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Abstract- This paper presents the optimal power flow 
solutions under variable load conditions. In this article we 
present the recent trend towards non-deterministic (random) 
search techniques and hybrid methods for OPF and give the 
conclusions. These methods have become popular because 
they have a theoretical advantage over the deterministic 
methods with respect to handling of non convexity, dynamics, 
and discrete variables. Present commercial OPF programs 
can solve very large and complex power systems optimization 
problems in a relatively less time. In recent years many 
different solution methods have been suggested to solve OPF 
problems. The paper contributes a comprehensive discussion 
of specific optimization techniques that can be applied to OPF 
Solution methodology 
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I. INTRODUCTION 
 
 A progressive increase of the load and the 
deregulation of the electric energy Systems have added to the 
complexity of determining adequate solutions for the electrical 
power system steady state operation problem. Therefore the 
study of voltage collapse and Optimal Power Flow Solutions 
acquires a great significance and there is a need for 
methodologies which are able to simultaneously analyze these 
two aspects to indicate the behavior of power systems, being 
operated near the maximum loadability limit. Different 
methodologies were proposed to calculate the maximum 
loadability limit of power systems. The approach presented in 
[1] proposes the determination of this limit through the 
computation of the steady state multiple solutions. In reference 
[2], sensitivity relationships between the power system 
variables are used to calculate the critical load. The Singular 
Value Decomposition of the conventional Newton–Raphson 
Jacobian matrix was also applied [3]. The parameterization of 
the steady state power system equations was also used to 
formulate the problem of maximum loadability [4], [5]. These 
two last works applied the continuation method to track the 
load flow solution for an increasing system demand.  
 

The OPF algorithms have been existing since sixties 
and have been extensively used to asses the economic aspect 
of power system operation. Some of these algorithms apply 
parametric optimization techniques, some use different 
versions of the Continuation method [6]–[12]. Some of these 
methodologies are based on the Newton OPF method [13]. 
The adequate combination of the Continuation methods with 
the optimization algorithms can provide a high potential tool 
for power system studies allowing the development of robust 
methods for the solution of the OPF problem .Recently, the 
performance of Interior Point (IP) algorithms in solving linear 
programming problems has led to many applications of these 
algorithms to the nonlinear OPF problem [15]–[18]. The 
efficiency of finding the optimal solution and the effective 
way Aof handling the inequality constraints have been 
claimed as its main features. Some of these works proposed 
the use of an OPF algorithm to compute the point of maximum 
loadability of the power systems via nonlinear versions of 
Interior Points methods [17], [18].  
 

The use of optimization algorithms for the study of 
heavily loaded systems allows the representation of all the 
operational limits and, depending on the OPF formulation, the 
adoption of an criterion to be optimized [14], [17], [18]. The 
not well known steady state behavior of power systems being 
optimally operated under heavy load can be, in this way, better 
analyzed. 
           

A research work on a methodology that combines the 
Continuation method with a nonlinear version of the Interior 
Point algorithm can be worked upon where the first will 
provide a sequence of estimates for the solution of the 
Karush–Kuhn–Tucker (KKT) conditions from a base case to 
the point of maximum loadability. Each solution of this 
sequence can be determined through the OPF Interior Point 
algorithm. This combination may allows the optimal tracking 
of the load growth, even in the neighborhood of the feasibility 
limit, where the Newton’s solver is bound to diverge due to 
the ill-conditioning of the Jacobian of the KKT conditions. 
 

II. THE MAXIMUM LOADABILITY PROBLEM 
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The Solving the maximum loadability problem gives 
the maximum real and reactive power demand that a power 
system is able to bear, while operating at a stable point (i.e., 
one which does not change considerably for small increments 
on the systems parameters such as load or operational limits), 
that respects a set of pre-defined operational limits. A steady 
state formulation of this problem can be made in terms of the 
load flow system of equations.  

 
The parameterization of the bus loads gives a 

modified set of power balance equations, in which the load 
increase direction is explicitly represented:  
 

G(x,e)=g(x)+e(d)                              (1) 
 

Where e is the load parameter g(x) is the set of power 
flow equations and d is the pre-specified load increase 
direction. 
 

