
IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 3061 www.ijsart.com

Big Data: Analyzing Apache Spark And Kafka For
Processing Iterative Algorithms

Akanksha Pandey1, Astitwa Bhargava2

1, 2 Rgnclc, Nliu, Bhopal
 National Law Institute University

Abstract- With the advancement in the technology,
management and processing of data in real-time has become
the need of the hour. Whatever data is being received needs to
be stabilizing very frequently, in order to get the maximum
value out of it. The term best defines this is the ‘Big Data’,
which deals with Volume, Velocity and Variety. Managing
such a large amount of data is not only expensive but also
time consuming. The primary purpose of this research paper
is to address this issue by considering some iterative data like
‘Product Structure’. Product Structures are unavoidable and
the maintenance of its completeness, consistency and
correctness requires a lot of effort.

Further, in this research paper, Hadoop technology

is proposed by the researchers for cost effectiveness. There is
an issue of time consumption for the incoming data in real
time, so to address this problem ‘Kafka’ and ‘Spark’ are used.
Researchers used ‘Spark’ and ‘Apache Kafka’ to resolve the
issue of data processing and data streaming respectively and
further ‘Sqoop’ is used for local database.

Keywords- Big Data, Hadoop, HDFS, Product Structure,
Kafka, Spark, Hive, Sqoop.

I. INTRODUCTION

 Big Data is a term that describes the large volume of
data- structured, unstructured and semi-structured – that
overwhelm a business on a day-to-day basis. It’s been seen
that nowadays large amount of data are being generated with
the blink of an eye. But it is not the amount of data that is
important; it’s what the organization does with the data that
matters. Big Data can be analyzed for insights that lead to
better decisions and strategic business moves. Since the
amount of data that is created and stored on a global level is
almost unbelievable, and it is increasing regularly, so we can
say that the potential of Big Data is very high. That means
there is even more potential to obtain key insights from
business information – yet only a small percentage of data is
actually analyzed. One can take data from any source and
analyze it to find answers that would make possible the
following- 1) Cost reduction, 2) New product development
and optimized offerings, 3) Time reduction and 4) Smart

decision making. The way organizations manage and derive
insights from it is changing the way the world uses business
information. There are various areas where we can see its
effects including 1) Banking, 2) Education, 3) Government, 4)
Health Care, 5) Manufacturing, 6) Retails. After processing
and analyzing the data and insights, products and services that
emerge from analysis, we get the primary value from the big
data. The sweeping changes in big data technologies and
management approaches needed to be accompanied by similar
dramatic shifts in how data supports decisions and
product/service innovation. The sources of Big Data are
required to be understood first rather than directly moving
towards how Big Data works for the business. The sources for
big data generally fall into one of the three categories: 1)
Streaming data, 2) Social media data, 3) Publicly available
sources. These are considered as the basic sources for fetching
of data that can be further converted into information. After
identifying all the potential sources for data, consider the
decision one will have to make once the process of harnessing
information begins. These include: 1) How to store and
manage it, 2) How much to analyze, 3) How to use any
insights you uncover. Now, as per the use of the information
one can move ahead with the well-furnished information
gained from a large amount of data.

Since unstructured data is very large and complex,
for analyzing such kind of data Hadoop is used as it has
distributed storage and distributed processing framework. This
is an open source and is freely available. Hadoop is designed
to support Big Data – Data that is too big for any traditional
database technologies to accommodate. Since it is not usually
possible for traditional technologies to carry Big Data, Hadoop
came into picture. Unstructured data is BIG – really BIG in
maximum cases. In HDFS data is being stored as files.
Hadoop does not have any schema or a structure for the data
that has to get stored. Hadoop uses applications like Sqoop,
HIVE, HBASE etc in order to import and export data from
traditional and non-traditional databases. Hadoop will import
the unstructured data for converting it into a structured form
and then after getting structured or semi-structured data it will
export the data into traditional databases for further analysis.
Hadoop is a very powerful tool for writing customized codes.
Typically complex algorithms are being involved for the

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 3062 www.ijsart.com

analysis of unstructured data. Hadoop framework could be
used for exploiting the benefits and achieving the efficiency
and reliability, since, algorithms of any complexity can be
resolved by the programmers. User needs to understand the
data at a crude level and appropriately program any algorithm
they want to use. Hadoop gives this kind of flexibility to the
users.

