Fuzzy Strongly (Gsp)*- Super Closed Sets In Fuzzy Topological Space

Dr. M.K. Mishra¹, D. Anandhi², N.Poonguzhali³, S.Bhuvaneswari⁴, T.Janani⁵

¹Director R & D, ^{2, 3, 4, 5}Asst. Prof, ^{1, 2, 3, 4, 5}Edayathangudy G.S. Pillay Arts and Science College Nagapattinam

Abstract- In this paper we have introduced a new class offuzzy setscalled fuzzystrongly $(gsp)^*$ -super closed sets, properties of this set are investigated and we introduce new fuzzy spaces namely, fuzzy $T_s(gsp)^*$ -space, fuzzy $gT_s(gsp)^*$ -space, fuzzy $g^*T_s(gsp)^*$ -space and fuzzy $g^*T_s(gsp)^*$ -space.

Keywords- fuzzy Strongly (gsp)*- super closed sets, fuzzy Strongly (gsp)*- super continuous maps, fuzzy $T_s(gsp)$ *-space, fuzzy $g^*T_s(gsp)$ *-space and fuzzy $g^*T_s(gsp)$ *-space.

I. PRELIMINARIES

Throughout this paper (X,τ) and (Y,σ) represent fuzzy topological spaces. For a fuzzy subset A of a space (X,τ) ,cl(A) and int(A) denote the fuzzy closure and the fuzzy interior of A respectively.

Definition 1.1: A Subset A of fuzzy topological space (X,τ) is called;

- 1. Fuzzysemi super open set if $A \leq cl(int(A))$ and a fuzzy semi- super closed set if $int(cl(A)) \leq A$.
- Fuzzy semipre- super open set if A ≤cl(int(cl(A)) and a fuzzy semi-pre super closed set if int(cl(int(A)))
 <A
- Fuzzy regular super open set if int(cl(A))=A and a fuzzy regular - super closed.

Definition 1.2: A Subset A of fuzzy topological space (X,τ) is called;

- 1. Fuzzy generalized super closed set (resp. fuzzy gsuper closed) if $cl(A) \leq U$ whenever $A \leq U$ and U is fuzzy super open in (X,τ)
- 2. Fuzzy g*- super closed set if $cl(A) \le U$ whenever $A \le U$ and U is fuzzy g super open in (X,τ)
- 3. Fuzzy g**-super closed set if $cl(A) \le U$ whenever A $\le U$ and U is fuzzy g* super open in (X,τ)
- 4. Fuzzy wg -super closed set if $cl(int(A)) \le U$ whenever $A \le U$ and U is fuzzy super open in (X,τ)

- 5. Fuzzy regular generalized super closed set (resp. fuzzyrg- super closed) if $cl(A) \le U$ whenever $A \le U$ and U is fuzzy regular super open in (X,τ)
- 6. Fuzzy sg**-super closed set if $scl(A) \leq U$ whenever A $\leq U$ and U is fuzzy g** super open in (X,τ)
- 7. Fuzzy sg*-super closed set if scl(A) \leq U whenever A \leq U and U is fuzzy g* super open in (X, τ)
- Fuzzy generalized semi- super closed set (briefly fuzzy gs- super closed) if scl(A) ≤U whenever A≤U and U is fuzzy super open in (X,τ)
- Fuzzy gsp super closed set if spcl(A) ≤U whenever A ≤U and U is fuzzy super open in (X,τ)
- 10. Fuzzy (gsp)*-super closed set if $cl(A) \leq U$ whenever $A \leq U$ and U fuzzy gsp is super open in (X,τ)

Definition 1.3: A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called ;

- 1. Fuzzy g –super continuous if $f^{-1}(V)$ is a fuzzy gsuper closed set of (X,τ) for every fuzzy super closed set V of (Y,σ)
- 2. Fuzzy g*-super continuous if f $^{-1}(V)$ is a fuzzy g*super closed set of (X,τ) for every fuzzy super closed set V of (Y,σ)
- Fuzzy g**-super continuous if f¹(V) is a fuzzy g**super closed set of (X,τ) for every fuzzy super closed set V of (Y,σ)
- 4. Fuzzyrg-super continuous if f⁻¹ (V) is a fuzzy rg super closed set of (X,τ) for every fuzzy super closed set V of (Y,σ)
- Fuzzywg-super continuous if f¹(V) is a fuzzy wg super closed set of (X,τ) for every fuzzy super closed set V of (Y,σ)
- Fuzzy(gsp)*-super continuous if f¹(V) is a fuzzy (gsp)* super closed set of (X,τ) for every fuzzy super closed set V of (Y,σ)

Definition 1.4: A fuzzy topological space (X, τ) is said to be;

- 1. Fuzzy $T_{1/2}^*$ space if every fuzzy g*- super closed set in it is fuzzy super closed.
- 2. Fuzzy T_d space if every fuzzy gs super closed set in it is fuzzy g- super closed.

