P-CLOSED M-SETS IN MULTI-SET **TOPOLOGICAL SPACES**

MPremkumar¹, ARenuga² and Dr. A Prasanna³

^{1, 2, 3} Assistant Professor, Dept of Mathematics

¹KongunaduCollege of Engineering & Technology, Namakkal-Trichy Main Road, ThottiamTaluk, Trichy, Tholurpatti-621215. Tamilnadu, India. ²Mahendra Institute of Engineering and Technology, Tiruchengode, Namakkal-637 503, Tamilnadu, India. ³Jamal Mohamed College (Autonomous), Tiruchirappalli-620020, Tamilnadu, India.

Abstract- The purpose of this paper is to introduce a new class of sets called *P* -open M-sets in multiset topological spaces and also we introduce a P-continuous M-set functions in multi-set topology. Also some of its interesting properties are discussed.

I. INTRODUCTION

The concept of generalized closed sets in a topological space was introduced by Levine N^[8].GanambalY^[2], introduced by On Generalized Pre regularclosed sets in Topological Spaces. Girish K P ,Sunil Jacob John^[3], introduced the concept of On Multi-set. Jafari S, Noiri T, Rajesh N and Thivagarn ML^[5]., introduced the Another Generalization of closed sets. James MunkersR^[6], introduced the notation on Topology. LevineN^[7]., introduced the Semi open sets, Semi-continuity in Topological spaces. Mashour A.S, Abd El-Monsef M E and El-deep S N^[9], discussed the On pre-continuous and weak pre-continuous mapping . Noiri T, Maki H and UmeharaJ^[10], introduced the Generalized pre-closed functions. Sundaram P and Sheik John $M^{[11]}$. ω-closed discussed the On sets in Topology.Devamanoharan C,Pious Missier S and JafariS^[4], introduced the notions of P -closed sets and P-open sets in topological spaces.Devamanoharan C, Pious Missier $S^{[1]}$, introduced the notions of P-continuous functions. In this paper we introduce new class of M-sets called P-closed Msets in multi-set topological spaces.

Key words and Phrases:

 ρ -closed, ρ -open, ρ -closed M-Sets, ρ -continuous, ρ continuous M-set function

II. PRELIMINARIES

Definition : 2.1

Page | 699

Let X be any non-empty set. A family ⁷ of subsets of X

is said to be a topology on X if and only if \mathbf{T} satisfies the following axioms:

- (i) \emptyset and X are in τ
- (ii) The union of the elements of any sub-collection of τ is in T.
- (iii) The finite intersection of the elements of any sub collection of \mathbf{T} is in \mathbf{T} . Then τ is a topology on X. The ordered pair (x,τ) is called a topological space.

Definition: 2.2

Let (x, τ) be a topological space. A subset A of x is said to be a preopen set if $A \subseteq \inf(cl(A))_{and pre-closed set if}$ $cl(\inf(A)) \subseteq A.$

Definition: 2.3

Let (x, τ) be a topological space. A subset A of X is said to be Semi Open set if $A \subseteq cl(inf(A))$ and Semi closed set if $\inf(cl(A)) \subseteq A$.

Definition: 2.4

Let (x, τ) be a topological space. A Subset A of X is said to be regular open set if $A = \inf(cl(A))$ and regular closed set if A = cl(inf(A))

Thought-out this paper (x, τ) , (y, δ) and (z, η) will always denote topological spaces and (M, τ) , (N, δ) and (P, η) denote Multiset topological spaces. Then inf(A), cl(A) denote the interior and closure of the set A, respectively. **Definition: 2.5**

IJSART - Volume 4 Issue 5 - MAY 2018

Let (x, τ) be a topological space. A subset set if $A \subseteq X$ is said to begeneralised pre-closed (briefly gp-closed) if whenever $A \subseteq U$ and U is open in X.

Definition: 2.6

Let (x, τ) be a topological space. A subset set if $A \subseteq X$ is said to be generalised pre-regular closed (briefly gpr-closed) if whenever $A \subseteq U$ and U is regular open in X.

Definition: 2.7

Let(x, τ) be a topological space. A subset A \subseteq X is said to be \hat{g} -closed set if cl(A) \subseteq U whenever A \subseteq U and U is a \hat{g} -closed set if cl(A) \subseteq U whenever A \subseteq U and U is a \hat{g} -open set in(x, τ). The complement of a \hat{g} -closed set is said to be a \hat{g} -open set.

Definition: 2.8

Let (x, τ) be a topological space. A subset $A \subseteq X$ is said to be * \mathcal{G} -closed set if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is semi open set in (x, τ) . The complement of a $\hat{\mathcal{G}}$ -closed set is said to be a g^ open set.

Definition: 2.9

Let (X, τ) be a topological space. A subset $A \subseteq X$ is said to be a \neq gs-closed set if $Scl(A) \subseteq U$ whenever $A \subseteq U$ and U is a *g-open set in (X, τ) . The complement of a \neq gs-closed set is said to be \neq gs-closed set is said to be \neq gs-open set.

Definition: 2.10

Let (X, τ) be a topological space. A subset $A \subseteq X$ is said to be a \tilde{g} -closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a \neq gs-open set in (X, τ) . The complement of a \tilde{g} closed set is said to be a \tilde{g} - open set.

Definition: 2.11

Let (X, τ) be a topological space. A subset A of X is said to be $\rho_{\text{-closed set if}} \rho \operatorname{cl}(A) \subseteq \operatorname{int}(U)$ whenever $A \subseteq U$ and U is $\tilde{g}_{-\text{open}}$ in $(X, \tau)_{-}$ Definition: 2.12

Let (X, τ) and (N, δ) be any two topological spaces. A function $f: (X, \tau) \to (Y, \delta)$ is said to be ρ continuous if $f^{-1}(V)$ is ρ -closed in (x, τ) for every ρ closed set V of (Y, δ) .