Terabytes of data and sometimes more can be

processed that makes to run different applications on systems
that involve thousands of nodes and due to the use of
distributed File System in Hadoop, it is made possible. During
cases when there is node failure it can be continued with its
operations. Catastrophic system failure would not occur due to
a single point of failure. For large clusters of data Hadoop, an
open-source MapReduce implementation is being built up.
JobTracker is a single master node and it contains different
slave nodes called TaskTrackers. Hadoop runs at its best in
Ubuntu. As the data that is being collected from the social
sites (say Twitter or Facebook) is random in nature, hence the
processing of the data is to be done in such a way that the
randomness in the data should get removed. According to the
types of data its arrangement needs to be done and then sorting
of the arranged data is to be done. This sorting is done for
better understanding. Sorting of username can be according to
the expression they use or the departments they belong to, or
any other criteria. MapReduce technique with suitable
algorithm could be used for the processing of the data. As per
the user specifications, MapReduce processes the data in
order to arrange it. There are two types of HDFS nodes:
DataNode and NameNode. The DataNode stores the data
blocks of the files in HDFS and NameNode contains the
metadata, with the enumeration of blocks of HDFS and a list
of DataNode in the cluster.

MapReduce technique is mainly used for parallel

processing of data set across various clusters known as
filtering, performed by the map function and generating
computation result by aggregation, which is the reduce
function. Mapper, Combiner and Partitioner are the 3 sub tasks
that are needed to be performed by the Map Job. Mapper
involves the mapping of data, Combiner combines the mapped
data and Partitioner splits the data into small clusters, after
which the shuffling key/value of map job to unique reduce job
is done. Mapper, Combiner and Partitioner all three of them
perform their tasks separately but each of its performance is
depended upon each other. Joiner and reducer are 2 subtasks
involved in reduce job. The joiner holds the joining of the
intermediate results from the map jobs and reducer subtask is
used for performing aggregation. After the map and reduce
jobs, the end result is stored in Hadoop Distributed File
System (HDFS). The Hadoop distributed File System output

for a MapReduce job can be used to store the final results of
map reduce process and the output can be viewed by browsing
the file system in the name node log. The processing of the
MapReduce process is given by job details log and then the
job is considered to be completed. NameNode log also
contains information about the cluster summary, capacity of
the file system, distributed file system used and remaining and
also the number of live nodes and dead nodes. The NameNode
and JobTracker Details are obtained as the result of the
execution of Map Reduce process. NameNode log can be used
to locate the output directory of the file system and the output
of the map reduce job.

Fig 1: Map Reduce Jobs

MapReduce programming model is used for the

processing of Hadoop in an efficient manner, but when it
comes to iterative algorithms in such kind of scenarios,
MapReduce is not that much efficient. In case of MapReduce,
after every Map Phase, the resultant is taken from memory and
then it is exported into disk. Importing and exporting of data
in an iterative algorithm needs to be done every time, which
will culminate into a very tedious and time consuming
process. Apache Spark performs all the computation in its own
memory and persist the data in memory whenever necessary
and that is the solution to the problem about which we were
talking about.

II. PRODUCT STRUCTURE

For hierarchical decomposition of a product, we use a

term called Product Structure, typically known as the bill of
materials (BOM). As business becomes more responsive to
unique consumer tastes and derivatives products grow to meet
the unique configuration, BOM management can become
unmanageable. It contains all the necessary information
starting from a smallest component to the most complex one.
Following activities takes place within product structure
modeling: 1) Define product components, 2) Define product
assortment, 3) Product structuring, 4) Create master structure,
5) Documenting, 6) Define product structure views.

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 3063 www.ijsart.com

In this paper the Product Structure is considered as an example
in order to show what all information is required for
manufacturing a product. And how well the information is
made available when that is required.

III. DATA CONSUMPTION & PROCESSING

In the data consumption phase, we need to gather the

Product Structure data. Kafka is used to consume that data and
that is what we are doing in this research which is considered
to be the first step. This is followed by processing phase where
the consumed Product Structure data is compared with the
existing Product Structure data already stored in HDFS or
HIVE. For real-time data consumption and data processing,
here in this paper, we are using two tools namely Kafka and
Spark. In data consumption phase data is extracted from the
data source and consumed via Kafka. Spark is configured to
pull data from Kafka as and when it is available and that too in
the data processing phase.