II. FUZZYSTRONGLY (GSP)* - SUPER CLOSED SETS IN FUZZY TOPOLOGICAL SPACE

Definition 2.1:A subset A of a fuzzy Topological space (X, τ) is said to be a fuzzy strongly $(gsp)^*$ - super closed set if $cl(int(A)) \leq U$ whenever $A \leq U$ and U is fuzzy gsp- super open.

Lemma2.1: Everyfuzzy super closed set is fuzzy strongly (gsp)*- super closed.

Proof:Let A be a fuzzy super closed.Then cl(A) = A. Let us prove that A is fuzzy strongly $(gsp)^*$ - super closed. Let $A \le$ Uand U be fuzzygsp- super open. Then $cl(A) \le U$.Since A is fuzzy super closed . $cl(int(A)) \le cl(A) < U$. Then cl(int(A)) < Uwhenever $A \le U$ and U is fuzzygsp-super open.so A is fuzzy strongly $(gsp)^*$ -super closed. The converse of the above proposition need not be true in general as seen in the following example.

Lemma 2.2: Everyfuzzy g- super closed set is fuzzy strongly (gsp)*- super closed.

Proof:Let A be fuzzy g- super closed. Then $cl(A) \leq U$ Whenever $A \leq U$ and U is fuzzy super open in (X, τ) .To prove A is fuzzy strongly $(gsp)^*$ - super closed.Then $A \leq U$ and U be fuzzy (gsp) super open.We have $cl(A) \leq U$ Whenever $A \leq U$ and U is fuzzy super open in (X, τ) .Since every fuzzy super open set is (fuzzy gsp)-super open.We have $cl(A) \leq U$ Whenever $A \leq U$ and U is fuzzy (gsp)- super open in (X, τ) .But $cl(int(A)) \leq cl(A) \leq U$ whenever $A \leq U$ and U is fuzzy (gsp)- super open in (X, τ) .But $cl(int(A)) \leq cl(A) \leq U$ whenever $A \leq U$ and U is fuzzy (gsp)- super open in (X, τ) so A is fuzzy strongly $(gsp)^*$ - super closed.The converse of the above proposition need not be true in general as seen in the following example.

Lemma 2.3: Everyfuzzy g*- super closed set is fuzzy strongly (gsp)* - super closed.

The converse of the above proposition need not be true in general as seen in the following example.

Lemma 2.4: Every fuzzyrg– super closed set is fuzzy strongly (gsp)* - super closed.

Proof:Let A be fuzzy rg- super closed set. Then $cl(A) \leq U$ Whenever A $\leq U$ and U is fuzzy regular- super open in (X, τ).To prove A is fuzzy strongly (gsp)* - super closed.Let A $\leq U$ and U be fuzzy (gsp) super open. Since every fuzzy regular- super open set is fuzzy (gsp)- super open.We have $cl(A) \leq U$ Whenever A $\leq U$ and U is fuzzy (gsp)- super open in

Page | 2057

 (X, τ) .But $cl(int(A)) \leq cl(A) \leq U$ whenever $A \leq U$ and U is fuzzy (gsp)- super open in (X, τ) so $cl(int(A)) \leq U$ whenever A < U and U is fuzzy (gsp)- super open in (X, τ) . So A is fuzzy strongly (gsp)*- super closed.

Remark 2.1: fuzzy strongly (gsp)* - super closed is independent of fuzzy semi- super closed.

Lemma 2.5: Everyfuzzy (gsp)* - super closed set is fuzzy strongly (gsp)* - super closed set

Proof:Let A be fuzzy (gsp)*-super closed set .Then cl(A) $\leq U$ Whenever A $\leq U$ and U is fuzzy gsp- super open in (X, τ).To prove A is fuzzy strongly (gsp)*-super closed.Let A $\leq U$ and U be fuzzy (gsp) super open. Since every fuzzy (gsp)*-super open set is fuzzy (gsp)- super open.We have cl(A) $\leq U$ Whenever A $\leq U$ and U is fuzzy (gsp)- super open in (X, τ).But cl(int(A)) \leq cl(A) $\leq U$ whenever A $\leq U$ and U is fuzzy (gsp)super open in (X, τ) \leq cl(int(A)) $\leq U$ whenever A $\leq U$ and U is fuzzy (gsp)- super open in (X, τ) so A is fuzzy strongly (gsp)* - super closed. The converse of the above proposition need not be true in general as seen in the following example.

