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Abstract- Web search engines are composed by thousands of 
query processing nodes, i.e., servers dedicated to process user 
queries.Such many servers consume a significant amount of 
energy, mostly accountable to their CPUs, but they are 
necessary to ensure low latencies, since users expect sub-
second response times . However, users can hardly notice 
response times that are faster than their expectations. Hence, 
we propose the Predictive Energy Saving Online Scheduling 
Algorithm (PESOS) to select the most appropriate CPU 
frequency to process a query on a per-core basis. PESOS aims 
at process queries by their deadlines, and leverage high-level 
scheduling information to reduce the CPU energy 
consumption of a query processing node. PESOS bases its 
decision on query efficiency predictors, estimating the 
processing volume and processing time of a query. We 
experimentally evaluate PESOS upon the TREC ClueWeb09B 
collection and the MSN2006 query log. Results show that 
PESOS can reduce the CPU energy consumption of a query 
processing node up to _48% compared to a system running at 
maximum CPU core frequency. PESOS outperforms also the 
best state-of-the-art competitor with a _20% energy saving, 
while the competitor requires a fine parameter tuning and it 
mayincurs in uncontrollable latency violations. 
 

I. INTRODUCTION 
 
 Web search engines continuously crawl and index an 
immense number of Web pages to return fresh and relevant 
results to the users’ queries. Users’ queries are processed 
by query processing nodes, i.e., physical servers dedicated 
to this task. Web search engines are typically composed by 
thousands of these nodes, hosted in large datacenters which 
also include infrastructures for telecommunication, thermal 
cooling, fire suppression, power supply, etc . This complex 
infrastructure is necessary to have low tail latencies (e.g., 95- 
th percentile) to guarantee that most users will receive results 
in sub-second times (e.g., 500 ms), in line with their 
expectations At the same time, such many servers consume a 
significant amount of energy, hindering the profitability of the 
search engines and raising environmental concerns. In fact, 
datacenters can consume tens of megawatts of electric power  
and the related expenditure can exceed the original investment 
cost for a datacenter . Because of their energy consumption, 

datacenters are responsible for the 14% of the ICT sector 
carbon dioxide emissions , which are the main cause of global 
warming. For this reason, governments are promoting codes of 
conduct and best practices  to reduce the environmental impact 
of datacenters. Since energy consumption has an important 
role on the profitability and environmental impact of Web 
search engines, improving their energy efficiency is an 
important  Noticeably, users can hardly notice response times 
that are faster than their expectations . Therefore, to reduce 
energy consumption, Web search engines should answer 
queries no faster than user expectations. In this work, we focus 
on reducing the energy consumption of servers’ CPUs, which 
are the most energy consuming components in search systems  
To this end, Dynamic Frequency and Voltage Scaling (DVFS) 
technologies can be exploited. DVFS technologies allow to 
vary the frequency and voltage of the CPU cores of aserver, 
trading off performance (i.e., longer response times) for lower 
energy consumptions. Several power management policies 
leverage DVFS technologies to scale the frequency of CPU 
cores accordingly to their utilization . However, core 
utilization-based policies have no mean to impose a required 
tail latency on a query processing node. As a result, the query 
processing node can consume more energy than necessary in 
providing query results faster than required, with no benefit 
for the users.  
 

In this work we propose the Predictive Energy 
Saving Online Scheduling algorithm (PESOS), which 
considers the tail latency requirement of queries as an explicit 
parameter. Via the DVFS technology, PESOS selects the most 
appropriate CPU frequency to process a query on a per-core 
basis, so that the CPU energy consumption is reduced while 
respecting required tail latency. The algorithm bases its 
decision on query efficiency predictors rather than core 
utilization. Query efficiency predictors are techniques to 
estimate the processing time of a query before its processing. 
They have been proposed to improve the performance of a 
search engine, for instance to take decision about query 
scheduling  or query process parallelization . However, to the 
best of our knowledge, query efficiency predictor have not 
been considered for reducing the energy consumption of query 
processing . We build upon the approach described in  and 
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propose two novel query efficiency predictor techniques: one 
to  the number of postings that must be scored to process a 
query, and one to estimate the response time of a query under 
a particular core frequency given the number of postings to 
score. PESOS exploits these two predictors to determine 
which is the lowest possible core frequency that can be used to 
process a query, so that the CPU energy consumption is 
reduced while satisfying the required tail latency. As 
predictors can be inaccurate, in this work we also propose and 
investigate a way to compensate prediction errors using the 
root mean square error of the predictors. We experimentally 
evaluate PESOS upon the TREC ClueWeb09 corpus and the 
query stream from the MSN2006 query log. We compare the 
performance of our approach with those of three baselines:  
which always uses the maximum CPU core frequency, power  
which throttles CPU core frequencies according to the core 
utilizations, and cons  which performs frequency throttling 
according to the query server utilization. PESOS, with 
predictors correction, is able to meet the tail latency 
requirements while reducing the CPU energy consumption 
from _24% up to _44% with respect to perf and up to _20% 
with respect to cons, which however incurs in uncontrollable 
latency violations. Moreover, the experiments show that 
energy consumption can be further reduced by PESOS when 
prediction correction is not used, but with higher tail latencies. 
The rest of the paper is structured as follows: Section 2 
provides background information about the energy 
consumption of Web search engine datacenters, the query 
processing activity, and the query efficiency predictors. 
Section 3 formulates the problem of minimizing the energy 
consumption of a query processing node while maximizing the 
number of queries which meet their deadlines. Section 4 
illustrates our proposed solution to the problem, describes our 
query efficiency predictors, and the PESOS algorithm. Section 
5 illustrates our experimental setup while Section 6 analyzes 
the obtained results. Related works are discussed in Section 7. 
 