Definition: 2.13

Let (X, τ) and (N, δ) be any two topological spaces. A function $f: (X, \tau) \to (Y, \delta)$ is said to be ρ irresolute if $f^{-1}(V)$ is ρ -closed in (x, τ) for every ρ closed set V of (Y, δ) .

Definition: 2.14

A M-set M drawn from the set X is represented by a function count M or C_M defined as $C_M: X \to W$ where W represents the set of whole numbers.

Example: 2.14.1

Let $X = \{x, y, z\}_{be any set and } W = 3$. Then $M = \left\{\frac{3}{x}, \frac{2}{y}, \frac{3}{z}\right\}_{is an M-set drawn from } X$. Clearly, a set is a special case of a M-set.

Definition: 2.15

A sub M-set N of M is a whole sub M-set of M with each element in N having full multiplicity as in M.

i.e., $C_N(x) = C_M(x)$ for every $x_{\rm in} N$.

Definition: 2.16

A sub M-set N of M is a partial whole sub M-set of M with atleast one element in N having full multiplicity as in M.

$$i.e., C_N(x) = C_M(x) \text{ for some } x \text{ in N}.$$

Definition: 2.17

A sub M-set N of M is a full sub M-set of M if each element in M is an element in N with the same or lesser multiplicity as in M.

i.e.,
$$M^* = N^*$$
 with $C_N \leq C_M(x)$ for every x in N.

Example: 2.17.1

Let $M = \left\{\frac{2}{\pi}, \frac{3}{p}, \frac{5}{z}\right\}$ be an M-set. Following are the some of the sub M-set of M which are whole sub M-sets, partial whole sub M-sets and full sub M-sets.

a) A Sub M-set $\left\{\frac{2}{x}, \frac{3}{y}\right\}$ is a whole sub M-set a partial whole sub M-set of M but it is not full sub M-set of М

- b) A sub M-set $\left\{\frac{1}{x}, \frac{3}{y}, \frac{2}{z}\right\}$ is a partial whole sub M-set and full sub M-set of M but it is not a whole sub Mset of M.
- c) A sub M-set $\left\{\frac{1}{x}, \frac{3}{y}\right\}$ is partial whole sub M-set of M which neither whole sub M-set nor full sub M-set of M.

Definition: 2.18

A sub M-set R of $M \times M$ is said to be an M-set relation on M if for every member $\left(\frac{m}{x}, \frac{n}{y}\right)$ of R has a count, product of $c_1(x,y)_{\text{and}} c_2(x,y)$. We denote $\frac{m}{x}$ related to $\frac{n}{y_{\rm by}}\frac{m}{x}R\frac{n}{y_{\rm c}}$

Definition: 2.19

A M-set relation f is called an M-set function if for every element $\overline{*}$ in Dom F, there is exactly one Ran f such that $\left(\frac{m}{x}, \frac{n}{y}\right)$ is in f with the pair occurig as the product of $c_1(x,y)_{\text{and}} c_2(x,y)$

Example: 2.19.1

$$M_1 = \left\{\frac{8}{\alpha}, \frac{6}{\gamma}\right\}_{\text{and}} M_2 = \left\{\frac{2}{\alpha}, \frac{5}{b}\right\}_{\text{be two M-sets}}$$

Then an M-set function from M_1 to M_2 may be defined as

 $f = \begin{cases} \frac{\left(\frac{s}{x'a}\right)}{16}, \frac{\left(\frac{s}{y'b}\right)}{30} \end{cases}$

Definition: 2.20

Let $M \in [x]_{and}$ $\tau \subseteq \rho^*(M)$. Then τ is called

Multiset topology of M if T satisfies the following properties

- a) A M-set M and the empty M-set Ψ are in τ .
- b) The M-set union of the elements of any sub collection of T is in T .
- The M-set intersection of the elements of any c) finite subcollection of $\boldsymbol{\tau}$ is in $\boldsymbol{\tau}$.

Definition: 2.21

A sub M-set N of an M-topological space M in $[x]^{W}$ is said to be closed if the M-set $M \ominus N$ is open. i.e., $N^c = M \Theta N$

Example: 2.21.1

Let
$$X = \{x, y, z\}, W = 2$$
 and $M = \left\{\frac{2}{x}, \frac{1}{y}, \frac{1}{z}\right\}_{\text{be}}$
a M-set drawn from x. Let
 $\tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{2}{x}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}, \left\{\frac{2}{x}, \frac{1}{y}\right\}\right\}_{\text{Clearly}}, \tau$ is an M-

topology and (M, τ) is an M-topological space.

Then the complement of any sub M-set N is a Mtopological space (M, τ) is shown as:

a). If
$$N = \left\{\frac{2}{x}, \frac{1}{y}\right\}$$
, then $N^{\sigma} = \left\{\frac{1}{z}\right\}$ and b). If $N = \left\{\frac{1}{x}\right\}$ then $N^{\sigma} = \left\{\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right\}$

Definition: 2.22

Given a sub M-set A of an M-topological space M in $[x]^{W}$, the interior of A is defined as the M-set union of all open M-sets contained in A and is denoted by Int (A).

i.e., Int (A) = $\bigcup \{ G \subseteq M : G \text{ is open } M \text{-set and} \}$ $G \subseteq A$ and

$$C_{int(A)}(x) = \max\{C_G(x): G \subseteq A, G \in \tau\}$$

Definition: 2.23

Given a sub M-set A of a M-topological space M in $[x]^{W}$, the closure of A is defined as the M-set intersection of all closed M-sets containing A and is denoted by cl(A).

i.e. $cl(A) = \cap \{K \subseteq M : K \text{ is a closed } M$ set and $A \subseteq K$ and $C_{\sigma I(A)}(x) = \min\{C_K(x): A \subseteq K, K \in \tau^{\sigma}\}$