Theorem 2.14: Every fuzzy g^{**} - super closed set is fuzzy strongly $(gsp)^*$ - super closed.

The converse of the above proposition need not be true in general.

Remark 2.2: fuzzy strongly (gsp)* - super closed is independent of fuzzy sg**- super closed.

Remark 2.3: Stronglyfuzzy (gsp)* - super closed is independent of fuzzy sg* - super closed.

Lemma 2.4: Everyfuzzy wg- super closed set is fuzzy strongly (gsp)* - super closed.

Proof:Let A be fuzzy wg- super closed.Then $cl(int(A)) \leq U$ Whenever $A \leq U$ and U is fuzzy super open in (X, τ) .To proveA is fuzzy strongly $(gsp)^*$ - super closed.Let $A \leq U$ and U be fuzzy (gsp) super open. Since every fuzzy wg- super open set is fuzzy (gsp)-super open.We have $cl(int(A)) \leq U$ whenever $A \leq U$ and U is fuzzy (gsp)- super open in (X, τ) then $cl(int(A)) \leq U$ whenever $A \leq U$ and U is fuzzy (gsp)super open in (X, τ) .A is fuzzy strongly $(gsp)^*$ - super closed.

Lemma 2.5:If A and B isfuzzy strongly (gsp)* - super closed sets, then AUB are also fuzzy strongly (gsp)* - super closed.

Proof: Let A and B be fuzzy strongly $(gsp)^*$ - super closed. Let AUB \leq U and U be fuzzy (gsp)- super open. Then A \leq U

IJSART - Volume 4 Issue 4 – APRIL 2018

and $B \leq U$ where U is fuzzy (gsp)- super opencl(int(A)) $\leq U$, whenever $A \leq U$ and U is fuzzy (gsp)- super open and cl(int(B)) $\leq U$, whenever $B \leq U$ and U is fuzzy (gsp)- super openSince A and B are fuzzy strongly (gsp)* -super closed. cl(int(A) Uint(B)) = cl(int(A)) U cl(int(B)) $\leq U$ whenever AUB $\leq U$ and U is fuzzy (gsp)- super open.Therefore AUB is also fuzzy strongly (gsp)* - super closed.

Lemma 2.5: If A is a fuzzy strongly $(gsp)^*$ - super closed set of (X, τ) such that $A \leq B \leq cl(int(A))$, then Bis also strongly fuzzy $(gsp)^*$ - super closed set of (X, τ)

Proof: Let U be a fuzzy (gsp) – super open set in (X,τ) such that $B \leq U$ Then $A \leq U$, Since A is strongly (gsp)*- super closed ,cl(int(A)) $\leq U$. Now cl(int(B)) \leq cl(int(A)), since B \leq cl(int(A)). Therefore cl(int(B)) \leq cl(int(A)) $\leq U$ cl(int(B)) $\leq U$ whenever B $\leq U$ and U is (gsp)- super open.=> B is strongly (gsp)* - super closed.

III. FUZZY STRONGLY (GSP)* - SUPER CONTINUOUS MAPPING

We recall the followings;

Definition 3.1:A function $f:(X,\tau) \to (Y,\sigma)$ is called fuzzy Strongly (gsp)* - super continuous if $f^{-1}(V)$ is a fuzzy strongly(gsp)* - super closed set in (X,τ) for every fuzzy super closed set V of (Y,σ) .

Theorem 3.1:Every fuzzy super continuous map is fuzzy strongly (gsp)* -continuous

Proof: Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a fuzzy super continuous map let us prove that f is fuzzy strongly (gsp)* - continuous and let F be a fuzzy super closed set in (Y,σ) .Since f is fuzzy super continuous $f^{-1}(F)$ is super closed in (X,τ) then $f^{-1}(F)$ is fuzzy strongly (gsp)* - super closed so f is fuzzy strongly (gsp)* super continuous the converse of the above Theorem is not true

Theorem 3.2: Everyfuzzy g- super continuous map is fuzzy strongly (gsp)* -continuous

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy g-continuous. Let F be a fuzzy super closed set in (Y,σ) . Since f is fuzzy g- super continuous f⁻¹(F) is fuzzy g- super closed in (X,τ) .then ,f⁻¹(F) is fuzzy strongly (gsp)* - super closeds f is fuzzy strongly (gsp)* -super continuous fuzzy super closedg**super closed fuzzy g- super closed fuzzywg- super closed fuzzysg**- super closed fuzzyg*- super closedfuzzy strongly (gsp)*- super closedfuzzy (gsp)*- super closedfuzzy Semisuper closedsg*- super closedsg- super closed.The converse of the above Theorem is not true

Theorem 3.3: Every g* - super continuous map is strongly (gsp)* -continuous.