A. Apache Kafka

Regarding large amount of data, which is actually

what the Big Data talks about, we have two main challenges.
The first challenge is the collection of large volume of data
and the second challenge is analyzing that collected large
amount of data. A messaging system is required in order to
overcome those challenges. Kafka is designed for distributed
high throughput systems. For replacement of more traditional
message broker Kafka tends to work very efficiently. On
comparing Kafka with other different messaging systems, it
provides us with better built-in partitioning, throughput,
inherent fault-tolerance and replication, so if one wants to go
for large scale message processing applications, Apache Kafka
is the right choice. Though an application needs to be focused
more on data, they don’t have to worry about how one is going
to share it because the main responsibility of a messaging
system is transferring data from one application to another.
Reliable messaging queuing is the concept on which the
Distributed messaging is based. Between client applications
and messaging system, queuing of messages is done
asynchronously. Apache Kafka enables us to pass messages
from one end-point to another. It also handles high volume of
data through robust queuing, making it a distributed publish-
subscribe messaging system. For both online and offline
message consumption Kafka is suitable. For preventing data
loss, Kafka messages are persisted on the disk and also
replicated within the cluster. For Zookeeper synchronization
service Kafka is on the top. For real time streaming data
analysis Apache Kafka integrates very well with Apache
Storm and Spark. The following are the components of Kafka:

(i) Kakfa Broker: Multiple brokers are typically required in
a Kafka cluster in order to maintain load balance.
Zookeeper is used for maintaining Kafka cluster state
since Kafka broker are stateless. TB of messages are
handled by each broker without performance impact and
hundreds of thousands of read and writes per seconds are
handled at an instance by one Kafka broker. Zookeeper
has the privilege for doing election of Kafka leader.

(ii) ZooKeeper: Kafka broker are managed and coordinated
by the using Zookeeper. If there is a presence of any new
broker or if any incident of failure of broker occurs in
the Kafka system, Zookeeper service is mostly used in
such scenario to notify about such incidents to producer
and consumer. Producer and consumer will get the
information about the presence or failure of broker from
the Zookeeper and then they will start taking quick
decisions and also start coordinating their task with some
other broker.

(iii) Kafka Producer: Brokers get data that is being pushed by
the producers. All the producers search for a new broker
and automatically start sending messages to that new
broker. Kafka producer sends messages as fast as they
can and this sending also depends on how fast broker
handles the messages. By that we mean to say that Kafka
producer doesn’t wait for acknowledgements from
broker side.

(iv) Kafka Consumer: Kafka consumer needs to maintain
how many messages have to be consumed by using
partition offset, because Kafka brokers are stateless. If
the consumer has consumed all prior messages, in such
cases consumer will acknowledge a particular message
offset. In order that a consumer wants to have a buffer of
bytes ready to consume, the consumer will issue an
asynchronous pull request. By supplying an offset value
the consumer can skip or rewind to any point in a
partition. Zookeeper is responsible for notifying about
the consumer offset value.

B. Apache Spark:

For fast computation, Apache Spark is suggested to

be used as it provides lightning-fast cluster computing
technology. For more types of computation like interactive
queries and stream processing, one can extend MapReduce,
since Spark is based upon Hadoop MapReduce. Apache Spark
owns in-memory cluster computing that increases the
processing speed of an application and this feature is
considered the main feature of Spark. Different kinds of
workloads such as batch applications, iterative algorithms,
interactive queries and streaming are all covered under spark.
We can say that spark is designed in a way to cover all of the
above-mentioned workloads. By maintaining separate tools, it

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 3064 www.ijsart.com

reduces management burden, apart from supporting all these
workloads in a respective system. Spark uses Hadoop in two
ways – One is storage and second is processing. Since Spark
has its own cluster management computation, it uses Hadoop
for storage purpose only. Apache Spark provides three main
features that are 1) Speed, 2) Supports multiple languages, 3)
Advanced Analytics. Following are the components of Apache
Spark:

(i) Apache Spark Core: For spark platform, the underlying

general engine on which all other functionality is built
upon is Spark Core. Referencing datasets in external
storage systems and In-memory computing all are being
provided under it.

