
IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 2961 www.ijsart.com

Concurrency Control Mechanism In Distributed
Database System

Prof. Dimple Kanani1 Prof. Brijal Patel2

1, 2 Assistant Professor, Dept of Information Technology
1, 2 Vadodara Institute of Engineering, Vadodara, India

Abstract- the need and improvement in distributed database
system is of paramount importance in today’s world. Today’s
high-volume data storage is increasing online transaction
processing that will lead to concurrency control; each
transaction should follow ACID Property. The difficulties
mostly faced in distributed database system is Protecting the
ACID property i.e. when concurrent transactions perform
read and write atomicity, consistency, integrity and durability
of the database should be preserved and Recovery method to
be used when distributed database crashes. Ideas that are
used in the design, development, and performance of
concurrency control mechanisms have been summarized. The
ACID Property, issues in concurrency control and locking
mechanisms are included.

Keywords- concurrency control, Distributed database system,
ACID Property, Lock

I. INTRODUCTION

 A database transaction is a unit of work performed
against a database management system or similar system that
is treated in a coherent and reliable way independent of other
transactions. A transaction is Logical Units of Work that made
of read (read(x)) and write (write(x)) operation.

A database transaction, by definition, must be atomic,
consistent, isolated and durable. These properties of database
transactions are often referred to by the ACID.

The ACID model is one of the oldest and most
important concepts of database theory. It sets forward four
goals that every database management system must strive to
achieve: atomicity, consistency, isolation and durability. No
database that fails to meet any of these four goals can be
considered reliable.

Atomicity states that database modifications must
follow an “all or nothing” rule. Each transaction is said to be
“atomic.” If one part of the transaction fails, the entire
transaction fails. It is critical that the database management
system maintain the atomic nature of transactions in spite of
any DBMS, operating system or hardware failure.

Consistency checks correctness of data. It states that
only valid data will be written to the database. If, for some
reason, a transaction is executed that violates the database’s
consistency rules, the entire transaction will be rolled back and
the database will be restored to a state consistent with those
rules. On the other hand, if a transaction successfully executes,
it will take the database from one state that is consistent with
the rules to another state that is also consistent with the rules.

Isolation requires that multiple transactions occurring
at the same time not impact each other’s execution. For
example, if Joe issues a transaction against a database at the
same time that Mary issues a different transaction, both
transactions should operate on the database in an isolated
manner. The database should either perform Joe’s entire
transaction before executing Mary’s or vice-versa. This
prevents Joe’s transaction from reading intermediate data
produced as a side effect of part of Mary’s transaction that will
not eventually be committed to the database. But the isolation
property does not ensure which transaction will execute first,
merely that they will not interfere with each other.

Durability works for permanent changes. It also
ensures that any transaction committed to the database will not
be lost. Durability is ensured through the use of database
backups and transaction logs that facilitate the restoration of
committed transactions in spite of any subsequent software or
hardware failures.

BeginTrans - Commit Tran - Rollback Tran:
Transactions group a set of tasks into a single execution unit.
Each transaction begins with a specific task and ends when all
the tasks in the group successfully complete. If any of the

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 2962 www.ijsart.com

tasks fails, the transaction fails. Therefore, a transaction has
only two results: success or failure. Incomplete steps result in
the failure of the transaction.

II. TRANSACTION STATES

 Begin Transaction
 Rollback Transaction
 Commit Transaction

Begin Transaction Marks the starting point of an

explicit, local transaction. BEGIN TRANSACTION

Rollback Transaction if anything goes wrong with

any of the grouped statements, all changes need to be aborted.
The process of reversing changes is called rollback in SQL
Server terminology.

Commit Transaction If everything is in order with all
statements within a single transaction, all changes are recorded
together in the database. In SQL Server terminology, we say
that these changes are committed to the database.

III. TRANSACTION MODES

1. Autocommit transactions: Each individual statement is a
transaction.

2. Explicit transactions: Each transaction is explicitly started
with the BEGIN TRANSACTION statement and
explicitly ended with a COMMIT or ROLLBACK
statement.

3. Implicit transactions: A new transaction is implicitly
started when the prior transaction completes, but each
transaction is explicitly completed with a COMMIT or
ROLLBACK statement.

