Comparative Analysis of Different Nosql Databases

Dharmender Kumar¹, Vikrant Singh Bhardwaj², Dr. K. L. Bansal³ ^{1, 2, 3} Dept of Computer Science

^{1, 2, 3} HPU Shimla

Abstract- In this emerging world of technology, volume of data is increasing day by day. This increased amount of data is becoming complex to handle. Only RDBMS is not sufficient to control, retrieve and analyse the Big data. Introduction of structural, semi structural and unstructured data has challenged the flexibility, scalability, and processing capability of the relational RDBMS (Relational database management system). The new eras of frameworks demand horizontal scaling of the databases. But Relational databases were not able to provide the horizontal scalability. To handle this problem a new Data base management mechanism is designed which is NoSQL. This paper investigates the Need of NoSQL databases and how NoSQL databases have become an alternative to relational databases. In this paper Major differences between RDBMS and NoSQL are discussed. The four categories are compared on the basis of functional and non-functional requirements. Then one database is selected from each category for further analysis.

Keywords- NoSQL, MongoDB, Unstructured data, CouchDB, Cassandra, Neo4j, Redis

I. INTRODUCTION

NOSQL was introduced by Carlo Strozzi in 1998. NoSQL, which stand for "not only SQL," is a substitute to traditional relational databases in which data is placed in tables and data schema is carefully designed ahead the database is built. NoSQL databases are especially useful for working with huge sets of distributed data. It is one of another type of data storage databases that is used to store large amount of data storage like data in facebook which keeps on increasing every day. Applications of NoSQL databases are taken different fields such as Real-Time Big Data, Content Management and Delivery, Mobile and Social Infrastructure, User Data Management, Data Hub, Social networks, Internet of Things etc.

NoSQL doesn't follow the ACID properties. ACID basically stands for Atomicity, Consistency, Isolation and Durability. NOSQL depends upon a softer model named as the BASE model. BASE model contains the flexibility offered by NOSQL databases and similar approaches to the management and duration of unstructured data. BASE consists of three

principles. Which are Basically Available, Soft state and Eventual Consistency.

A. Characteristics of NoSQL

- It supports simple and flexible non-relational data models.
- Huge volume of data stored by NoSQL and having more flexible structure.
- Use NoSQL without any inconsistency, in distributed environment so provide high availability.
- No discontinuation of any work, if any faults or failures exist in any machine.
- It allows data to store without fixed table schemas.
- NoSQL do not follow ACID transaction.
- Ability to scale data horizontally leading NoSQL • databases to high performance over many commodity servers.

B. Features of NoSQL

The common features of NOSQL data stores are:

- Easy to use in conventional load-balanced clusters
- Data is persistent Scalability according to available memory.
- Allows schema migration
- Owns individual query system and do not use SQL
- Eventually consistent across the clusters

II. RELATED WORK

Many researches have been done in the NoSQL databases after knowing the importance of NoSQL databases.Sanobar Khan, Prof.Vanita Mane [1] proposed a method to integrate two types of databases, which are MySQL and MongoDB, by adding a middleware between application layer and database layer. The main problem of this DB model was that it does not support the encryption/decryption by default and is vulnerable to injection attack and has exposure to DOS attacks. Which could be overcome by using different cryptographic systems and analyse their time complexity [2]. Enqing Tang, Yushun Fan[3] compared five NoSQL databases. It was concluded that Cassandra and HBase, were 1.71 times and 1.86 times slower than Redis. The worst

performance was presented by Couchbase, which was 2.49 times slower than Redis. HBase was 1.58 times faster than Cassandra. Mrs. Rupali M. Chopade, Mr. Nikhil S. Dhavase [4] did Performance Comparison of MongoDB and Couch Base for Image Dataset. It was concluded that for image dataset insertion, time required by MongoDBis more as compared to CouchBase and for image dataset retrieval case is exactly different. Akansha Goyal, ArunSwaminathan, et.al. [5] stated that there are two general approaches to migrate data from RDBMS to NoSQL. One is Direct Mapping and another is Intermediate Mapping.According to their experimentation, for 1 million records, the total validation time was 28.515 seconds only. Haleemunnisa Fatima, Prof. Kumud Wasnik[6] observed that SQL databases are relational and follow ACID properties. While NoSQL databases are schema less provide better performance and scalability and follow ACID properties. NewSQL databases retain SQL and ACID properties and include performance and scalability through the modern architecture. Neal Leavitt [7] observed thatNoSQL also have some cons like NoSQL databases don't work with SOL, they require manual query programming, which can be fast for simple tasks but time-consuming for others.