(ii) Spark SOL: Introduction of a new data abstraction called
SchemaRDD is through Spark SQL. It is a component on
top of Spark Core and support to structured and semi-
structured is being provided under this.

(iii) Spark Streaming: Spark streaming leverages Spark
Core’s fast scheduling capability to perform streaming
analytics. It consumes data in mini-batches and performs
RDD (Resilient Distributed Datasets) transformation on
those mini-batches of data.

(iv) MLlib (Machine Learning Library): Because of the
distributed memory-based Spark architecture above
Spark, there is MLlib which is a distributed machine
learning framework. When a benchmark is to be done
MLlib developers compare it against Alternating Least
Squares (ALS) implementation. As compared to Hadoop
disk-based version of Apache Mahout (before Mahout
gained a Spark interface), Spark Mllib is found to be
nine times faster than Hadoop disk-based version of
Apache Mahout.

(v) GraphX: On the top of spark, GraphX is placed which is
distributed graph-processing framework.

C. Sqoop

Apache Sqoop is used for efficiently transferring bulk

data between Apache Hadoop and structure data stores such as
relational databases. For an efficient execution of tasks at a
much lower cost, Sqoop helps to offload certain tasks (such as
ETL processing) from the EDW to Hadoop. For extracting
data from Hadoop and exporting it into external structures data
stores Sqoop can be used. Some relational databases such as
Teradata, Netezza, Oracle, MySQL, Postgres and HSOLDB
for working with the following relational databases Sqoop can
be used. Apache Sqoop does the following to integrate bulk
data movement between Hadoop and Structures data stores:
(i) For importing sequential datasets from mainframe: It

satisfies the growing need to move data from mainframe
to HDFS

(ii) Import direct to ORCFiles: Improved compression and
light-weight indexing for improved query performance.

(iii) For importing data: Moves certain data from external
stores and EDWs into Hadoop to optimize cost-
effectiveness of combined data storage and processing

(iv) Parallel data transfer: For faster performance and optimal
system utilization

(v) Fast data copies: From external systems into Hadoop
(vi) Efficient data analysis: Improves efficiency of data

analysis by combining structures data with unstructured
data in a schema-on-read data lake

(vii) Managing load balancing: Mitigates excessive storage and
processing loads to other systems.

YARN coordinates data ingest from Apache Sqoop

and other services that delivers data into the Enterprise
Hadoop cluster.

D. HIVE

For processing structured data in Hadoop one can use

Hive, as Hive is a data warehouse infrastructure tool. In order
to make querying and analyzing easy, it resides on the top of
Hadoop to summarize Big Data. Facebook has started Hive
initially and then later Apache Software Foundation took it up
for doing further development as an open source and named it
as Apache Hive and from then onwards many companies
started using it. For example, Amazon uses it in Amazon
Elastic MapReduce. Hive is not 1) A relational database, 2) A
design for OnLine Transaction Processing (OLTP), 3) A
language for real-time queries and low-level updates. Features
of Hive 1) It stores schema in a database and processed data
into HDFS, 2) It is designed for OLAP, 3) It provides SQL
type language for querying called HiveQL or HQL 4) It is
familiar, fast, scalable and extensible.

IV. INTEGRATION OF KAFKA & SPARK

In this paper, Product Structure data is streamed

using Kafka and it is further processed using Spark. Both the
data consumption and data processing operations can be
performed in real-time. Extracting the product structure data
as and when it is available in the data source (data source can
be a data server) and then immediately streaming it via Kafka
makes the product structure data available for real time
processing.

In the data processing phase, the resultant value after

comparing the product structure data streamed into Spark with
the Product Structure data already stored in Hive or HDFS is
exported using Sqoop. To carry out this process, it is essential
to check the correctness of the product structure data initially,

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 3065 www.ijsart.com

because after the consumption phase the product, structure
data is directly compared with other existing product structure
data stored in HDFS. Hence any defects in product structure
will lead to improper productions. Fig 2 shows the flow chart
for data consumption, processing and then exporting the
resultant delta value.