Example: 2.23.1

Let $X = \{a, b, c\}, W = 3$ and $M = \left\{\frac{2}{a}, \frac{2}{b}, \frac{1}{c}\right\}_{\text{be}}$ the M-set on X. Let $\tau = \left\{ M, \varphi, \left\{ \frac{2}{a} \right\}, \left\{ \frac{2}{b} \right\}, \left\{ \frac{2}{a}, \frac{2}{b} \right\} \right\}$. Clearly, τ is a M-topology and the ordered pair $(M, \tau)_{is}$ an Mtopological space. Then $\tau^{c} = \left\{ \varphi, M, \left\{ \frac{2}{b}, \frac{1}{c} \right\}, \left\{ \frac{2}{a}, \frac{1}{c} \right\}, \left\{ \frac{1}{c} \right\} \right\}$ Let $A = \left\{\frac{2}{b}, \frac{1}{c}\right\}$ be the sub M-set of M. Then Int $(A) = \left\{\frac{2}{b}\right\}_{and} cl(A) = \left\{\frac{2}{a}, \frac{1}{c}\right\}$

Definition: 2.24

Let M and N be two M-topological spaces. The M-set function $f: M \to N$ is said to be continuous if for each open sub M-set V of N, the M-set $f^{-1}(V)$ is an open sub M-set of M, where $f^{-1}(V)$ is the M-set of all points $\frac{M}{N}$ in M for which $f\left(\frac{m}{x}\right) \in^{n} V$ for some n.

 $M = \left\{ \frac{5}{a}, \frac{4}{b}, \frac{4}{c}, \frac{3}{d} \right\} \text{ and } N = \left\{ \frac{7}{a}, \frac{5}{y}, \frac{6}{c}, \frac{4}{w} \right\} \text{ be}$

Example: 2.24.1

two M-sets, then $\tau = \left\{ M, \varphi, \left\{ \frac{\mathbf{E}}{\alpha} \right\}, \left\{ \frac{\mathbf{E}}{\alpha}, \frac{\mathbf{4}}{b} \right\}, \left\{ \frac{\mathbf{E}}{\alpha}, \frac{\mathbf{4}}{b}, \frac{\mathbf{4}}{c} \right\} \right\}$ $\sigma = \left\{ N, \varphi, \left\{ \frac{7}{x} \right\}, \left\{ \frac{5}{y} \right\}, \left\{ \frac{7}{x}, \frac{5}{y} \right\}, \left\{ \frac{5}{y}, \frac{6}{y}, \frac{4}{w} \right\} \right\}_{\text{be two } M}.$

topologies on M and N respectively.

Consider two M-set function
$$f: M \to N$$
 and
 $g: M \to N$ are given by
$$f = \begin{cases} \left(\frac{\delta}{a'y}\right) & \left(\frac{4}{b'z}\right) & \left(\frac{4}{c'w}\right) & \frac{\delta}{a'x} \\ \frac{\delta}{25}, & \frac{4}{c'w}, & \frac{\delta}{a'x} \\ \frac{\delta}{24}, & \frac{4}{16}, & \frac{\delta}{18} \\ \frac{\delta}{25}, & \frac{\delta}{24}, & \frac{\delta}{12} \\ \frac{\delta}{25}, & \frac{\delta}{24}, & \frac{\delta}{12} \\ \frac{\delta}{25}, & \frac{\delta}{24}, & \frac{\delta}{12} \\ \frac{\delta}{25}, & \frac{\delta}{25}, & \frac{\delta}{25}, & \frac{\delta}{25} \\ \frac{\delta}{25}, & \frac{\delta}{25}, & \frac{\delta}{25}, & \frac{\delta}{25}, & \frac{\delta}{25}, & \frac{\delta}{25}, & \frac{\delta}{25} \\ \frac{\delta}{25}, & \frac{\delta}{25}, &$$

continuous since the inverse of each member of the Mtopology σ on N is a member of the M-topology τ on M.

The M-set function g is not continuous. Since $\left\{\frac{5}{y}, \frac{6}{z}, \frac{4}{w}\right\} \in \mathbf{6}$. i.e., an open M-se of N, but its inverse image $g^{-1}\left(\left\{\frac{5}{v},\frac{6}{s},\frac{4}{w}\right\}\right) = \left\{\frac{4}{s},\frac{3}{d}\right\}_{\text{is not an open sub M-set of M,}}$ because the M-set $\left\{\frac{4}{\sigma}, \frac{3}{d}\right\}$ does not belong to τ .

Definition: 2.25

Let M and N be two M-sets drawn from a set X. Then, the following are defined

a)
$$M = N$$
 if $C_M(x) = C_N(x)$ for all $x \in X$
b) $M \subseteq N$ if $C_M(x) \leq C_N(x)$ for all $x \in X$
c) $P = M \cup N$ if $C_P(x) = Max \{C_M(x), C_N(x)\}$
for all $x \in X$
d) $P = M \cap N$ if $C_P(x) = Min \{C_M(x), C_N(x)\}$
for all $x \in X$
e) $P = M \bigoplus N$ if $C_P(x) = C_M(x) + C_N(x)$ for
all $x \in X$
f) $P = M \bigoplus N$ if $M \oplus N$ if $C_P(x) = C_M(x) + C_N(x)$ for

$$C_{P}(x) = Max\{C_{M}(x) - C_{N}(x), 0\}_{\text{for}} \quad \text{all}$$
$$x \in X$$

where \oplus and \ominus represents M-set addition and M-set subtraction respectively.

Definition: 2.26

A domain X is defined as a set of elements from which M-sets are constructed. The M-set space $[x]^{W}$ is the set of all M-sets whose elements are in X such that no elements in the M-set occurs more than W times.

The set $[x]^{\infty}$ is the set of all M-sets over a domain X such that there is no limit on the number of occurrences of an element in an M-set.

III. BASIC PROPERTIES OF P-CLOSED M-SETS

Throughout this paper X denote a non - empty set, $M \in [x]^{W}$ and $C_{M}: X \to W$ where W is the set of all whole numbers.