In subject to this case, the calculation of the 
maximum loadability of power systems will consists of 
solving (1) to find the complex bus voltages corresponding to 
the maximum value of e .For an optimally operated system the 
maximum loadability problem is to find the maximum value 
of for which problem p(e) 
 

Min f(x)   (2) 
 
subject to 
 

g(x, e) = 0                  (3) 
h(x, e) = 0   (4) 

 
 

 has feasible solutions the vector of decision variables 
P(e), is composed of the active power generations, bus voltage 
magnitudes and angles, transformer tap settings and phase 
shifter angles. The objective function, f(x) , can represent the 
power generation cost, the transmission losses, the voltage 
deviation from a pre-specified voltage level or any 
combination of these three indices. The set of inequality 
constraints, h(x, e), which comprises the upper and lower 
limits of the decision variables and functional inequalities 
such as the limits on the generated reactive power and line 
flows, can also be dependent on the bus loads:  
 

h(x, e) = h(x) + ed1               (5) 
 
where d1 represents a pre-specified load increase direction.  
 

The solution P(e) can be tracked for increasing e until 
the maximum loadability limit is reached. The difficulties to 

solve this nonlinear optimization problem are well known, and 
presently most of the algorithms which were successful in its 
resolution are based on the solution of the its pure or modified 
KKT conditions by linear approximations (Newton method).  

However, it can be shown that near the feasibility 
limit the Jacobian of the KKT conditions of P(e)is ill-
conditioned [14] which may causes an additional difficulty in 
the tracking of the solution of P(e)up to the maximum value of 
e .  
 

Thus the analysis of the OPF behavior near the 
maximum loadability limit must be done with algorithms 
which can diminish the problem of ill conditioning observed 
near such limit. This is the main motivation of the research.  
 

III. THE PROPOSED APPROACH 
 

The application of the Interior Point algorithms to 
solve problem P(e ) consists basically of: 
 
 a) converting the inequality constraints in equality constraints, 
through nonnegative slack variables; and 
 
 b) adding a logarithmic barrier function to the objective 
function, to preserve the non negativity condition of the slack 
variables.  
 
The modified parameterized optimization problem PM(e) is:  
 

Min F(x,S) = F(x) - µ Ʃ ln(Si)            (6) 
             
subject to 
 

g(x, e) = 0                (7) 
h(x, e) + s = 0     (8) 

 
where μ ≥ 0 is the logarithmic barrier 
 s > 0 is the vector of slack variables 
 p is the number of inequality constraints 
 
  The interior point OPF model (6)–(8) is, a 
parameterized model with two distinct parameters μ and e . 
The proposed methodology will consists of changing each of 
these parameters at a time: in the predictor step, e will be 
increased so that a new load level is considered; in the 
corrector step, μ will be decreased so that, at the end of the 
corrector’s iterations, the original OPF problem is solved. We 
are analyzing the behavior of the OPF solutions for increasing 
e, while the optimal solution will be tracked for varying e . 
Nevertheless, Interior Point methods can also be interpreted as 
a special class of parametric optimization methods [19]. 
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IV. SOME SUPPLEMENTRY STUDIES 
 

An additional information regarding the behavior of 
the system near the collapse point is provided by the 
paramererized optimization model. The optimal operating 
point and the operational limit have been well considered . 
This limit plays an important role in deciding the maximum 
variation in voltage and the sensitivities that can be calculated 
with the parameterized model. When limits are considered, the 
optimal solution trajectories varies continuously with e only in 
those intervals where no new limit becomes active and a 
“break-point” appears upon the activation of a new inequality 
constraint. As a consequence, indices based on the tangent 
vector and also some sensitivities which are a by product of 
the approach, are valid only for small intervals of variation of 
where no new limit is reached.  
 
V. RESULT AND CONCLUSION  
 

The results have been obtained keeping in mind the 
three categories  
 

i) Optimal power flow behavior near the loadability 
limit;  

ii) Efficiency Analysis of the proposed methodology 
and  

iii) Analysis of the critical bus indices and the sensitivity 
of the maximum load with respect to reactive power 
injections.  

 

 
 

 
 

For a specific range of the load parameter e a 
parameterized OPF algorithm is worked upon which tracks the 
system load variation e and this algorithm uses continuation 
method on a primal–dual interior point method. Some insight 
on the behavior of power systems being optimally operated 
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near a feasibility limit is being provided implying 
parameterization to allow the resolution of the OPF problem 
for critical loading conditions. Critical variables and 
operational indices have been worked upon to provide the 
Sensitivity details of the system. 
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