Proof:Let $f:(X,\tau) \to (Y,\sigma)$ be a g^* -continuous. Let F be a super closed set in (Y,σ) . Since f is g^* - super continuous f⁻¹(F) is g^* - super closed in (X,τ) . Then f⁻¹(F) is strongly $(gsp)^*$ - super closeds f is strongly $(gsp)^*$ - super continuous The converse of the theorem is not true

Theorem 3.4: Every fuzzy g** - super continuous map is fuzzy strongly (gsp)* -continuous.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy g^{**} -continuous. Let F be a fuzzy super closed set in (Y,σ) .Since f is fuzzy g^{**} -super continuous $g^{-1}(F)$ is g^{**} - super closed in (X,τ) .then $f^{-1}(F)$ is fuzzy strongly $(gsp)^*$ - super closed so f is fuzzy strongly $(gsp)^*$ -super continuous The converse of the above Theorem is not true.

Theorem 3.5:Every fuzzy rg- super continuous map is fuzzy strongly (gsp)* -continuous.

Proof: Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a fuzzy rg- super continuous . Let F be a fuzzy super closed set in (Y,σ) . Since f is fuzzy rg super continuous $f^{-1}(F)$ is fuzzyrg- super closed in (X,τ) .By Then , $f^{-1}(F)$ is fuzzy strongly (gsp)* - super closedso f is fuzzy strongly (gsp)* -continuous.

Theorem 3.6: Everyfuzzy (gsp)*-super continuous map is fuzzy strongly (gsp)* - super continuous.

Proof: Let $f :(X,\tau) \to (Y,\sigma)$ be a fuzzy $(gsp)^*$ -super continuous. Let F be a fuzzy super closed set in (Y,σ) . Since f is fuzzy $(gsp)^*$ -super continuous f $^{-1}(F)$ is $(gsp)^*$ -super closed in (X,τ) .then f $^{-1}(F)$ is fuzzy strongly $(gsp)^*$ -super closed**so**fis fuzzy strongly $(gsp)^*$ -continuous. The converse of the above Theorem is not true.

Theorem 3.7: Everyfuzzy wg- super continuous map is fuzzy strongly (gsp)* -continuous.

Proof:Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy wg- super continuous . Let F be a fuzzy super closed set in (Y,σ) . Since f is fuzzy wg-super continuous $f^{-1}(F)$ is fuzzy wg- super closed in (X,τ) then , $f^{-1}(F)$ is fuzzy strongly (gsp)* - super closedf is fuzzy strongly (gsp)* - super continuous

IV. APPLICATIONS OF FUZZY STRONGLY (GSP)* -SUPER CLOSED SETS

As application of fuzzy strongly (gsp)*- super closed sets, new spaces, namely fuzzy $T_s(gsp)^*$ space , $gT_s(gsp)^*$ space , fuzzyg $^*T_s(gsp)^*$, fuzzy $g^{**}T_s(gsp)^*$ space are introduced. We introduced the following definitions.

Definition4.1: Afuzzy space (X, τ) is called a fuzzy $T_s(gsp)^*$ - space if every fuzzy strongly $(gsp)^*$ - super closed set is super closed.

Definition 4.2: Afuzzy space (X, τ) is called a fuzzy $gT_s(gsp)^*$ - space if every fuzzy strongly $(gsp)^*$ - super closed set is fuzzy g super closed.

Definition 4.3: A fuzzy space (X, τ) is called a fuzzy $g^*T_s(gsp)^*$ -space if every fuzzy strongly $(gsp)^*$ - super closed set is g^* - super closed.

Definition4.4:A fuzzy space (X, τ) is called a fuzzy $g^{**}T_s(gsp)^*$ -space if every fuzzy strongly $(gsp)^*$ - super closed set is fuzzy g^{**} - super closed.

Theorem 4.1:Every fuzzy $T_s(gsp)^*$ -space is fuzzy $T_{1/2}^*$ -space.

