
IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1069 www.ijsart.com

CPU Performance Before And After Multithreading

Mr. Sankar Dasiga1, Sagar G V2, Pavan Kumar B C3, Prabodh B P4, Ravi Kumar5

1, 2, 3, 4, 5 Dept of ECE
1, 2, 3, 4, 5 Nitte Meenakshi Institute of Technology

Abstract- this paper is focused on developing a thread based
application to stream video feed from multiple camera
simultaneously. We are performing image processing on both
frames and measuring the parameters such as resolution, FPS
(frames per second) and CPU load, comparing these data in
different conditions with and without using threading.

This project work is performed on raspberry pi 3B

development platform. Image processing is performed using
opencv and python. The results are obtained by running script
that can run in parallel with main script and it is stored in a
file with timestamp attached with corresponding readings.
The overall CPU consumption remains the same and FPS is
increased by 200% while using threading.

Keywords- FPS, Multithreading.

I. INTRODUCTION

 In these Modern days, raspberry pi is being one of the
sheets to chip away at. This board can be utilized as
independent board which can go about as scaled down CPU.
Numerous interfacing should be possible on this board
effortlessly which utilizes an easy to understand programming
dialect to be specific Python. As the board has 1.2 GHz
processor and 1 GB RAM [1]. At the point when Image
handling applications are utilized on this board, CPU tends to
utilize the greater part of its RAM.

Keeping in mind the end goal to maintain a strategic
distance from this working framework will give us a choice of
multi-threading. Multi-threading is the capacity of a working
framework with a specific end goal to execute different
process or strings in parallel. It is meant to expand the usage
of a solitary center by utilizing string level and guideline level
parallelism. It likewise prompts quick general execution.
Strings are lighter than process and offer same memory space.
Multi-threading can be of three sorts in particular, Coarse-
grained multi-threading, Interleaved multi-threading,
Simultaneous multi-threading.

Coarse-grained multi-threading is the less complex
multi-threading, which happens when one string will keep
running until the point when its blocked and make a long-
inactivity slow down. Multi-threading equipment bolster is

utilized to permit brisk exchanging between a blocked and an
unblocked string which is prepared to run.

Interleaved Multi-threading is to expel all
information reliance slows down from the execution pipeline
since strings are being executed simultaneously, shared assets
should be bigger to abstain from whipping between various
strings.

Synchronous multi-threading, this kind of multi-
threading applies to CPU that executes a type of parallelism
inside a solitary processor. This write is utilized to diminish
the waste related with unused issue and spaces.

In Python, threading is an I/O bound assignment. The
processor can switch between strings when any of the string is
prepared to work. For CPU bound errands threading modules
will keep running in a moderate execution time.

In our Project we are interfacing two camera
modules, one is PiCam and WebCam. At the point when CPU
bound errands are gotten to utilizing PiCam module the CPU
nearly utilizes 70% of the RAM and we can't interface another
camera until the point that multi-threading is finished.
Subsequent to multi-threading the Camera modules are
interfaced on a solitary processor and can work proficiently
and the utilization of CPU is same as one preceding multi-
threading.

II. DESIGN CONSIDERATIONS

When designing this system the important parameters
that we took into consideration are resolution, frames rate of
individual camera, CPU load and efficiency [2].

WebCam and PiCam that we are using have still

picture resolution of 1280 x 960 and 2592 x 1944 and video
supports 720p at frame rate of 30fps and 30fps respectively.

While taking the readings we are resizing the frames
to 320 x 240 in order to increase the frame rate and reduce cpu
load.

A. Equations

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1070 www.ijsart.com

i. CPU usage(CPU load)[3][4][5]

 …. (1)

Where Total is the sum of idle and Non-idle
execution.

PrevTotal is previous value of Total,

 …. (2)

 …. (3)

…. (4)

The above values are extracted from the CPU stats

file in linux, the meaning of the parameters are as follows,
Cupid – number of CPU.

User – normal process execution in user mode.
Nice – niced process execution in user mode.
System – processes executing in kernel mode.
Idle – twiddling thumbs.
Iowait – waiting for I/O to complete.
Irq – handling interrupts.
Softirq – handling software interrupts.