Definition: 3.1

Let (M, τ) be an M-topological space. A sub M-set A of M is said to be a pre open M-set if $A \subseteq int (cl(A))_{\text{with}} C_A(x) \leq C_{int(cl(A))}(x), \text{ for all } x \in X.$ The complement of the pre open M-set is said to be a pre closed M-set if $A \supseteq cl(int(A))_{\text{with}}$ $C_A(x) \geq C_{cl(int(A))}(x), \text{ for all } x \in X.$

Definition: 3.2

Let (M, τ) be a M-topological space. Then the preclosure of a M-set is denoted by $\rho cl(A)$ and defined as $\rho cl(A) = 0$

 $\bigcap \{B: B \supseteq A, each \ B \subseteq M \ is \ a \ preclosed \ M - set \}$, for all $x \in X$.

Example: 3.2.1

Let $X = \{x, y\}, W = 2_{\text{and}}$ $M = \left\{\frac{2}{x}, \frac{1}{y}\right\}, \tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}\right\}_{\text{. Clearly, } \tau \text{ is}}$ M-topology and the ordered pair (M, τ) is a M-topological space. Now, the preopen M-sets are: $M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}_{\text{. Clearly, } \tau \text{ is}}$

Let $A = \left\{\frac{2}{x}\right\}_{\text{be a sub M-set of M. Then}} pcl(A) = \left\{\frac{2}{x}\right\}_{x}$

Definition: 2.3

Let (x, τ) be a topological space. A subset A of X is said to be Semi Open set if $A \subseteq cl(\inf(A))$ and Semi closed set if $\inf(cl(A)) \subseteq A$.

Definition: 3.4

Let (M, τ) be M-topological space. A sub M-set A of M is said to be semi open M-set if $A \subseteq cl(int(A))$ with $C_A(x) \leq C_{cl(int(A))}(x)$ for all $x \in X$. The complement of the semi-open M-set is said to be a semi closed M-set if $A \supseteq int(cl(A))$ with $C_A(x) \geq C_{int(cl(A))}(x)$ for all $x \in X$.

Example: 3.4.1

Let
$$X = \{x, y\}, W = 2_{\text{and}}$$
$$M = \left\{\frac{2}{x}, \frac{2}{y}\right\}, \tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}\right\}.$$

Page | 703

Clearly, τ is a M-topology and the ordered pair (M, τ) is a M-topological space. Now, the semi open M-sets are: $M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}$ and the semi closed M-sets are $\varphi, M, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{2}{x}\right\}, \left\{\frac{2}{x}, \frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}$.

Definition: 3.5

Let (M, τ) be a M-topological space. A sub M-set A of M is said to be a regular open M-set if A = int(cl(A))with $C_A(x) = C_{int(cl(A))}(x)$ for all $x \in X$. The complement of the regular open M-set is said to be a regular closed M-set if $A = cl(int(A))_{with}$ $C_A(x) = C_{cl(int(A))}(x)_{, \text{ for all } x \in X}$.

Example: 3.5.1

 $X = \{x, y, z\}, W = 2_{and}$ Let $M = \left\{\frac{1}{x}, \frac{1}{y}, \frac{2}{z}\right\}, \tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}\right\}_{\text{clearly}, \tau}$ is a M-topology and the ordered pair (M, τ) be a Mtopological space. Now, the closed M-sets are: $M, \varphi, \left\{\frac{1}{y}, \frac{2}{z}\right\}, \left\{\frac{1}{x}, \frac{2}{z}\right\}, \left\{\frac{2}{z}\right\}_{\text{Let}} A = \left\{\frac{1}{x}\right\}_{\text{be a sub M-set of}}$ $int(cl(A)) = \left\{\frac{1}{n}\right\}A = int(cl(A))_{with}$ M. Then $C_A(x) = C_{int(\sigma i(A))}(x)$, for all $x \in X$. Hence A is a M-set. Its complement open regular $A^{z} = M \bigoplus A = \left\{\frac{1}{y}, \frac{2}{z}\right\}_{is a regular closed M-set, since}$ $A = cl(int(A))_{with} C_A(x) = C_{int(cl(A))}(x)$

Definition: 3.6

Let (M, τ) be a M-topological space. A sub M-set $A \subseteq M$ is said to be a generalized pre closed (briefly gpclosed) if $\rho cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open Mset in (M, τ) with $C_{\rho cl(A)}(x) \leq C_U(x)$, for all $x \in X$. The complement of gp-closed M-set is said to be a gp-open M-set.

Example: 3.6.1

Let
$$X = \{x, y\}, W = 2_{\text{and}}$$
$$M = \left\{\frac{1}{x}, \frac{1}{y}\right\}, \tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}\right\}_{\text{Clearly}, \tau \text{ is}}$$

a M-topological space. Here, the pre closed M-sets are: $M, \varphi, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}$ and the gp-closed M-sets are: $M, \varphi, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}$.

Definition: 3.7

Let (M, τ) be a M-topological space. A sub M-set $A \subseteq M$ is said to be a generalized pre regular closed M-set (briefly gpr-closed) if $\rho cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open M-set in (M, τ) . Then complement of gpr-closed M-set is said to be a gpr-open M-set.

Example: 3.7.1

Let
$$X = \{x, y\}, W = 2_{\text{and}}$$
$$M = \left\{\frac{1}{x}, \frac{2}{y}\right\}, \tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}\right\}_{\text{Clearly, } \tau \text{ is}}$$

a M-topology and the ordered pair (M, τ) is a M-topological space. Here, the pre closed M-sets are: $M, \varphi, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}$ and the regular open M-sets are: $M, \varphi, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}$. Hence the gpr-closed M-sets are: $M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}$ and the gpr-open M-sets are: $M, \varphi, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}$.