If you want all your commands to require an explicit

COMMIT or ROLLBACK in order to finish, you can issue the
command SET IMPLICIT_TRANSACTIONS ON. By
default, SQL Server operates in the autocommit mode; it does
not operate with implicit transactions. Any time you issue a
data modification command such as INSERT, UPDATE, or
DELETE, SQL Server automatically commits the transaction.
However, if you use the SET IMPLICIT_TRANSACTIONS
ON command, you can override the automatic commitment so
that SQL Server will wait for you to issue an explicit
COMMIT or ROLLBACK statement to do anything with the
transaction. This can be handy when you issue commands
interactively, mimicking the behavior of other databases such
as Oracle.

IV. CONCURRENCY

When many people attempt to modify data in a

database at the same time, a system of controls must be
implemented so that modifications made by one person do not
adversely affect those of another person. This is called
concurrency control.

4.1 Concurrency control theory has two classifications for
the methods of instituting concurrency control:

4.1.1 Pessimistic concurrency control

A system of locks prevents users from modifying
data in a way that affects other users. After a user performs an
action that causes a lock to be applied, other users cannot
perform actions that would conflict with the lock until the
owner releases it. This is called pessimistic control because it
is mainly used in environments where there is high contention
for data, where the cost of protecting data with locks is less
than the cost of rolling back transactions if concurrency
conflicts occur.

4.1.2 Optimistic concurrency control

in optimistic concurrency control, users do not lock
data when they read it. When an update is performed, the
system checks to see if another user changed the data after it
was read. If another user updated the data, an error is raised.
Typically, the user receiving the error rolls back the
transaction and starts over. This is called optimistic because it
is mainly used in environments where there is low contention
for data, and where the cost of occasionally rolling back a
transaction outweighs the costs of locking data when read.

4.2 Issues:

4.2.1 Dirty reads Uncommitted dependency occurs when a
second transaction selects a row that is being updated by
another transaction. The second transaction is reading data that
has not been committed yet and may be changed by the
transaction updating the row.

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 2963 www.ijsart.com

In this example Transaction A writes a record.
Meanwhile Transaction B reads that same record
before Transaction A commits. Later Transaction A decides to
rollback and now we have changes in Transaction B that are
inconsistent. This is a dirty read. TransactionB was running
in READ_UNCOMMITTED isolation level so it was able to
read Transaction A changes before a commit occurred.

4.2.2 Unrepeatable reads: Inconsistent Analysis
(Nonrepeatable Read) Inconsistent analysis occurs when a
second transaction accesses the same row several times and
reads different data each time. Inconsistent analysis is similar
to uncommitted dependency in that another transaction is
changing the data that a second transaction is reading.
However, in inconsistent analysis, the data read by the second
transaction was committed by the transaction that made the
change. Also, inconsistent analysis involves multiple reads
(two or more) of the same row and each time the information
is changed by another transaction; thus, the term
nonrepeatable read.

In this example Transaction A reads some record.
Then Transaction B writes that same record and commits.
Later Transaction A reads that same record again and may get
different values because Transaction B made changes to that
record and committed. This is a non-repeatable read.

4.2.3 Phantom problem:

Phantom reads occur when an insert or delete action
is performed against a row that belongs to a range of rows

being read by a transaction. The transaction’s first read of the
range of rows shows a row that no longer exists in the second
or succeeding read, as a result of a deletion by a different
transaction. Similarly, as the result of an insert by a different
transaction, the transaction’s second or succeeding read shows
a row that did not exist in the original read.

For example, an editor makes changes to a document

submitted by a writer, but when the changes are incorporated
into the master copy of the document by the production
department, they find that new unedited material has been
added to the document by the author. This problem could be
avoided if no one could add new material to the document
until the editor and production department finish working with
the original document.

Lost Updates:

Lost updates occur when two or more transactions

select the same row and then update the row based on the
value originally selected. Each transaction is unaware of other
transactions. The last update overwrites updates made by the
other transactions, which results in lost data.

V. TYPES OF ISOLATION LEVELS

The transaction isolation levels help to determine
whether the concurrently running transactions in a DB can
affect each other or not. If there are 2 or more transactions
concurrently accessing the same Database, then we need to
prevent the actions of the transactions from interfering with
each other. It can be achieved by the isolation levels.

