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Abstract- With the advancement in the technology, 
management and processing of data in real-time has become 
the need of the hour. Whatever data is being received needs to 
be stabilizing very frequently, in order to get the maximum 
value out of it. The term best defines this is the ‘Big Data’, 
which deals with Volume, Velocity and Variety. Managing 
such a large amount of data is not only expensive but also 
time consuming. The primary purpose of this research paper 
is to address this issue by considering some iterative data like 
‘Product Structure’. Product Structures are unavoidable and 
the maintenance of its completeness, consistency and 
correctness requires a lot of effort. 

 
Further, in this research paper, Hadoop technology 

is proposed by the researchers for cost effectiveness. There is 
an issue of time consumption for the incoming data in real 
time, so to address this problem ‘Kafka’ and ‘Spark’ are used. 
Researchers used ‘Spark’ and ‘Apache Kafka’ to resolve the 
issue of data processing and data streaming respectively and 
further ‘Sqoop’ is used for local database. 
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I. INTRODUCTION 

 
 Big Data is a term that describes the large volume of 
data- structured, unstructured and semi-structured – that 
overwhelm a business on a day-to-day basis. It’s been seen 
that nowadays large amount of data are being generated with 
the blink of an eye. But it is not the amount of data that is 
important; it’s what the organization does with the data that 
matters. Big Data can be analyzed for insights that lead to 
better decisions and strategic business moves. Since the 
amount of data that is created and stored on a global level is 
almost unbelievable, and it is increasing regularly, so we can 
say that the potential of Big Data is very high. That means 
there is even more potential to obtain key insights from 
business information – yet only a small percentage of data is 
actually analyzed. One can take data from any source and 
analyze it to find answers that would make possible the 
following- 1) Cost reduction, 2) New product development 
and optimized offerings, 3) Time reduction and 4) Smart 

decision making. The way organizations manage and derive 
insights from it is changing the way the world uses business 
information. There are various areas where we can see its 
effects including 1) Banking, 2) Education, 3) Government, 4) 
Health Care, 5) Manufacturing, 6) Retails. After processing 
and analyzing the data and insights, products and services that 
emerge from analysis, we get the primary value from the big 
data. The sweeping changes in big data technologies and 
management approaches needed to be accompanied by similar 
dramatic shifts in how data supports decisions and 
product/service innovation. The sources of Big Data are 
required to be understood first rather than directly moving 
towards how Big Data works for the business. The sources for 
big data generally fall into one of the three categories: 1) 
Streaming data, 2) Social media data, 3) Publicly available 
sources. These are considered as the basic sources for fetching 
of data that can be further converted into information. After 
identifying all the potential sources for data, consider the 
decision one will have to make once the process of harnessing 
information begins. These include: 1) How to store and 
manage it, 2) How much to analyze, 3) How to use any 
insights you uncover. Now, as per the use of the information 
one can move ahead with the well-furnished information 
gained from a large amount of data. 
 

Since unstructured data is very large and complex, 
for analyzing such kind of data Hadoop is used as it has 
distributed storage and distributed processing framework. This 
is an open source and is freely available. Hadoop is designed 
to support Big Data – Data that is too big for any traditional 
database technologies to accommodate. Since it is not usually 
possible for traditional technologies to carry Big Data, Hadoop 
came into picture. Unstructured data is BIG – really BIG in 
maximum cases. In HDFS data is being stored as files. 
Hadoop does not have any schema or a structure for the data 
that has to get stored. Hadoop uses applications like Sqoop, 
HIVE, HBASE etc in order to import and export data from 
traditional and non-traditional databases. Hadoop will import 
the unstructured data for converting it into a structured form 
and then after getting structured or semi-structured data it will 
export the data into traditional databases for further analysis. 
Hadoop is a very powerful tool for writing customized codes. 
Typically complex algorithms are being involved for the 



IJSART - Volume 4 Issue 4 – APRIL 2018                                                                                       ISSN [ONLINE]: 2395-1052 
 

Page | 3062                                                                                                                                                                   www.ijsart.com 
 

analysis of unstructured data. Hadoop framework could be 
used for exploiting the benefits and achieving the efficiency 
and reliability, since, algorithms of any complexity can be 
resolved by the programmers. User needs to understand the 
data at a crude level and appropriately program any algorithm 
they want to use. Hadoop gives this kind of flexibility to the 
users. 