Definition: 3.8

a) Let (M, τ) be an M-topological space. A sub M-set $A \subseteq M$ is said to be a \tilde{g} closed M-set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open M-set in (M, τ) with $C_{cl(A)} \leq C_U(x)_{\text{whenever}} \quad C_A(x) \leq C_U(x)_{\text{,}}$ for all $x \in X$. The complement of a \tilde{g} -closed M-set is said to be a \tilde{g} -open M-set.

b) Let (M, τ) be an M-topological space. A sub M-set $A \subseteq M$ is said to be a *g-closed M-set if

$$cl(A) \subseteq U_{\text{whenever}} A \subseteq U_{\text{and U is a}} \hat{g}_{-}$$
open M-set in (M, τ) with
 $C_{cl(A)}(x) \leq C_U(x)$ whenever
 $C_A(x) \leq C_U(x)$ for all $x \in X$. The
complement of a *g-closed M-set is said to be a
*g-open M-set.
c) Let (M, τ) be an M-topological space. A sub M-set

- t) Let (M, τ) be an M-topological space. A sub M-set $A \subseteq M$ is said to be a \neq_{gs} -closed M-set if $Scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $*g_{open M-set in} (M, \tau)$ with $C_{Scl(A)} \leq C_U(x)$ whenever $C_A(x) \leq C_U(x)$ for all $x \in X$. The complement of a \neq_{gs} -closed M-set is said to be a \neq_{gs} -open M-set.
- d) Let (M, τ) be an M-topological space. A sub M-set $A \subseteq M$ is said to be a $\tilde{\mathscr{G}}$ -closed M-set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a \neq gsopen M-set in (M, τ) with $C_{cl(A)}(x) \leq C_U(x)$ whenever $C_A(x) \leq C_U(x)$, for all $x \in X$. The complement of a $\tilde{\mathscr{G}}$ -closed M-set is said to be a $\tilde{\mathscr{G}}$ -open M-set.
- e) Let (M, τ) be an M-topological space. A sub M-set $A \subset M$ is said to be a p-closed M-set if $\rho cl(A) \subseteq int(U)$ whenever $A \subseteq U$ and U is a \tilde{g} -open M-set in (M, τ) with $C_{\rho cl(A)}(x) \leq C_{int(U)}(x)$ whenever $C_A(x) \leq C_U(x)$, for all $x \in X$. The complement of a p-closed M set is said to be a p-

complement of a p-closed M-set is said to be a p-open M-set.

Example: 3.8.1

Let
$$X = \{x, y\}, W = 2$$
 and
 $M = \left\{\frac{2}{x}, \frac{2}{y}\right\}, \tau =$
 $\left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}\right\}.$

Clearly^{*T*} is an M-topology and the ordered pair (M, τ) is a M-topological space. Here, the pre closed M-sets are: $M, \varphi, \left\{\frac{2}{x}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{2}{x}, \frac{1}{y}\right\}$ and the semi open

M-sets are: $M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}$ and the \tilde{g} . open M-sets are: $M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}$ the *g-open M-sets are: $M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}$ the ≠gs-open M-sets are: the $M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}$ and the \tilde{g} -open M-sets $M, \varphi, \left\{\frac{1}{x}, \frac{1}{y}\right\}, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \text{Hence the } \rho.$ closed M-sets are: $M, \varphi, \left\{\frac{2}{x}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{2}{x}, \frac{1}{y}\right\}$

Preposition: 3.9

Let (M, τ) be a M-topological space. If a sub M-set A of M is open and pre closed, then A is a P-closed M-set. Proof

Let A be an open and pre closed sub M-set of $(M, \tau)_{\text{. Let}} A \subseteq U_{\text{and U be}} \tilde{g}_{\text{-open M-set in}} (M, \tau)_{\text{. Then}}$ $\rho cl(A) = A = Int(A), \rho cl(A) \subseteq int(U)$ with $C_{\rho\sigma l(A)} \leq C_{int}(U)_{\text{for all }} x \in X_{\text{. Hence A is }} \rho_{\text{-closed M-}}$ set

shown from the Example 3.8.1

Example: 3.9.1

Let
$$X = \left\{\frac{1}{x}, \frac{1}{y}\right\}, W = 2_{\text{and}}$$
$$M = \left\{\frac{2}{x}, \frac{2}{y}\right\}, \tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}\right\}.$$

Clearly, τ is a M-topology and the ordered pairs (M, τ) is an M-topological space. Here, the open M-sets are $= M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}$ and the pre closed M-sets are $M, \varphi, \left\{\frac{2}{x}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{2}{x}, \frac{1}{y}\right\}_{\text{and the}}$ **p**-closed are $M, \varphi, \left\{\frac{2}{x}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{2}{x}, \frac{1}{y}\right\}.$ Here, the ρ -closed $V = \left\{\frac{2}{x}\right\}$ is pre closed M-set but it is not an open M-

Preposition: 3.10

The converse of Proposition 3.9 need not be true as

Let
$$(M, \tau)_{\text{be an M-topological space. Every }} \rho_{-}$$

ISSN [ONLINE]: 2395-1052

closed M-set is gpr-closed M-set.

Proof:

Let A be any $\rho_{\text{-closed M-set. Let}} A \subseteq U_{\text{and}} U_{\text{be}}$ regular open M-set. Observe that every regular open M-set is open M-set and every open M-set is \tilde{g} -open M-set and therefore A is P-closed M-set. It follows that $\rho cl(A) \subseteq int(U) = U_{with} C_{\rho cl(A)} \leq C_U(x)_{for all}$ $x \in X$. Hence A is gpr-closed M-set.

The converse of Proposition 3.10 need not be true as shown from the Example 3.9.1

Example: 3.10.1

 $x = \{a, b\}, W = 1_{and}$ Let $M = \left\{\frac{1}{a}, \frac{1}{b}\right\}, \tau = \left\{M, \alpha, \left\{\frac{1}{a}\right\}\right\}.$ Clearly, τ is an M-topology and the ordered pairs (M, τ) is an M-topological. Here, the gpr-closed M-sets are $M, \varphi, \left\{\frac{1}{a}\right\}, \left\{\frac{1}{b}\right\}$ and the ρ -closed Msets are: $M, \varphi, \left\{\frac{1}{b}\right\}$. Here gpr-closed M-set $V = \left\{\frac{1}{a}\right\}$ is not ρ . closed M-set.