5.1. READ COMMITTED: Specifies that shared locks are
held while the data is being read to avoid dirty reads, but the
data can be changed before the end of the transaction,
resulting in nonrepeatable reads or phantom data. This option
is the SQL Server default.READ_COMMITTED isolation
level states that a transaction can't read data that is not yet
committed by other transactions.

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 2964 www.ijsart.com

READ UNCOMMITTED: Implements dirty read, or isolation
level 0 locking, which means that no shared locks are issued
and no exclusive locks are honored. When this option is set, it
is possible to read uncommitted or dirty data; values in the
data can be changed and rows can appear or disappear in the
data set before the end of the transaction. This option has the
same effect as setting NOLOCK on all tables in all SELECT
statements in a transaction. This is the least restrictive of the
four isolation levels.

In this example Transaction A writes a record.
Meanwhile Transaction B reads that same record
before Transaction A commits. Later Transaction A decides to
rollback and now we have changes in Transaction B that are
inconsistent. This is a dirty read. Transaction B was running
in READ_UNCOMMITTED isolation level so it was able to
read Transaction A changes before a commit occurred.

5.2 REPEATABLE READ: Locks are placed on all data that

is used in a query, preventing other users from updating
the data, but new phantom rows can be inserted into the
data set by another user and are included in later reads in
the current transaction. Because concurrency is lower than
the default isolation level, use this option only when
necessary.

5.3 SERIALIZABLE
Places a range lock on the data set, preventing other users
from updating or inserting rows into the data set until the
transaction is complete. This is the most restrictive of the
four isolation levels. Because concurrency is lower, use
this option only when necessary. This option has the same
effect as setting HOLDLOCK on all tables in all SELECT
statements in a transaction. SERIALIZABLE transaction
isolation level is the default isolation level for the COM+
application

5.4

It provides the highest level of isolation. If set then it
helps us to prevent all problems like dirty reads, non-
repeatable reads and phantom reads. Transactions are executed

with locking at all levels (read, range and write locking) so
they appear as if they were executed in a serialized way.

Locking: A solution to problems arising due to concurrency.
Locking of records can be used as a concurrency control
technique to prevent the above mentioned problems. A
transaction acquires a lock on a record if it does not want the
record values to be changed by some other transaction during
a period of time. The transaction releases the lock after this
time.

VI. CONCLUSION

Distributed database system is considered to be more
reliable than centralized database system. We also described
the concurrency control mechanism. Many organizations are
now deploying distributed database systems. Therefore, we
have no choice but to ensure that these systems operate in a
secure environment and integrity[1]. Security is concerned
with the assurance of confidentiality, integrity, and availability
of information in all forms. There are many tools and
techniques that can support the management of distributed
database security. We discuss the basic concept of
concurrency control in distributed database systems and also
issued the various techniques for concurrency control in
distributed environments. ACID properties of database is of
utmost importance and it has to be maintained while
concurrently accessing the database.

REFERENCES

[1] Manoj Kumar Sah 1, Vinod Kumar 2, Ashish Tiwari ,

“Security and Concurrency Control in Distributed
Database System”,International Journal of scientific
research and management (IJSRM), Volume 2, Issue 12
2014,, Pages 1839-1845, ISSN (e): 2321-3418

[2] Gupta V.K., Sheetlani Jitendra, Gupta Dhiraj and Shukla
Brahma Datta, “Concurrency Control and Security issues
of Distributed Databases Transaction”, International
Science Congress Association - Research Journal of
Engineering, Vol. 1(2), 70-73, August 2012, ISSN 2278 –
9472.

[3] Daniel A. Menasce And Richard R. Muntz, Member,
IEEE, “Locking And Deadlock Detection In Distributed
Data Bases” IEEE Transactions On Software
Engineering, Vol. Se-5, No. 3, May 1979

[4] Prof. Vinayak Sinde, Preeti A. Aware, “Concurrency
Control In Distributed Database Systems ”, International
Journal For Research In Engineering Application &
Management (Ijream) ISSN : 2494-9150 Vol-01, Issue
10, Jan 2016.

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 2965 www.ijsart.com

[5] Gupta V.K., Sheetlani Jitendra, Gupta Dhiraj and Shukla
Brahma Datta, “Concurrency control and Security issues
in Distributed Database system”, Vol. 1(2), 70-73, August
(2012)