 
Terabytes of data and sometimes more can be 

processed that makes to run different applications on systems 
that involve thousands of nodes and due to the use of 
distributed File System in Hadoop, it is made possible. During 
cases when there is node failure it can be continued with its 
operations. Catastrophic system failure would not occur due to 
a single point of failure. For large clusters of data Hadoop, an 
open-source MapReduce implementation is being built up. 
JobTracker is a single master node and it contains different 
slave nodes called TaskTrackers. Hadoop runs at its best in 
Ubuntu. As the data that is being collected from the social 
sites (say Twitter or Facebook) is random in nature, hence the 
processing of the data is to be done in such a way that the 
randomness in the data should get removed. According to the 
types of data its arrangement needs to be done and then sorting 
of the arranged data is to be done. This sorting is done for 
better understanding. Sorting of username can be according to 
the expression they use or the departments they belong to, or 
any other criteria. MapReduce technique with suitable 
algorithm could be used for the processing of the data. As per 
the user specifications,    MapReduce processes the data in 
order to arrange it. There are two types of HDFS nodes: 
DataNode and NameNode. The DataNode stores the data 
blocks of the files in HDFS and NameNode contains the 
metadata, with the enumeration of blocks of HDFS and a list 
of DataNode in the cluster. 

 
MapReduce technique is mainly used for parallel 

processing of data set across various clusters known as 
filtering, performed by the map function and generating 
computation result by aggregation, which is the reduce 
function. Mapper, Combiner and Partitioner are the 3 sub tasks 
that are needed to be performed by the Map Job. Mapper 
involves the mapping of data, Combiner combines the mapped 
data and Partitioner splits the data into small clusters, after 
which the shuffling key/value of map job to unique reduce job 
is done. Mapper, Combiner and Partitioner all three of them 
perform their tasks separately but each of its performance is 
depended upon each other. Joiner and reducer are 2 subtasks 
involved in reduce job. The joiner holds the joining of the 
intermediate results from the map jobs and reducer subtask is 
used for performing aggregation. After the map and reduce 
jobs, the end result is stored in Hadoop Distributed File 
System (HDFS). The Hadoop distributed File System output 

for a MapReduce job can be used to store the final results of 
map reduce process and the output can be viewed by browsing 
the file system in the name node log. The processing of the 
MapReduce process is given by job details log and then the 
job is considered to be completed. NameNode log also 
contains information about the cluster summary, capacity of 
the file system, distributed file system used and remaining and 
also the number of live nodes and dead nodes. The NameNode 
and JobTracker Details are obtained as the result of the 
execution of Map Reduce process. NameNode log can be used 
to locate the output directory of the file system and the output 
of the map reduce job. 

 

 
Fig 1: Map Reduce Jobs 

 
MapReduce programming model is used for the 

processing of Hadoop in an efficient manner, but when it 
comes to iterative algorithms in such kind of scenarios, 
MapReduce is not that much efficient. In case of MapReduce, 
after every Map Phase, the resultant is taken from memory and 
then it is exported into disk. Importing and exporting of data 
in an iterative algorithm needs to be done every time, which 
will culminate into a very tedious and time consuming 
process. Apache Spark performs all the computation in its own 
memory and persist the data in memory whenever necessary 
and that is the solution to the problem about which we were 
talking about. 
 

II. PRODUCT STRUCTURE 
 
For hierarchical decomposition of a product, we use a 

term called Product Structure, typically known as the bill of 
materials (BOM). As business becomes more responsive to 
unique consumer tastes and derivatives products grow to meet 
the unique configuration, BOM management can become 
unmanageable. It contains all the necessary information 
starting from a smallest component to the most complex one. 
Following activities takes place within product structure 
modeling: 1) Define product components, 2) Define product 
assortment, 3) Product structuring, 4) Create master structure, 
5) Documenting, 6) Define product structure views. 
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In this paper the Product Structure is considered as an example 
in order to show what all information is required for 
manufacturing a product. And how well the information is 
made available when that is required. 
 

III. DATA CONSUMPTION & PROCESSING 
 
In the data consumption phase, we need to gather the 

Product Structure data. Kafka is used to consume that data and 
that is what we are doing in this research which is considered 
to be the first step. This is followed by processing phase where 
the consumed Product Structure data is compared with the 
existing Product Structure data already stored in HDFS or 
HIVE. For real-time data consumption and data processing, 
here in this paper, we are using two tools namely Kafka and 
Spark. In data consumption phase data is extracted from the 
data source and consumed via Kafka. Spark is configured to 
pull data from Kafka as and when it is available and that too in 
the data processing phase. 