Remark:

The union of two p -closed M-sets need not be pclosed M-set.

Example: 3.10.2

Let
$$X = \{x, y, z\}, W = 2_{\text{and}}$$
$$M = \left\{\frac{2}{x}, \frac{2}{y}, \frac{1}{z}\right\}, \tau = \left\{m, \varphi, \left\{\frac{2}{x}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{2}{x}, \frac{2}{y}\right\}\right\}_{\text{Clearly, } \tau}$$

is an M-topological space. Here, the *P*-closed M-set are: $M, \varphi \left\{ \frac{1}{z} \right\}, \left\{ \frac{2}{y}, \frac{1}{z} \right\}, \left\{ \frac{2}{x}, \frac{1}{z} \right\}, \left\{ \frac{1}{x}, \frac{1}{z} \right\}, \left\{ \frac{2}{x}, \frac{1}{y}, \frac{1}{z} \right\}, \left\{ \frac{1}{x}, \frac{2}{y}, \frac{1}{z} \right\}, \left\{ \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \right\}$ $U = \left\{ \frac{2}{x}, \frac{1}{z} \right\} \text{ and } V = \left\{ \frac{1}{x}, \frac{2}{y}, \frac{1}{z} \right\} \text{ be } \rho_{\text{-closed M-sets.}}$ $U \cup V = \left\{\frac{2}{x}, \frac{2}{y}, \frac{1}{z}\right\}_{\text{is not } \rho_{\text{-closed M-set.}}}$ But

Proposition: 3.11

Let (M, τ) be an M-topological space. If a sub M-set A of (M, τ) is \tilde{g} -open and ρ -closed M-set, then A is preclosed M-set in (M, τ) .

Proof:

If a sub M-set A of (M, τ) is \tilde{g} -open M-set and p-closed M- $\rho cl(A) \subseteq Int(A) \subseteq A_{with}$ set. Then $C_{gel(A)}(x) \leq C_A(x)$, for all $x \in X$. Hence A is pre-closed M-set in (M, τ) .

The Converseof proposition 3.11 need not be true as shown from the example 3.10.2.

Example: 3.11.1

Let $X = \{x, y\} W = 2$ and $M = \{\frac{2}{x}, \frac{2}{y}\}$ $\tau = \left\{ M, \varphi, \{2/_{\chi}\}, \{1/_{\chi}\}, \{2/_{y}\}, \{1/_{\chi}, 2/_{y}\} \right\}_{\text{Clearly}, \tau}$ is an $M_{\text{-topology}}$ and the ordered pair (M, τ) is an $M_{\text{-}}$ topological space. Here, the preclosed M-sets are $M, \varphi, \{2/_{\mathcal{X}}\}, \{1/_{\mathcal{X}}\}, \{2/_{\mathcal{Y}}\}, \{1/_{\mathcal{Y}}\}, \{1/_{\mathcal{X}}, 1/_{\mathcal{Y}}\}, \{2/_{\mathcal{X}}, 1/_{\mathcal{Y}}\}$ $\tilde{g}_{-\text{open}}$ M_{-sets} the and $M, \varphi, \{2/x\}, \{1/x\}, \{2/y\}, \{1/x, 2/y\}$ and the $\rho_{\text{-closed}}$ M_{-sets} $M, \varphi, \{2/_x\}, \{1/_x\}, \{2/_y\}, \{1/_y\}, \{1/_x, 1/_y\}, \{2/_x, 1/_y\}$ Here, the preclosed $M_{\text{-set}} V = \{1/x, 1/y\}_{\text{is}} \rho_{\text{-closed}} M_{\text{-set}}$ sets but it is not \tilde{g} -open M-sets.

Proposition: 3.12

Let (M, τ) be an M-topological space. If a sub M-set A of (M, τ) is open and regular closed then A is P-closed Mset.

Proof:

Let A be open M-set and regular closed M-set.Since regular closed M-set is pre-closed M-set. Then A is open and

pre-closed M-set.By proposition 2.1, A is *P*-closed M-set.

The Converseof proposition 3.12 need not be true as shown from the example 3.11.1.

Example: 3.12.1

Let
$$X = \{x, y\}, W = 2$$
 and $M = \{\frac{2}{x}, \frac{2}{y}\}, \tau = \{M, \varphi, \{\frac{1}{x}\}, \{\frac{1}{y}\}, \{\frac{2}{y}\}, \{\frac{1}{x}, \frac{2}{y}\}, \{\frac{1}{x}, \frac{1}{y}\}\}$
.Clearly, τ is an M -topology and the ordered pair (M, τ) is
an M -topological space.Here, the regular closed M -sets are
 $M, \varphi, \{\frac{1}{x}\}, \{\frac{1}{x}, \frac{2}{y}\}, \{\frac{1}{x}, \frac{1}{y}\}$ and the ρ -
closed M -sets are
 $M, \varphi, \{\frac{2}{x}\}, \{\frac{1}{x}\}, \{\frac{2}{y}\}, \{\frac{1}{x}, \frac{1}{y}\}, \{\frac{2}{x}, \frac{1}{y}\}, \{\frac{1}{x}, \frac{2}{y}\}$
.Here, the ρ -closed M -set $V = \{\frac{2}{x}, \frac{1}{y}\}$ is not open M -set

Definition:3.13

and is not regular closed^M-sets.

an

Let (M, τ) be an M-topological space. Then the semiclosure of an M-set A is denoted by scl(A) and defined as scl(A) = $\cap \{B: B \supseteq A, each \ B \subseteq M \ is \ a \ semiclosed \ M - \}$ set} $\begin{bmatrix} 1^{\text{with}} & 2 \\ d_{x_{cl}(A)} \end{pmatrix} = \min \{B: B \supseteq A, each B \subseteq A, each B \subseteq A \}$ M is a semiclosed M - set } .for all $x \in X$.