Hence the product structure data is extracted from the

data source and it is consumed via Kafka into Spark. In Kafka
when the message is published to the Kafka topic zookeeper
will be updated. This message will be consumed by the
consumer based on its requests. The consumer sends the
request along with an offset. This offset specifies the position
of the message from where it wants to read. These offsets are
maintained by the Zookeeper every time there is
communication between the Kafka producers, Kafka
consumer and the Zookeeper. This communication ensures
that the message is consumed into Spark only once and hence
it avoids redundancy. Since Zookeeper keeps Kafka topic,
producer and consumer coordinate with each other. Kafka
consumer can be accurate about which messages are
successfully consumed into Spark. This is done by keeping
track of the message offsets. Hence it ensures that no message
is delivered to spark multiple times.

Fig 2: Flow chart for consumption, processing and exporting

Product Structure

Product Structure data consumed via Kafka is in xml
format. Spark puts this xml data into HDFS or Hive so it can
be further compared. During the comparison, if the product
structure data is consumed for the first time, it is directly
stored without any comparison. Next time when the product
structure data is consumed, it is compared with the already
existing product structure data. After the comparison, the old
product structure data is deleted and it is replaced with new
product structure data. Finally, the change between these two
product structure data is stored in HDFS. This computed value
can then be exported into local database via Sqoop so that it
can be queried and accessed from local database.

V. RESULT & ANALYSIS

After every map and reduce task, Hadoop uses the

map reduce model in-order to dump the data into disk. If we
talk about timing, then fetching the data from disk after every
map and reduce task, takes a lot of time. And in cases where
we hold some kind of iterative algorithms this time
consumption would add to a disadvantage. Spark and Hadoop
performance measurement is shown in figure 3. The time
taken by Spark and Hadoop for executing an iterative
algorithm is shown in figure 4.

Fig 3: Performance measurement for Spark and Hadoop

Fig 4: Time taken to execute an iterative algorithm in Spark

and Hadoop

The input data size increases in an iterative algorithm
and the time taken for executing it also increases in Hadoop as

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 3066 www.ijsart.com

well as in Spark that could be seen in figure 3 and figure 4.
But on comparing both the Hadoop and Spark time of
execution of an iterative algorithm we can see that time taken
by Spark in order to complete the execution is approximately
10 times lesser than that of the time taken by Hadoop. We can
notice an exponential increase with respect to the size of data
and also its time in case of Hadoop when Hadoop needs to
execute an iterative algorithm.

But, in same scenario when an iterative algorithm

needs to be executed in Spark, it varies linearly with respect to
the size of data.

So for processing of data in real-time we can use
Spark so that we can overcome with the above mentioned
problem. If we compare Hadoop and Spark, we can see that
Hadoop’s processing time of an iterative algorithm is 100
times more than that of Spark. Spark set a net world record in
100TB sorting, beating the previous record held by Hadoop
MapReduce by three times, using only one-tenth of the
resources; it received a new SQL query engine with a state-of-
the-art optimizer; and many of its built-in algorithms became
five times faster.

Processing of data can be 100x times faster than that

of hours of time taken by Hadoop, and Spark on the same can
process it 100x times faster can say hours will be changed into
few seconds if we use Spark for processing iterative
algorithm. For real time consumption and processing of tasks
we need to integrate together both Kafka and Spark. Real-time
data analysis means processing data generated by the real-time
events streams coming in at the rate of millions of events per
seconds.

VI. CONCLUSION

For efficiently managing and processing of data,
Hadoop is an ideal platform. In order to process data in
parallel, batch-processing mode Hadoop is considered an ideal
and efficient solution. There can be a case when one need to
process iterative algorithms but then, it comes up with several
drawbacks. As in Hadoop after every map reduce phase, the
fetching of data needs to be done from the disk. But, in case of
Spark the data persist within the memory.

Supporting streaming of data along with distributed
processing is the ability that gives strength to Spark.
Therefore, if we want to talk about processing of data in real
time this would give a useful combination that delivers in near
real-time. If we talk about MapReduce, it was basically
designed to perform batch and distributed processing on large
amount of data and thus it would not fulfill the requirement

that is being fulfilled by Spark. If MapReduce wants to
process data in real time it can do but if we consider the speed
or time taken by it, it would be nowhere close to that of Spark.

REFERENCES

[1] Mayer-Schönberger, V.; Cukier, K. Big Data: A

Revolution that Will Transform How We Live, Work, and
Think; Houghton Mifflin Harcourt: Boston, MA, USA,
2013.