 
A. Apache Kafka 

 
Regarding large amount of data, which is actually 

what the Big Data talks about, we have two main challenges. 
The first challenge is the collection of large volume of data 
and the second challenge is analyzing that collected large 
amount of data. A messaging system is required in order to 
overcome those challenges. Kafka is designed for distributed 
high throughput systems. For replacement of more traditional 
message broker Kafka tends to work very efficiently. On 
comparing Kafka with other different messaging systems, it 
provides us with better built-in partitioning, throughput, 
inherent fault-tolerance and replication, so if one wants to go 
for large scale message processing applications, Apache Kafka 
is the right choice. Though an application needs to be focused 
more on data, they don’t have to worry about how one is going 
to share it because the main responsibility of a messaging 
system is transferring data from one application to another. 
Reliable messaging queuing is the concept on which the 
Distributed messaging is based. Between client applications 
and messaging system, queuing of messages is done 
asynchronously. Apache Kafka enables us to pass messages 
from one end-point to another. It also handles high volume of 
data through robust queuing, making it a distributed publish-
subscribe messaging system. For both online and offline 
message consumption Kafka is suitable. For preventing data 
loss, Kafka messages are persisted on the disk and also 
replicated within the cluster. For Zookeeper synchronization 
service Kafka is on the top. For real time streaming data 
analysis Apache Kafka integrates very well with Apache 
Storm and Spark. The following are the components of Kafka: 

(i) Kakfa Broker: Multiple brokers are typically required in 
a Kafka cluster in order to maintain load balance. 
Zookeeper is used for maintaining Kafka cluster state 
since Kafka broker are stateless. TB of messages are 
handled by each broker without performance impact and 
hundreds of thousands of read and writes per seconds are 
handled at an instance by one Kafka broker. Zookeeper 
has the privilege for doing election of Kafka leader. 

(ii) ZooKeeper: Kafka broker are managed and coordinated 
by the using Zookeeper. If there is a presence of any new 
broker or if any incident of failure of broker occurs in 
the Kafka system, Zookeeper service is mostly used in 
such scenario to notify about such incidents to producer 
and consumer. Producer and consumer will get the 
information about the presence or failure of broker from 
the Zookeeper and then they will start taking quick 
decisions and also start coordinating their task with some 
other broker. 

(iii) Kafka Producer: Brokers get data that is being pushed by 
the producers. All the producers search for a new broker 
and automatically start sending messages to that new 
broker. Kafka producer sends messages as fast as they 
can and this sending also depends on how fast broker 
handles the messages. By that we mean to say that Kafka 
producer doesn’t wait for acknowledgements from 
broker side. 

(iv) Kafka Consumer: Kafka consumer needs to maintain 
how many messages have to be consumed by using 
partition offset, because Kafka brokers are stateless. If 
the consumer has consumed all prior messages, in such 
cases consumer will acknowledge a particular message 
offset. In order that a consumer wants to have a buffer of 
bytes ready to consume, the consumer will issue an 
asynchronous pull request. By supplying an offset value 
the consumer can skip or rewind to any point in a 
partition. Zookeeper is responsible for notifying about 
the consumer offset value. 

 
B. Apache Spark: 

 
For fast computation, Apache Spark is suggested to 

be used as it provides lightning-fast cluster computing 
technology. For more types of computation like interactive 
queries and stream processing, one can extend MapReduce, 
since Spark is based upon Hadoop MapReduce. Apache Spark 
owns in-memory cluster computing that increases the 
processing speed of an application and this feature is 
considered the main feature of Spark. Different kinds of 
workloads such as batch applications, iterative algorithms, 
interactive queries and streaming are all covered under spark. 
We can say that spark is designed in a way to cover all of the 
above-mentioned workloads. By maintaining separate tools, it 
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reduces management burden, apart from supporting all these 
workloads in a respective system. Spark uses Hadoop in two 
ways – One is storage and second is processing. Since Spark 
has its own cluster management computation, it uses Hadoop 
for storage purpose only. Apache Spark provides three main 
features that are 1) Speed, 2) Supports multiple languages, 3) 
Advanced Analytics. Following are the components of Apache 
Spark: 

 
(i) Apache Spark Core: For spark platform, the underlying 

general engine on which all other functionality is built 
upon is Spark Core. Referencing datasets in external 
storage systems and In-memory computing all are being 
provided under it. 