Example : 5.15.1

$$\begin{bmatrix}
 1/_{x}, 2/y \\
 Let X = {x, y}, W = 2_{and}

 M = {2/_{x}, 2/_{y}} \tau =

 {M, \varphi, {1/_{x}}, {1/_{y}}, {2/_{y}}, {1/_{x}, 2/_{y}}, {1/_{x}, 1/_{y}}
 }$$

Clearly, τ is an M-topology and the ordered pair (M, τ) is an M-topological space.Now the semi open M-set are:

$$M, \varphi, \{2/_{x}\}, \{1/_{x}\}, \{1/_{x}, 1/_{y}\}, \{2/_{x}, 1/_{y}\}, \{1/_{x}, 2/_{y}\}$$

$$A = \{2/_{x}, 1/_{y}\} \text{ be a sub M-set of } (M, \tau). \text{Then}$$

$$scl(A) = \{2/_{x}, 1/_{y}\}_{and} Sint(A) = \{1/_{x}, 1/_{y}\}.$$

Proposition: 3.14

	Let	$(M,\tau)_{be}$	an M	I-topological space. If A is P.
closed		M-set	and	$A \subseteq B \subseteq \rho cl(A)_{\text{with}}$

Page | 706

www.ijsart.com

ISSN [ONLINE]: 2395-1052

 $C_A(x) \le C_B(x) \le C_{\rho cl(A)}(x), \text{ for all } x \in X, \text{ then B is } \rho_{-}$ closed $M_{-\text{sets.}}$

Proof:

Let U be a $\tilde{\mathcal{G}}$ -open M-sets of (M, τ) such that $B \subseteq U$. Then $A \subseteq U$ and since A is ρ -closed, we have $\rho cl(A) \subseteq int(U)$.Now $\rho cl(B) \subseteq \rho cl(\rho cl(A)) = \rho cl(A) \subseteq int(U)$ with $C_{pcl(B)}(x) \leq C_{int(U)}(x)$, for all $x \in X$.Hence B is ρ closed M-sets.

IV. . *P*-CONTINUOUS M-SET FUNCTIONS:

Throughout this paper X denote a non – empty set, $M \in [x]^{W}$ and $C_{M}: X \to W$ where W is the set of all whole numbers.

Definition: 4.1

Let (M, τ) and (N, δ) be any two M-topological spaces. Any M-set function $f: (M, \tau) \to (N, \delta)$ is called $\rho_$ continuous M-set function of $f^{-1}(V)$ is a ρ -closed M-set in $(M, \tau)_{\text{for every closed M-set V in }}(N, \delta)$.

Example: 4.1.1

Let
$$X = \{x, y\}, W_1 = \mathbf{1}_{and}$$
$$Y = \{a, b\}, W_2 = \mathbf{2}_{. Let} M = \left\{\frac{1}{x}, \frac{1}{y}\right\}_{and} N = \left\{\frac{2}{a}, \frac{1}{b}\right\}_{be}$$
$$\tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}\right\}_{and}$$
and

 $\delta = \left\{ \infty, \varphi, \left\{ \frac{2}{a} \right\} \right\}$ be two M-topologies on M and N respectively. Then $(M, \tau); (N, \delta)$ the two topological spaces. Now, ρ -closed M-sets of (M, τ) are; $M, \varphi, \left\{ \frac{1}{x} \right\}, \left\{ \frac{1}{y} \right\}$ and the closed M-sets of $(N, \delta)_{are}$ $M, \varphi, \left\{ \frac{1}{b} \right\}$.

Let the M-set function
$$f: (M, t) \to (N, 0)$$
 by

$$f = \begin{cases} \frac{1}{N' a}, \frac{1}{y' b} \\ \frac{1}{y' b} \end{cases}$$

defined as $\begin{bmatrix} 2 & 1 \end{bmatrix}$. Hence, f is p-continuous M-set function, as the inverse image of every closed M-set in (N, δ) is $\rho_{-closed M-set in} (M, \tau)$.

Definition : 4.2

Let (M, τ) and (N, δ) be any two M-topological space. Any M-set function $f: (M, \tau) \to (N, \delta)$ is called an irresolute M-set function if $f^{-1}(V)$ is open M-set in (M, τ) for every open M-set V in (N, δ) .

Example: 4.2.1

Let $X = \{x, y\}, W_1 = 2$ and $Y = \{a, b\}, W_2 = \mathbf{1}_{j\text{Let}} M = \left\{\frac{2}{x}, \frac{1}{y}\right\}_{and} N = \left\{\frac{1}{a}, \frac{1}{b}\right\}_{be}$ two M-sets.

Let $\tau = \{M, \varphi, \{\frac{2}{x}\}, \{\frac{1}{y}\}\}$ and $\delta = \{N, \varphi, \{\frac{1}{\alpha}\}\}$ be two Mtopologies on M and N respectively. Then $(M, \tau), (N, \delta)$ the two M-topological spaces. Now, the open M-sets of (M, τ) are $M, \varphi, \{\frac{2}{x}\}, \{\frac{1}{y}\}$ and the open M-sets of (N, δ) are $N, \varphi, \{\frac{1}{\alpha}\}$

> Let the M-set function $f: (M, \tau) \to (N, \delta)$ be $f = \begin{cases} \frac{2}{N} \frac{1}{\alpha} & \frac{1}{N} \\ \frac{2}{\gamma} & \frac{1}{\gamma} \\ \frac{2}{\gamma} & \frac{1}{\gamma} \end{cases}$ Here, f is irresolute M-set

defined as $\begin{pmatrix} 2 & 1 \end{pmatrix}$. Here, f is irresolute M-set function, as the inverse image of every open M-set in (N, δ) is open M-set in (M, τ) .