III. CLASSIFICATION OF NOSQL DATABASES

There are four general types of NoSQL databases where every database has its own properties. Four types of NoSQL databases are Key-value data stores, Column- oriented data stores, document data stores and graph data stores [8].

A. Key Value Data Stores

The key value databases name itself states that it is a combination of two things that is key and a value. It is one of the low profile (traditional) database systems. Key Value (KV) databases are mother of all the databases of NoSQL. Key is a unique identifier to a particular data entry. Key should not be repeated if one used that it is not duplicate in nature. Value is a kind of data that is pointed by a key [9]. The most known key value stores are Raik, Dynamo, Voldemort, Redis, Tokyo Cabinet.

B. Document Data Store

The data is compressed as a document store quite similar to a key-value store and the data is in the form of collection of key value pairs, but the only difference is that the values stored (referred to as "documents") provide some structure and encoding of the managed data. This type of database store unstructured (text) or semi-structured (XML) documents which are usually hierarchal in nature. Here each document consists of a set of keys and values which are almost same as there in the Key Value Databases Most popular document databases are MongoDB, CouchDB,Terrastore, ThruDb.

C. Columnar oriented data stores

Columnar oriented data stores are column-oriented databases also known as column family databases because data tables are stored as sections of columns of data, rather than as rows of data. The column family contains the row key which consists of super columns. Super column is a column which contains other columns but not the super column. And a column is pair of name and value. There are two types of column-oriented databases which are as follow

Wide Column data stores are Based on Google's Big Table store. Data tables are stored as sections of columns of data, rather than as rows of data. These databases are used for processing of web, streaming of data and documents.

Column oriented databases are those databases in which all the values containing columns are put together. All values of a column serialize together in a Column oriented database and then the values of next column are serialized, and so on.

D. Graph Data Store

Graph databases are based on the graph theory. It is based on graph structure which is consists of nodes, edges and properties to store data. Graph databases use nodes to represent entities, edges to represent relationships and properties to represent attributes [8]. In general, we can say that graph usually consists of nodes, properties and edges. NoSQL Graph database consists of:

- Nodes represent entities
- Properties represent attributes
- Edges represent relationships

IV. RESULT AND ANALYSIS

This section includes the analysis of various databases and their results are compiled in the form of tables.

A. SQL vs. NOSQL

There are a lot of databases used today in the IT industry. Some of them are SQL databases, some are NoSQL databases. The conventional database is SQL database system that uses tabular relational model to represent data and their relationship between them. Some major differences between SQL and NoSQL are listed below in Table 1

Serial No	Category	SQL	NoSQL		
1	Categorization	These Databases are categorized as RDBMS (Relational Database Management System)	These databases are categorized as Non-relational or distributed database system.		
2 Data Scheme		These databases have static or fixed or predefined schema.	These databases have dynamic schema.		
3	Scalability	These databases are vertically scalable.	These databases are horizontally scalable.		
4	Auditing	SQL Provide mechanisms to audit that allow writing to the database	Most of NoSQL databases don't provide auditing.		
5	Manipulation Of data	SQL databases use a compelling language "Structured Query Language" to define and manipulate the data.	In these databases, <u>collection</u> of <u>documents</u> are used to query the data. It is also called unstructured query language. It differs from database to database.		
б	Authentication	All relational databases provide authentication mechanism, and can choice any of that mechanism to use	Many NoSQL databases by default does not have authentication or authorization mechanism but can use some of external method to perform this operation.		
7	Data Display techniques	SQL databases display data in the form of tables that's why it is known as table-based database.	These databases display data in the form of collection of key-value pair, documents, graph databases or wide-column stores.		
8	Data Integrity	ACID properties are used in relational databases that guarantee database transactions are processed reliably that ensure data integrate.	Eventually consistent is one of BASE properties principle therefore data integrity is not always achieved in these databases.		
Data 9 Confidentiality		Data confidentiality is generally achieved in relational database because it was use encryption techniques, to store data encrypted	Data confidentiality is not attained, because usually data is store clear.		
Client Communication 10		These databases provide secure provide client communication mechanism through through	Most of databases do not provide secure client communication mechanism.		
		encryption and SSL protocol.			
11	Best Suited For	SQL databases are appropriate for complex queries. SQL databases are not appropriate for hierarchical data storage.	NoSQL databases poor for complex queries because these are not as powerful as SQL queries. NoSQL databases are appropriate for hierarchical data storage.		
12 Examples		MySQL, Oracle, Sqlite, PostgreSQL and MS- SQL etc.	MongoDB,Cassandra,Redis,Hbase, Neo4j, CouchDB etc.		