(ii) Spark SOL: Introduction of a new data abstraction called 
SchemaRDD is through Spark SQL. It is a component on 
top of Spark Core and support to structured and semi-
structured is being provided under this. 

(iii) Spark Streaming: Spark streaming leverages Spark 
Core’s fast scheduling capability to perform streaming 
analytics. It consumes data in mini-batches and performs 
RDD (Resilient Distributed Datasets) transformation on 
those mini-batches of data. 

(iv) MLlib (Machine Learning Library): Because of the 
distributed memory-based Spark architecture above 
Spark, there is MLlib which is a distributed machine 
learning framework. When a benchmark is to be done 
MLlib developers compare it against Alternating Least 
Squares (ALS) implementation. As compared to Hadoop 
disk-based version of Apache Mahout (before Mahout 
gained a Spark interface), Spark Mllib is found to be 
nine times faster than Hadoop disk-based version of 
Apache Mahout. 

(v) GraphX: On the top of spark, GraphX is placed which is 
distributed graph-processing framework. 

 
C. Sqoop 

 
Apache Sqoop is used for efficiently transferring bulk 

data between Apache Hadoop and structure data stores such as 
relational databases. For an efficient execution of tasks at a 
much lower cost, Sqoop helps to offload certain tasks (such as 
ETL processing) from the EDW to Hadoop. For extracting 
data from Hadoop and exporting it into external structures data 
stores Sqoop can be used. Some relational databases such as 
Teradata, Netezza, Oracle, MySQL, Postgres and HSOLDB 
for working with the following relational databases Sqoop can 
be used. Apache Sqoop does the following to integrate bulk 
data movement between Hadoop and Structures data stores: 
(i)  For importing sequential datasets from mainframe: It 

satisfies the growing need to move data from mainframe 
to HDFS 

(ii) Import direct to ORCFiles: Improved compression and 
light-weight indexing for improved query performance. 

(iii) For importing data: Moves certain data from external 
stores and EDWs into Hadoop to optimize cost-
effectiveness of combined data storage and processing 

(iv) Parallel data transfer: For faster performance and optimal 
system utilization 

(v) Fast data copies: From external systems into Hadoop 
(vi) Efficient data analysis: Improves efficiency of data 

analysis by combining structures data with unstructured 
data in a schema-on-read data lake 

(vii) Managing load balancing: Mitigates excessive storage and 
processing loads to other systems. 

 
YARN coordinates data ingest from Apache Sqoop 

and other services that delivers data into the Enterprise 
Hadoop cluster. 
 
D. HIVE 

 
For processing structured data in Hadoop one can use 

Hive, as Hive is a data warehouse infrastructure tool. In order 
to make querying and analyzing easy, it resides on the top of 
Hadoop to summarize Big Data. Facebook has started Hive 
initially and then later Apache Software Foundation took it up 
for doing further development as an open source and named it 
as Apache Hive and from then onwards many companies 
started using it. For example, Amazon uses it in Amazon 
Elastic MapReduce. Hive is not 1) A relational database, 2) A 
design for OnLine Transaction Processing (OLTP), 3) A 
language for real-time queries and low-level updates. Features 
of Hive 1) It stores schema in a database and processed data 
into HDFS, 2) It is designed for OLAP, 3) It provides SQL 
type language for querying called HiveQL or HQL 4) It is 
familiar, fast, scalable and extensible. 
 

IV. INTEGRATION OF KAFKA & SPARK 
 
In this paper, Product Structure data is streamed 

using Kafka and it is further processed using Spark. Both the 
data consumption and data processing operations can be 
performed in real-time. Extracting the product structure data 
as and when it is available in the data source (data source can 
be a data server) and then immediately streaming it via Kafka 
makes the product structure data available for real time 
processing. 

 
In the data processing phase, the resultant value after 

comparing the product structure data streamed into Spark with 
the Product Structure data already stored in Hive or HDFS is 
exported using Sqoop. To carry out this process, it is essential 
to check the correctness of the product structure data initially, 
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because after the consumption phase the product, structure 
data is directly compared with other existing product structure 
data stored in HDFS. Hence any defects in product structure 
will lead to improper productions. Fig 2 shows the flow chart 
for data consumption, processing and then exporting the 
resultant delta value. 

