} Sint(A) = \{^{1}/_{x}, {^{1}}/_{y}\}.
$$

Proposition: 3.14

.

Let
$$
(M, \tau)
$$
 be an M-topological space. If A is P -
closed M-set and $A \subseteq B \subseteq \rho cl(A)$ with

Page | 706 www.ijsart.com

 $C_A(x) \leq C_B(x) \leq C_{\rho c l(A)}(x)$, for all $x \in X$, then B is ρ . closed M -sets.

Proof:

Let U be a $\widetilde{g}_{\text{-open}}$ $M_{\text{-sets of}}$ (M, τ) such that $B \subseteq U$. Then $A \subseteq U$ and since A is P-closed, we have $\text{cl}(A) \subseteq \text{int}(U)_{\text{Now}}$ $\text{gcd}(B) \subseteq \text{gcd}(\text{pol}(A)) = \text{pol}(A) \subseteq \text{int}(U)$ with $C_{pol(B)}(x) \leq C_{int(U)}(x)$, for all $x \in X$ Hence B is P . closed M -sets.

IV.. P-CONTINUOUS M-SET FUNCTIONS:

Throughout this paper \overline{X} denote a non – empty set, $M \in [x]^W$ and $C_M: X \to W$ where W is the set of all whole numbers.

Definition: 4.1

Let (M, τ) and (N, δ) be any two M-topological spaces. Any M-set function $f: (M, \tau) \rightarrow (N, \delta)$ is called ρ . continuous M-set function of $f^{-1}(V)$ is a ρ -closed M-set in (M, τ) for every closed M-set V in (N, δ) .

Example: 4.1.1

Let
$$
X = \{x, y\}, W_1 = 1_{\text{and}}
$$

$$
Y = \{a, b\}, W_2 = 2_{\text{Let}} M = \left\{\frac{1}{x}, \frac{1}{y}\right\}_{\text{and}} N = \left\{\frac{2}{a}, \frac{1}{b}\right\}_{\text{be}}
$$

$$
\tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}\right\}
$$
and
$$
\delta = \left\{\infty, \varphi, \left\{\frac{2}{a}\right\}\right\}_{\text{be two M-topologies on M and N}}
$$
respectively. Then (M, τ) ; (N, δ) the two topological

spaces. Now, P-closed M-sets of (M, τ) are: $M, \varphi, \{\frac{1}{x}\}, \{\frac{1}{y}\}$ and the closed M-sets of $(N, \delta)_{\text{are}}^M, \varphi, \{\frac{1}{b}\}\$ Let the M-set function $f:(M,\tau) \to (N,\delta)$ be

$$
f = \left\{ \frac{\frac{4}{\alpha} \frac{2}{\alpha}}{\frac{2}{\alpha} \frac{2}{\alpha}}, \frac{\frac{4}{\alpha} \frac{4}{\alpha}}{\frac{4}{\alpha}} \right\}
$$

defined as $\begin{bmatrix} 2 & 1 \end{bmatrix}$. Hence, f is p-continuous M-set function, as the inverse image of every closed M-set in (N, δ) is $\rho_{\text{-closed M-set in}}(M, \tau)$.

Definition : 4.2

Let (M, τ) and (N, δ) be any two M-topological space.Any M-set function $f: (M, \tau) \rightarrow (N, \delta)$ is called an irresolute M-set function if $f^{-1}(V)$ is open M-set in (M, τ) for every open M-set V in (N, δ) .

Example: 4.2.1

Let $X = \{x, y\}$, $W_1 = 2$ and $Y = \{a, b\}$, $W_2 = \mathbb{1}_{A \in \mathcal{X}} M = \{\frac{2}{x}, \frac{1}{y}\}$ and $N = \{\frac{1}{a}, \frac{1}{b}\}$ be two M-sets.

Let $\tau = \{M, \varphi, \{\frac{2}{x}\}, \{\frac{1}{y}\}$ and $\delta = \{\mathcal{N}, \varphi, \{\frac{1}{a}\}\}$ be two Mtopologies on M and N respectively. Then (M, τ) , (N, δ) the two M-topological spaces. Now, the open M-sets of (M, τ) are M , φ , $\left\{\frac{2}{x}\right\}$, $\left\{\frac{1}{y}\right\}$ and the open M-sets of (N, δ) are $N, \varphi, {\{1\}}$

Let the M-set function $f: (M, \tau) \rightarrow (N, \delta)$ be defined as $f = \begin{cases} \frac{2.4}{\sqrt{a}} - \frac{2.4}{\sqrt{b}}\\ 2.4 \end{cases}$. Here, f is irresolute M-set

function, as the inverse image of every open M-set in (N, δ) is open M-set in (M, τ) .

Definition: 4.3

Let (M, τ) and (N, δ) be any two M-topological space. Any M-set function $f'''(M, \tau) \rightarrow (N, \delta)$ is called a **P**-irresolute M-set function if $f^{-1}(V)$ is **P**-closed M-set in (M, τ) for every ρ -closed M-set V in (N, δ) .