1	able	1:	Compariso	on betwee	n SQ.	L and	NOSQL	databases

Table 1 compare the two most popular databases which are relational databases and NoSQL databases on the basis of some features and categories such as Categorization, Data Scheme, Scalability, Auditing, Manipulation Of data, Authentication, Data Display techniques, Data Integrity, Data Confidentiality, Client Communication etc. Table depicts that NoSQL databases are far better than Relational databases because NoSQL have some important features like these can scale data horizontally, NoSQL databases are schema less, these do not follow acid properties and many more. But in case of complex queries Relational databases beat NoSQL databases.

B. COMPARITIVE ANALYSIS OF NOSQL DATABASES

In this section four NoSQL databases are compared on the basis of their functional and non-functional requirements. And then Four different NoSQL databases and MySQL database are compared with each other.

Comparison of NoSQL databases on the basis of functional and non-functional features

Table 2: Comparison of NoSQL databases on the basis of Functional and Non-functional features

Serial No.	Category	Document	Column	Key value	Graph
		store	Store	store	databases
	Structure of	Primary key	Row	JSON in	Graph
1	databases	with some	consisting	Form of tree	entities and
		value	multiple		relation
			columns		
	Performance of	High	High	High	Variable
2	queries				
3	Flexibility of	High	Moderate	High	High
	schema				
	Complexity of	None	Low	Low	High
4	values				
	Scalability of	High	High	High	Variable
5	data				
6	Atomicity	Applicable	Applicable	Applicable	Not
					Applicable
7	Derived Table	Not	Applicable	Not	Not
		Applicable		Applicable	Applicable
8	Composite key	Not	Applicable	Applicable	Not
		Applicable			Applicable
9	Aggregation	Not	Applicable	Applicable	Not
		Applicable			Applicable
10	Composite	Not	Applicable	Applicable	Not
	Aggregation	Applicable		(ordered)	Applicable
11	Denormalization	Not	Applicable	Applicable	Applicable
		Applicable			
12	Unordered Keys	Not	Not	Not	Not
		Applicable	Applicable	Applicable	Applicable
13	Adjacency Lists	Applicable	Not	Applicable	Not
			Applicable		Applicable

In Table 2 we compare Document store, Column Store, Key value store and graph database on the basis of their non-functional features such as, Structure of databases, Performance of queries, Flexibility of Schema, Complexity of Values, Scalability of data and functional features such as Atomicity, Derived Table, Composite key, Aggregation, Composite Aggregation, Denormalization, unordered keys and adjacency lists . Table 2 depicts that if data have to be represented in JSON format then Document store should preferred because this provide high performance and flexibility. And if we want to use denormalization, unordered key, composite key, composite aggregation operations on the database Document Store should not be used. Column store should be avoided if we want to use unordered keys, aggregation and group by, adjacency lists operations on the database. Key value store should not be preferred if we want

to use composite key on the database. If we want to perform just denormalization then Graph store can be considered Comparison between MongoDB, Cassandra, Redis, Neo4J and MySQL