 
Hence the product structure data is extracted from the 

data source and it is consumed via Kafka into Spark. In Kafka 
when the message is published to the Kafka topic zookeeper 
will be updated. This message will be consumed by the 
consumer based on its requests. The consumer sends the 
request along with an offset. This offset specifies the position 
of the message from where it wants to read. These offsets are 
maintained by the Zookeeper every time there is 
communication between the Kafka producers, Kafka 
consumer and the Zookeeper. This communication ensures 
that the message is consumed into Spark only once and hence 
it avoids redundancy. Since Zookeeper keeps Kafka topic, 
producer and consumer coordinate with each other. Kafka 
consumer can be accurate about which messages are 
successfully consumed into Spark. This is done by keeping 
track of the message offsets. Hence it ensures that no message 
is delivered to spark multiple times. 

 

 
Fig 2: Flow chart for consumption, processing and exporting 

Product Structure 

Product Structure data consumed via Kafka is in xml 
format. Spark puts this xml data into HDFS or Hive so it can 
be further compared. During the comparison, if the product 
structure data is consumed for the first time, it is directly 
stored without any comparison. Next time when the product 
structure data is consumed, it is compared with the already 
existing product structure data. After the comparison, the old 
product structure data is deleted and it is replaced with new 
product structure data. Finally, the change between these two 
product structure data is stored in HDFS. This computed value 
can then be exported into local database via Sqoop so that it 
can be queried and accessed from local database. 
 

V. RESULT & ANALYSIS 
 
After every map and reduce task, Hadoop uses the 

map reduce model in-order to dump the data into disk. If we 
talk about timing, then fetching the data from disk after every 
map and reduce task, takes a lot of time. And in cases where 
we hold some kind of iterative algorithms this time 
consumption would add to a disadvantage. Spark and Hadoop 
performance measurement is shown in figure 3. The time 
taken by Spark and Hadoop for executing an iterative 
algorithm is shown in figure 4. 

 

 
Fig 3: Performance measurement for Spark and Hadoop 

 
Fig 4: Time taken to execute an iterative algorithm in Spark 

and Hadoop 
 

The input data size increases in an iterative algorithm 
and the time taken for executing it also increases in Hadoop as 
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well as in Spark that could be seen in figure 3 and figure 4. 
But on comparing both the Hadoop and Spark time of 
execution of an iterative algorithm we can see that time taken 
by Spark in order to complete the execution is approximately 
10 times lesser than that of the time taken by Hadoop. We can 
notice an exponential increase with respect to the size of data 
and also its time in case of Hadoop when Hadoop needs to 
execute an iterative algorithm. 

 
But, in same scenario when an iterative algorithm 

needs to be executed in Spark, it varies linearly with respect to 
the size of data. 
 

So for processing of data in real-time we can use 
Spark so that we can overcome with the above mentioned 
problem. If we compare Hadoop and Spark, we can see that 
Hadoop’s processing time of an iterative algorithm is 100 
times more than that of Spark. Spark set a net world record in 
100TB sorting, beating the previous record held by Hadoop 
MapReduce by three times, using only one-tenth of the 
resources; it received a new SQL query engine with a state-of-
the-art optimizer; and many of its built-in algorithms became 
five times faster.  

 
Processing of data can be 100x times faster than that 

of hours of time taken by Hadoop, and Spark on the same can 
process it 100x times faster can say hours will be changed into 
few seconds if we use Spark for processing iterative 
algorithm. For real time consumption and processing of tasks 
we need to integrate together both Kafka and Spark. Real-time 
data analysis means processing data generated by the real-time 
events streams coming in at the rate of millions of events per 
seconds. 
 

VI. CONCLUSION 
 

For efficiently managing and processing of data, 
Hadoop is an ideal platform. In order to process data in 
parallel, batch-processing mode Hadoop is considered an ideal 
and efficient solution. There can be a case when one need to 
process iterative algorithms but then, it comes up with several 
drawbacks. As in Hadoop after every map reduce phase, the 
fetching of data needs to be done from the disk. But, in case of 
Spark the data persist within the memory.  
 

Supporting streaming of data along with distributed 
processing is the ability that gives strength to Spark. 
Therefore, if we want to talk about processing of data in real 
time this would give a useful combination that delivers in near 
real-time. If we talk about MapReduce, it was basically 
designed to perform batch and distributed processing on large 
amount of data and thus it would not fulfill the requirement 

that is being fulfilled by Spark. If MapReduce wants to 
process data in real time it can do but if we consider the speed 
or time taken by it, it would be nowhere close to that of Spark. 
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