Example: 4.3.1

Let
$$
X = \{x, y\}, W_1 = 2_{and}
$$

\n $Y = \{a, b\}, W_2 = 1$. Let $M = \{\frac{2}{x}, \frac{2}{y}\}$ and $N = \{\frac{1}{a}, \frac{1}{b}\}$ be
\nany two
\n $\tau = \{M, \varphi, \{\frac{1}{x}\}, \{\frac{1}{y}\}, \{\frac{2}{y}\}, \{\frac{1}{x}, \frac{2}{y}\}, \{\frac{1}{x}, \frac{1}{y}\}\}$
\n $\delta = \{\infty, \varphi, \{\frac{1}{a}\}\}$ be two M-tonologies on M and N

Page | 707 www.ijsart.com

respectively. Then (M, τ) , (N, δ) the two M-topological spaces. Now, the P -closed M-sets of (M, τ) are M , φ , $\left\{\frac{2}{x}\right\}$, $\left\{\frac{1}{x}, \frac{1}{y}\right\}$, $\left\{\frac{1}{x}\right\}$, $\left\{\frac{1}{x}, \frac{2}{y}\right\}$ and the ρ -closed M-sets of $(N, \delta)_{\text{are}}^N N, \varphi, \left\{\frac{1}{k}\right\}.$ Let the M-set function $f:(M,\tau)\to (N,\delta)$ be

defined as $f: \left\{ \frac{\frac{a}{\sqrt{b}}}{2}, \frac{\frac{a}{\sqrt{a}}}{2} \right\}$. Here, f is ρ -irresolute M-set function, as the inverse image of every P -closed M-set in

 (N, δ) is $\rho_{\text{-closed M-set in}}(M, \tau)$

Proposition: 4.4

Let (M, τ) , (N, δ) and (P, η) be any three Mtopological spaces. If $f: (M, \tau) \to (N, \delta)$ is a ρ -continuous M-set function and $g: (N, \delta) \rightarrow (P, \eta)_{\text{is a continuous M}}$ set function, then $gof: (M, \tau) \rightarrow (P, \eta)_{\text{is}} \rho_{\text{-continuous M}}$ set function

Proof:

Let V be any closed M-set in (P, η) . Since g is a continuous M-set function, $g^{-1}(V)$ is closed M-set in (N, δ) . Since f is ρ -continuous M-set function, $f^{-1}(g^{-1}(v)) = (g \circ f)^{-1}(v)$ is closed M-set in (M, τ) . Therefore \boldsymbol{g} of is a \boldsymbol{p} -continuous M-set function.

Proposition: 4.5

Let (M, τ) , (N, δ) and (P, η) be any three Mtopological spaces. If $f: (M, \tau) \to (N, \delta)$ is ρ -irresolute Mset function and $g: (N, \delta) \rightarrow (P, \eta)$ is a P -irresolute M-set function, then $g \circ f: (M, \tau) \to (P, \eta)$ is ρ -irresolute M-set function.

Proof: Let V be P -closed M-set in (P, η) . Since g is P irresolute M-set function, $g^{-1}(V)$ is P-closed M-set in (N, δ) . As f is ρ -irresolute M-set function, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\rho_{\text{closed } M\text{-set in}}$

 (M, τ) . Therefore **gof** is P -irresolute M-set function.

Preposition: 4.6

Let (M, τ) , (N, δ) and (P, η) be any three Mtopological spaces. If $f: (M, \tau) \rightarrow (N, \delta)$ is p-irresolute Mset function and $g: (N, \delta) \to (P, \eta)_{\text{is continuous M-set}}$ function, then $gof:(M,\tau) \to (P,\eta)$ is $\rho_{\text{-continuous M-set}}$ function.

Proof:

Let V be closed M-set in (P, η) . Since g is ρ . continuous M-set function, $g^{-1}(v)$ is P-closed M-set in (N, δ) . As f is ρ -irresolute M-set function, $f^{-1}g^{-1}(V) = (g \circ f)^{-1}(V)$ is $\rho_{\text{-closed M-set in}}(M, \tau)$. Therefore $\boldsymbol{g} \boldsymbol{o} f$ is \boldsymbol{p} -irresolute M-set function.

REPERENCES

- [1] Devamanoharan C and Pious Missier S., On P Continuous Functions, International Journal of Mathematical Archive-3(3), 2012, 1102-1112.
- [2] Ganambal Y.,On Generalized Preregular-closed sets in Topological

Spaces,Indian.J.Pune.Appl.Math.,28(3)(1997),351-360.

- [3] GirishK.P.,Sunil Jacob John.,On Multiset Topologies,computer and Mathematics with applications., 2 (2012),37-52.
- [4] JafariS.,PiousMisserS.,andDevamanoharan C., P -closed sets in Topological Spaces., 5(2012), 554-566.
- [5] Jafari S, Noiri T, Rajesh N and Thivagarn M. L., Another Generalization of closed sets, Kochi J. Math. 3 (2008), 25-38
- [6] James MunkerR.,Topology, Prentice Hall of Indian Private Limited,NewDelhi
- [7] LevineN.,Semi open sets, Semi-continuity in Topological spaces, Amer Math,70(1963),36-41.
- [8] Levine N., Generalized closed sets in topology, Rend circ. Math Palermo, 19(2) (1970), 89-96.
- [9] Mashour A.S, Abd El-MonsefM.E. and El-deep S.N. ,On pre-continuous and weak pre-continuous mapping Proc.Math.Phys.Soc.egypt.,53(1982),47-53.
- [10]Noiri T.,Maki H and Umehara J., Generalized pre-closed functions,Mem.Fac.Sci.Kochi.Univ.ser .Maths.,19(1998), 13-20.
- [11] Sundaram P. and Sheik John M., On ω -closed sets in Topology,Actaciencia Indian. 115 (2017), 1049-1056.