Sr N	Features	Document	Wide Column	KeyValue	Granh Database	SOL (MySOL)
0	reatures	(MongoDB)	Store(Cassandra)	Store(Redic)	(Neo/i)	DQL (MJDQL)
1	Wabsita	(WINGODD)	cassandra anacha org	redis io	(INCO-J)	www.mysal.com
1	website	.org	cassandra.apachc.org	Teals.10	www.neo4j.com	www.mysqi.com
2	Developer	MongoDB, Inc.	Apache Software	Salvatore	Neo Technology	Oracle
			Foundation	Sanfilippo		
3	Initial	2009	2008	2009	2007	1995
	Release					
4	Implementa	C++	Java	С	Java, Scala	C and C++
	tion					
	Language					
5	License	Open source	Open source	Open Source	Open Source	Open Source
6	Database	Document-	Column-based table,	Key-Value Store	Graph Database	Relational DBMS
	model	based (Binary	Indexes over row-key			
		JSON) with	and columns keys			
		structured	with multiple names			
		object	or timestamps			
	DB engine	Score 341.41	Score 119.09	Score 130.11	Score 40.90	Score 1226.40
7	ranking	Rank #5	Rank #10	Rank #9	Rank #22	Rank #2
	Server	Linux OS X	BSD Linux OS X	Linux and OS X	Linux OS X	
8	operating	Solaris	Windows		Solaris Windows	
	systems	Windows				
9	Technical	https://docs.mo	http://cassandra.apach	https://redis.io/docu	https://neo4j.com/	https://dev.mysql.c
	Documentat	ngodb.com/	e.org/doc/latest/	mentation	blog/technical-	om/doc/
	ion				documentation-	
					graph/	
10	Description	It is one of the	It is one of the most	It is an in-memory	It is a Open	This one Widely
		most popular	known wide column	data structure store	Source graph	used open
		document store	store database. It is	and an important	database	source RDBMS
		database.	based on the concept	key value store		
			of big table			
11	DB	Database	Key space	Database	Graph	Database
12	Table	Collection	Column Family	Hash set, List set,	Label	Relation
				Sorted set and		
				string		
13	Supported	Action Script,	C#, C++, Clojure,	ActionScript, C,	.Net, Clojure,	C# and VB are
	Programmi	C, C#, C++,	Erlang, Go, Haskell,	C++, C#,Clojure,	Elixir, Go,	most commonly
	ng	Clojure, Java,	Java, JavaScript, Perl,	Common Lisp, D,	Groovy, Haskell,	used
	Languages	Java Script etc	PHP, Python, Ruby,	Dart, Erlang, Go,	Java, JavaScript,	
			Scalaetc	Haskell,Java,	Perl, PHP,	
				JavaScript,Perl,	Python, Ruby,	
				PHP, Python,	Scalaetc	
				Ruby,Rust,Scala,		
				Smalltalketc		
14	Value	Documents	Rows	Key value pair	Node and edges	Rows

Table 3: Comparison between MongoDB, Cassandra, Redis, Neo4J and MySQL

15	Read	Fast	Slow	Fast	Data dependent	Slow
	Operations					
16	Write	Fast	Fast	Fast	Data Dependent	Slow
	Operations					
17	Delete	Fast	Fast	Fast	Data dependent	Slow
	Operations					
18	Data	No particular	Schema-Free	Schema-free	Schema-Free	Yes
	scheme	schema is				
		followed.				
19	Predefined	Yes; Boolean,	Yes; ASCII, int, blob,	Partial; data types	Yes; Boolean,	Yes; int, float,
	types	date, object_id,	counter, decimal,	supported for value	byte, short, int	double,
		String, Integer,	double, list, map, set,	are strings, Bit	long, float,	date, time, bit, char,
		double	text, timestamp,	arrays, hyper logs,	double, char,	enum, binary, blob,
			varchar	hashes, lists, sets,	string	Boolean
				sorted sets, and		
				geospatial indexes		
20	Server Side	JavaScripts	No	Lua	Yes	Yes
	Scripts					
21	Triggers	No	Yes	No	Yes	Yes
22	Partitioning	Sharding with	Sharding	Sharding	Partitioning	Horizontal
	metnoas	no			should be	partitioning,
		individual			avoided in Neo4j	sharding
		foint of				with MySQL
		lanure				Cluster
22	E	Liquelly, not	No	No	Vaa	or MySQL Fabric
23	Foreign	Usually, not	INO	NO	res	res
	Keys	used,				
		nowever				
		equivalent				
		operation with				
		DDRei				
24	Turnet		A 1		ACID	
24	Transaction	Atomic	Atomicity and	Optimistic locking,	ACID	ACID
	Concepts	be a sufference d	Isolation are			
		be performed	supported for single	command blocks		
			operations			
		single		scripts		
25	Tlean	document	A agong rights for	Simple percent	Lizens noles and	Lloore with fine
25	Concenta	for user-	Access rights for	based asses	users, roles and	Users with line
	Concepts	for users	users can be defined	Dased access	permissions	grained
		and roles	per object	control.		
						concepts; no user
1	1		1	1		groups or roles