Percentage of CPU usage can be calculated using the equation
CPU usage = (CPU Load x 100) %

The maximum available CPU is equal 1.2GHz.

ii. Frames per second(FPS)

 …. (5)

Total Frames – total number of frames captured in given time
T.
Elapsed Time = T.

III. SIMULATION AND MEASURED RESULT OF
EXPERIMENT

The Result is measured and validated using python

scripts on raspberry pi. We are using pi camera and WebCam
as load, the test is conducted with and without threading
process.

The values are calculated by conducting loading test.
The loading cycles are scheduled as shown in the table below.

Table 1: loading cycles

NT – No Threading
T –Threaded

Figure 1: Plot of Time vs. load (loading cycle)

From the graph we can tell that maximum CPU usage

of all the loads.

While CSI based camera(PiCam) is using 35% the

USB camera(WebCam) is taking up 65% .when combined we
are getting upto 80% usage. It is worth mentioning that
threading has effect on CPU usage, it does not seen to reduce
the CPU load.

This is because the process take same amount of
resouces when running with and without threading ,but when
using thread it can perform more than it does while not using
thread.

The whole point in using the threading method is to

increse the FPS of video stream.

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1071 www.ijsart.com

Figure 2 This plot shows the variation in temperature with

time when using multiple cameras. (cycle 1)

` The temperature is increasing with CPU consumption
and decreases gradually as the resources are released.

Figure 3 variation of CPU core voltage with time when a

load (two camera) is applied and released (cycle 1)

Figure 4 : CPU consumption plot for cycle 1

Figure 5 This plot shows the variation in temperature

with time when using pi camera. (cycle 2)

Figure 6 : variation of CPU core voltage with time when a

load (pi camera) is applied and released (cycle 2)

Figure 7: CPU consumption plot for cycle 2

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1072 www.ijsart.com

iii. Figure 8 This plot shows the variation in temperature

with time when using web camera. (cycle 3)

Figure 9 : variation of CPU core voltage with time when a

load (web camera) is applied and released (cycle 3)

Figure 10: CPU consumption plot for cycle 3

Figure 11 : This plot shows the variation in temperature

with time when using multiple cameras. (cycle 4)

Figure 12: variation of CPU core voltage with time when a

load (two camera) is applied and released (cycle 4)

Figure 13: CPU consumption plot for cycle 4

The above plots show the variation in different

parameters measured during the experiment.

The change observed in all the cycles is similar and

temperature is between 50oC to 58oC.

IV. CONCLUSION

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1073 www.ijsart.com

On a whole we found that it is a good practice to use
threading when developing an application on any platform to
get most out of it.

The performance after using separate threads for each

process is high compared to running everything on main
thread.

CPU cooling also makes a lot of difference in

performance.

From this experiment we observed that the frame

rate(FPS) calculated using equation (5) before and after the
use of multithreading is 32fps and 96fps respectively for pi
camera. There is about 300% increase in FPS.

REFERENCES

[1] https://www.raspberrypi.org/documentation/hardware/ras
pberrypi/bcm2837/README.md.

[2] https://www.pyimagesearch.com/2016/01/18/multiple-
cameras-with-the-raspberry-pi-and-opencv/

[3] https://www.kernel.org/doc/Documentation/filesystems/pr
oc.txt

[4] https://github.com/pcolby/scripts/blob/master/cpu.sh
[5] http://stackoverflow.com/questions/23367857/accurate-

calculation-of-cpu-usage-given-in-percentage-in-linux
[6] http://serverfault.com/questions/648704/how-are-cpu-

time-and-cpu-usage-the-same
[7] http://www.webopedia.com/TERM/C/clock_tick.html
[8] http://www.pcworld.com/article/221559/cpu.html
[9] http://stackoverflow.com/questions/16726779/how-do-i-

get-the-total-cpu-usage-of-an-application-from-proc-pid-
stat

[10] http://www.ask.com/technology/many-times-system-
clock-tick-per-second-1-ghz-processor-
b9028ab0b0de7883

[11] https://github.com/torvalds/linux/blob/master/fs/proc/stat.
c