[2] Sagiroglu, S.; Sinanc, D. Big data: A review. In
Proceedings of the 2013 International Conference on
Collaboration Technologies and Systems (CTS), San
Diego, CA, USA, 20–24 May 2013; pp. 42–47.

[3] Hashem, I.A.T.; Yaqoob, I.; Anuar, N.B.; Mokhtar, S.;
Gani, A.; Ullah Khan, S. The rise of “big data” on cloud
computing: Review and open research issues. Inf. Syst.
2015, 47, 98–115.

[4] Sharma, S. Rise of Big Data and related issues. In
Proceedings of the 2015 Annual IEEE India Conference
(INDICON), New Delhi, India, 17–20 December 2015;
pp. 1–6.

[5] Eynon, R. The rise of Big Data: What does it mean for
education, technology, and media research Learn. Media
Technol. 2013, 38, 237–240.

[6] Wang, H.; Jiang, X.; Kambourakis, G. Special issue on
Security, Privacy and Trust in network-based Big Data.
Inf. Sci. Int. J. 2015, 318, 48–50.

[7] Thuraisingham, B. Big data security and privacy. In
Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy, San Antonio, TX,
USA, 2–4 March 2015; pp. 279–280.

[8] Rijmenam, V. Think Bigger: Developing a Successful Big
Data Strategy for Your Business; Amacom: New York,
NY, USA, 2014.

[9] Big Data Working Group; Cloud Security Alliance
(CSA). Expanded Top Ten Big Data Security and
Privacy. April 2013. Available online:
https://downloads.cloudsecurityalliance.org/initiatives/bd
wg/Expanded_

[10] Top_Ten_Big_Data_Security_and_Privacy_Challenges.p
df (accessed on 9 December 2015).

[11] Meng, X.; Ci, X. Big data management: Concepts,
techniques and challenges. Comput. Res. Dev. 2013, 50,
146–169.

[12] Chen, M.; Mao, S.; Liu, Y. Big data: A survey. Mob.
Netw. Appl. 2014, 19, 171–209.

[13] Khan, M.A.-U.-D.; Uddin, M.F.; Gupta, N. Seven V’s of
Big Data understanding Big Data to extract value.

[14] In Proceedings of the 2014 Zone 1 Conference of the
American Society for Engineering (ASEE Zone 1 2014),
Bridgeport, CT, USA, 3–5 April 2014.

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 3067 www.ijsart.com

[15] Cumbley, R.; Church, P. Is “Big Data” creepy? Comput.
Law Secur. Rev. 2013, 29, 601–609.

[16] Dijcks, J.P. Oracle: Big data for the enterprise. In Oracle
White Paper; Oracle Corporation: Redwood City, CA,
USA, 2012.

[17] Minelli, M.; Chambers, M.; Dhiraj, A. Big Data, Big
Analytics: Emerging Business Intelligence and Analytic
Trends for Today’s Businesses; JohnWiley & Sons: New
York, NY, USA, 2013.

[18] F. Provost, and T. Fawcett,“Robust Classification for
Imprecise Environments”, Machine Learning, 42/3, 203–
231, 2001.

[19] D. Lewis, and J. Catlett, “Heterogeneous Uncertainity
Sampling for Supervised Learning”, In Proceedings of the
Eleventh International Conference of Machine Learning,
pp.148–156 San Francisco, CA. Morgan Kaufmann,
1994.

[20] S. Dumais, J. Platt, D. Heckerman, and M. Sahami,
“Inductive Learning Algorithms and Representations for
Text Categorization”. In Proceedings of the Seventh
International Conference on Information and Knowledge
Management, pp. 148–155, 1998.

[21] D Mladeni´c, and M. Grobelnik, “Feature Selection for
Unbalanced Class Distribution and Naive Bayes”. In
Proceedings of the 16th International Conference on
Machine Learning, pp. 258–267. Morgan Kaufmann,
1999.

[22] K, Woods, C, Doss, K. Bowyer,J. Solka, C. Priebe, and P.
Kegelmeyer, “Comparative Evaluation of Pattern
Recognition Techniques for Detection of
Microcalcifications in mammography”, International
Journal of Pattern Recognition and Artificial Intelligence,
7(6), 1417–1436, 1993.

[23] T. Fawcett, and F. Provost, “Combining Data Mining and
Machine Learning for Effective User Profile”, In
Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining, pp. 8–13
Portland, OR. AAAI, 1996.