In table 3 one database have taken from each
category of NoSQL databases that is MongoDB, Cassandra,
Redis and Neo4j and a database from RDBMS which is
MySQL. These are compared on the basis of some features
like Read Operations, Write Operations, Delete Operations,
Data scheme, Predefined types, Server-Side Scripts, Triggers,
Partitioning methods, Foreign Keys, Transaction Concepts etc.
Table 3 depicts that MongoDB stores values in form of
document. Read operations are fast in MongoDB then
Cassandra. MongoDB is more reliable compare to other
databases. All NoSQL databases which are listed in table 3 are
Open source and can be accessed easily. Read, write, and
delete operations of in graph database are depend upon the
type of data. On the other hand, Read, Write and delete
operation are slower in MySQL then NoSQL databases.
NoSQL databases are schema less while MySQL (SQL
database) have a predefined schema. MongoDB has a no
particular schema but usually contents of same documents as a
convention have similar structures though it is not mandatory.

IV. CONCLUSION

The paper contains the comparison of many databases including relational and NoSQL databases on the basis of their features and common parameters. The aim of this paper is to provide an overview of NoSQL databases and how NoSQL databases dominate relational databases. NoSQL databases have schema less nature. This nature of NoSQL databases allows including fields without making any changes in the structure. To deal with the massive growth in structured, semi structured and unstructured data, NoSQL databases are very useful. These databases have ability to scale data horizontally which is missing in relational databases. This paper highlights some features, characteristics, advantages as well as disadvantages of NoSQL databases.

REFRENCES

- [1] Sanobar Khan, Prof.Vanita Mane, "SQL Support over MongoDB using Metadata" International Journal of Scientific and Research Publications, Volume 3, Issue 10, 2013
- [2] Jitender Kumar, VarshaGarg, "SECURITY ANALYSIS OF UNSTRUCTURED DATA IN NOSQL MONGODB DATABASE", Jaypee Institute of Information Technology. IEEE 2017
- [3] Enqing Tang, Yushun Fan, "Performance Comparison between Five NoSQL Databases" Tsinghua National Laboratory for Information Science and Technology, Department of Automation Tsinghua University Beijing 100084, China, In IEEE, 7th International Conference on Cloud Computing and Big Data, 2016
- [4] Mrs. Rupali M. Chopade, Mr. Nikhil S. Dhavase, "MongoDB, CouchBase: Performance Comparison for Image Dataset", Department of Information Technology MMCOE, Karvenagar Pune, India, in IEEE 2nd International Conference for Convergence in Technology 2017
- [5] Akansha Goyal, Arun Swaminathan and Rasika Pande, "Cross Platform (RDBMS to NoSQL) Database Validation Tool using Bloom Filter", Department of Computer Engineering and IT College of Engineering, Pune, Issue 8, 2016
- [6] Haleemunnisa Fatima, Prof.Kumud Wasnik, "Comparison of SQL, NoSQL and NewSQL Databases for Internet of Things", Computer Science and Technology UMIT, SNDT University Mumbai, India,IEEE, 2016
- [7] Neal Leavitt " Will NoSQL Databases Live Up to Their Promise?" IEEE Computer Society IEEE, 2010
- [8] Nishtha Jatana, Sahil Puri "A Survey and Comparison of Relational and Non-Relational Database" Department of Computer Science and Engineering, Maharaja Surajmal Institute of Technology, New Delhi, Volume 1, Issue Aug 2012

ISSN [ONLINE]: 2395-1052

26	Type of	Eventual	Eventual Consistency	Eventual	Causal and	
	Consistency	Consistency	and Immediate	Consistency and	Eventual	
	concepts	and Immediate	Consistency	Immediate	Consistency.	
		Consistency		Consistency		
					configurable in	
					Causal Cluster	
					setup and	
					Immediate	
					Consistency in	
					stand-alone mode	
27	Durability	Yes	Yes	Yes	Yes	

- [9] Benymol Jose, Sajimon Abraham, "Exploring the Merits of NoSQL", Research Scholar, School of computer Sciences, Mahatma Gandhi University, Kottayam, IEEE, July 2017
- [10] Harpreet Kaur, JaspreetKaur, KamaljeetKaur "A Review Of Non Relational Databases, Their Types, Advantages AndDisadvantages"Sri Guru Granth Sahib World University, India, Volume 2, Feb 2013
- [11] https://www.mongodb.com/scale/advantages-of-nosql
- [12] Hossain Shahriar, Hisham M. Haddad, "Security Vulnerabilities of NoSQL and SQL Databases for MOOC Applications", Department of Information Technology, Department of Computer Science Kennesaw State University, USA, Volume 8, Issue 01, March 2017