Proof: Let (X, τ) be a fuzzy $T_s(gsp)^*$ - space. Let us prove that (X, τ) is a fuzzy $T_{1/2}^*$ - space. Let A be a fuzzy g^* - super closedset. Since every fuzzy g^* - super closed set is fuzzy strongly $(gsp)^*$ - super closed, A is fuzzy strongly $(gsp)^*$ - super closed. Since (X, τ) is a fuzzy $T_s(gsp)^*$ - space, A is fuzzy super closed. (X, τ) is a fuzzy $T_{1/2}^*$ - space.

Theorem4.2:Every fuzzy T_s(gsp)* -space is fuzzy gTs(gsp)*-space.

Proof: Let A be a fuzzy strongly $(gsp)^*$ - super closed set. Then A is fuzzy super closed. Since the fuzzy space is $T_s(gsp)^*$ - space. And every super closed set is fuzzy g- super closed. Hence A is fuzzy g- super closed. (X,τ) is a fuzzy $gT_s(gsp)^*$ - space. The converse is not true.

Theorem 4.3: Everyfuzzy $g^*T_s(gsp)^*$ -space is fuzzy $gTs(gsp)^*$ -space.

Proof:Let A be a fuzzy strongly $(gsp)^*$ - super closed.Then A is fuzzy g^* - super closed, since the fuzzy space is a fuzzy $g^*T_s(gsp)^*$ -space since. Every fuzzy g^* - super closed set is fuzzy g- super closed .Hence A is fuzzy g- super closed then (X,τ) is a fuzzy $gT_s(gsp)^*$ -space. The converse is not true.

Theorem 4.4: Every g*T_s(gsp)* -space is g**T_s(gsp)* -space.

Proof:Let A be a strongly $(gsp)^*$ - super closed set. Then A is g^* - super closed, since the space is a $g^*T_s(gsp)^*$. Since Every g^{**-} super closed set is g^* - super closed. Hence A is g^{**-} super closed. (X,τ) is a $g^{**}T_s(gsp)^*$ -space.

REFERENCE

- B. Ghosh, Semi-continuous and semi-closed mappings and semi-connectedness in fuzzy setting, fuzzy Sets and Systems 35(3) (1990), 345–355.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- [3] C.W. Baker on Preserving g-super closed sets Kyungpook Math. J. 36(1996), 195-199.
- [4] G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems 86(1) (1997), 93–100.
- [5] G. Balasubramanian and V. Chandrasekar, Totally fuzzy semi continuous functions, Bull. CalcuttaMath. Soc. 92(4) (2000), 305–312.
- [6] G. Balasubramanian, On fuzzy pre-separation axioms, Bull. Calcutta Math. Soc. 90(6) (1998),427–434.
- [7] K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1) (1981), 14–32.
- [8] K. M. Abd El-Hakeim, Generalized semi-continuous mappings in fuzzy topological spaces, J. Fuzzy Math. 7(3) (1999), 577–589.
- [9] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.
- [10] M.K. Mishra et all on "Fuzzy super continuity" International Review in Fuzzy Mathematics July – December2012.
- [11] M.K. Mishra M. Shukla M. Fuzzy Regular Generalized Super Closed Set" International Journal of Scientific and Research December issue July December 2012.
- [12] M.K. Mishra, et all on "Fuzzy super closed set" International Journal International Journal of Mathematics and applied Statistics.
- [13] P. M. Pu and Y. M. Liu Fuzzy topology I Neighborhood structure of a fuzzy point and More-Smith Convergence. J. Math. Anal. Appl. 76(1980) ,571-594.
- [14] P. M. Pu and Y. M. Liu Fuzzy topology II Product and quotient spaces J.Math. Anal. Appl. 77(1980) 20-37.
- [15] P. M. Pu, and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76(2) (1980), 571–599.
- [16] R. K. Saraf and M. Khanna, Ongs-closed sets in fuzzy topology, J. Indian Acad. Math. 25(1),(2003), 133–143.

IJSART - Volume 4 Issue 4 – APRIL 2018

- [17] R. K. Saraf, and M. Khanna, Fuzzy generalized semipreclosed sets, J. Tripura Math. Soc.3(2001) 59–68.
- [18] R. K. Saraf, and S. Mishra, Fg_-closed sets, J. Tripura Math. Soc. 2 (2000) 27–32.
- [19] R. K. Saraf, M. Caldas and S. Mishra, Results via Fg_closed sets and Fg-closed sets, Pre print.
- [20] T. H. Yalvac, Semi-interior and semi closure of a fuzzy set, J. Math. Anal. Appl. 132(2) (1988),356–364.