Definition: 4.3

Let (M, τ) and (N, δ) be any two M-topological space. Any M-set function $f''(M, \tau) \rightarrow (N, \delta)$ is called a ρ -irresolute M-set function if $f^{-1}(V)$ is ρ -closed M-set in $(M, \tau)_{\text{for every}} \rho_{-\text{closed M-set V in}}(N, \delta)$.

Example: 4.3.1

Let
$$X = \{x, y\}, W_1 = 2_{\text{and}}$$
$$Y = \{a, b\}, W_2 = 1, \text{ Let } M = \left\{\frac{2}{x}, \frac{2}{y}\right\}_{\text{and}} N = \left\{\frac{1}{\alpha}, \frac{1}{b}\right\}_{\text{be}}$$
any two M-sets. Let
$$\tau = \left\{M, \varphi, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{y}\right\}, \left\{\frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}\right\}$$
and
$$\delta = \left\{\infty, \varphi, \left\{\frac{1}{\alpha}\right\}\right\}_{\text{be two M-topologies on M and N}}$$

www.ijsart.com

Page | 707

respectively. Then (M, τ) , (N, δ) the two M-topological spaces. Now, the ρ -closed M-sets of (M, τ) are $M, \varphi, \left\{\frac{2}{x}\right\}, \left\{\frac{1}{x}, \frac{1}{y}\right\}, \left\{\frac{1}{x}\right\}, \left\{\frac{1}{x}, \frac{2}{y}\right\}$ and the ρ -closed M-sets of $(N, \delta)_{\text{are}} N, \varphi, \left\{\frac{1}{b}\right\}$.

Let the M-set function $f: (M, \tau) \to (N, \delta)$ be $f: \left\{ \frac{\frac{\alpha}{2}}{2}, \frac{\frac{\alpha}{2}}{2} \right\}$. Here, f is ρ -irresolute M-set

defined as $\binom{2}{2}$. Here, f is ρ -irresolute M-set function, as the inverse image of every ρ -closed M-set in (N, δ) is ρ -closed M-set in (M, τ) .

Proposition: 4.4

Let $(M, \tau), (N, \delta)$ and (P, η) be any three Mtopological spaces. If $f: (M, \tau) \to (N, \delta)$ is a ρ -continuous M-set function and $g: (N, \delta) \to (P, \eta)_{is}$ a continuous Mset function, then $gof: (M, \tau) \to (P, \eta)_{is} \rho$ -continuous Mset function

Proof:

Let V be any closed M-set in (P, η) . Since g is a continuous M-set function, $g^{-1}(V)$ is closed M-set in (N, δ) . Since f is ρ -continuous M-set function, $f^{-1}(g^{-1}(v)) = (gof)^{-1}(v)$ is closed M-set in (M, τ) . Therefore gof is a ρ -continuous M-set function.

Proposition: 4.5

Let $(M, \tau), (N, \delta)$ and (P, η) be any three Mtopological spaces. If $f: (M, \tau) \to (N, \delta)$ is $\rho_{\text{-irresolute M-set}}$ set function and $g: (N, \delta) \to (P, \eta)$ is a $\rho_{\text{-irresolute M-set}}$ function, then $gof: (M, \tau) \to (P, \eta)$ is $\rho_{\text{-irresolute M-set}}$ function.

Proof:

Let V be ρ -closed M-set in (P, η) . Since g is ρ irresolute M-set function, $g^{-1}(V)$ is ρ -closed M-set in (N, δ) . As f is ρ -irresolute M-set function, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is ρ -closed M-set in (M, τ) . Therefore gof is ρ -irresolute M-set function.

Preposition: 4.6

Let $(M, \tau), (N, \delta)$ and (P, η) be any three Mtopological spaces. If $f: (M, \tau) \to (N, \delta)$ is p-irresolute Mset function and $g: (N, \delta) \to (P, \eta)_{is}$ continuous M-set function, then $gof: (M, \tau) \to (P, \eta)_{is} \rho$ -continuous M-set function.

Proof:

Let V be closed M-set in (P, η) . Since g is ρ continuous M-set function, $g^{-1}(v)$ is ρ -closed M-set in (N, δ) . As f is ρ -irresolute M-set function, $f^{-1}g^{-1}(V) = (gof)^{-1}(V)$ is ρ -closed M-set in (M, τ) . Therefore gof is ρ -irresolute M-set function.

REPERENCES

- Devamanoharan C and Pious Missier S., On *P* Continuous Functions, International Journal of Mathematical Archive-3(3), 2012, 1102-1112.
- [2] Ganambal Y.,On Generalized Preregular-closed sets in Topological

Spaces, Indian. J. Pune. Appl. Math., 28(3)(1997), 351-360.

- [3] GirishK.P.,Sunil Jacob John.,On Multiset Topologies,computer and Mathematics with applications., 2 (2012),37-52.
- [4] JafariS., PiousMisserS., and Devamanoharan C., *P*-closed sets in Topological Spaces., 5(2012), 554-566.
- [5] Jafari S, Noiri T, Rajesh N and Thivagarn M. L., Another Generalization of closed sets, Kochi J. Math. 3 (2008), 25-38
- [6] James MunkerR.,Topology, Prentice Hall of Indian Private Limited,NewDelhi
- [7] LevineN.,Semi open sets, Semi-continuity in Topological spaces, Amer Math,70(1963),36-41.
- [8] Levine N., Generalized closed sets in topology, Rend circ. Math Palermo, 19(2) (1970), 89-96.
- [9] Mashour A.S, Abd El-MonsefM.E. and El-deep S.N. ,On pre-continuous and weak pre-continuous mapping Proc.Math.Phys.Soc.egypt.,53(1982),47-53.
- [10] Noiri T., Maki H and Umehara J., Generalized pre-closed functions, Mem.Fac.Sci.Kochi.Univ.ser .Maths., 19(1998), 13-20.
- [11] Sundaram P. and Sheik John M., On ⁶⁰-closed sets in Topology, Actaciencia Indian. 115 (2017), 1049-1056.