II. BACKGROUND 
 

In this section we will discuss the energy-related 
issues incurred By Web search engines . Then, we will explain 
how query processing works and some techniques to reduce 
query response times . Finally, we will discuss about query 
efficiency predictors, which we exploit to reduce the energy 
consumption of a Web search engine while maintaining low 
tail latencies. 
 
2.1 Web search engine and energy consumption 
 

In the past, a large part of a datacenter energy 
consumption was accounted to inefficiencies in its cooling and 
power supply systems. However, Barroso et al report that 

modern datacenters have largely reduced the energy wastage 
of those infrastructures, leaving little room for further 
improvement. On the contrary, opportunities exist to reduce 
the energy consumption of the servers hosted in a datacenter. 
In particular, our work focuses on the CPU power 
management of query processing nodes, since the CPUs 
dominate the energy consumption of physical servers 
dedicated to search tasks. In fact, CPUs can use up to 66% of 
the whole energy consumed by a query processing node at 
peak utilization . Modern CPUs usually expose two energy 
saving mechanism, namely C-states and P-states. C-states 
represent CPU cores idle states and they are typically managed 
by the operating system . C0 is the operative state in which a 
CPU core can perform computing tasks. When idle periods 
occur, i.e., when there are no computing tasks to perform, the 
core can enter one of the other deeper C-states and become 
inoperative. However, Web search engines process a large and 
continuous stream of queries. As a result, query processing 
nodes are rarely inactive and experience particularly short idle 
times. Consequently, there are little opportunities to exploit 
deep C-states, reducing the energy savings provided by the 
C-states in a Web search engine system . 
 

When a CPU core is in the active C0 state, it can 
operate at different frequencies (e.g., 800 MHz, 1.6 GHz, 2.1 
GHz, . . . ). This is possible thanks to the Dynamic Frequency 
and Voltage Scaling (DVFS) technology  which permits to 
adjust the frequency and voltage of a core to vary its 
performance and power consumption. In fact, higher core 
frequencies mean faster computations but higher power 
consumption.Vice versa, lower frequencies lead to slower 
computations and reduced power consumption. The various 
configurations of voltage and frequency available to the CPU 
cores are mapped to different P-states, and are managed by the 
operating system. For instance, the intel pstate driver  controls 
the P-states on Linux systems1 and can operate accordingly 
to two different policies, namely perf and power. The perf 
policy simply uses the highest frequency to process computing 
tasks. Instead, power selects the frequency for a core 
according to its utilization. When a core is highly utilized, 
power selects an high frequency. Conversely, it will select a 
lower frequency when the core is lowly utilized. However, Lo 
et. al [15] argue that core utilization is a poor choice for 
managing the cores frequencies of query processing nodes. In 
fact, the authors report an increase of query response times 
when core utilization-based policies are used in a Web search 
engine. For such reason, Catena et al.  propose to control the 
frequency of CPU cores based on the utilization of the query 
processing node rather than on the utilization of the cores. 
The utilization of a node is computed as the ratio between the 
query arrival rate and service rate. Then, they propose the 
cons policy which throttles the frequency of the CPU cores 
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when the utilization of the node is above or below certain 
thresholds (e.g., 80% and 20%, respectively). The frequency is 
selected so to produce a desirable utilization level (e.g., 70%). 
Similarly, in our work we control the CPU cores frequencies 
of a query processing node using information related to the 
query processing activity rather than to the CPU cores 
utilization. To this end, we build our approach on top of the 
acpi cpufreq driver . This driver allows applications to directly 
manage the CPU cores frequency, instead of relying on the 
operative systems. 
 
2.2 Query processing and dynamic pruning 
 

Web search engines continuously crawl a large 
amount of Web pages. The inverted index is a data structure 
that maps each term in the document collection to a posting 
list, i.e., a list of postings which indicates the occurrence of a 
term in a document. A posting contains at least the identifier 
(i.e., a natural number) of the document where the  appears 
and its term frequency, i.e., the number of occurrences of the 
term in that particular document. The inverted index is usually 
compressed  and kept in main memory to increase the 
performance of the search engine . When a query is submitted 
to a Web search engine, it is dispatched to a query processing 
node. This retrieves a ranked list of documents that are 
relevant for the query, i.e., the top K documents relevant to a 
user query, sorted in decreasingorder of relevance score (e.g., 
by using the popular BM25 weighting model . To generate the 
top K results list, the processing node exhaustively traverses 
all the posting lists relative to the query terms. This is 
computationally expensive, since the inverted index can easily 
measure tens of gigabytes, so dynamic pruning techniques are 
adopted . Such techniques avoid to evaluate irrelevant 
documents, skipping over portions of the posting lists. This 
reduces the response time as the systems avoid to access and 
decompress portion of the inverted index. At the same time, 
these dynamic pruning techniques are safe-up-to-K, i.e., they 
produce the same top K results list returned by an exhaustive 
traversal of the posting lists. For such reasons, in this work we 
apply dynamic pruning strategies to the processing of queries. 
 
2.3 Query efficiency predictors 
 

Query efficiency predictors (QEPs) are techniques 
that estimate the execution time of a query before it is actually 
processed. Knowing in advance the execution time of queries 
permits to improve the performance of a search engine. Most 
QEPs exploit the characteristics of the query and the inverted 
index to pre-compute features to be exploited to estimate the 
query processing times. For instance, Macdonald et al.  
propose to use term-based features (e.g., the inverse document 

frequency of the term, its maximum relevance score among 
others) to predict the execution time of a query. 
 

They exploit their QEPs to implement on-line 
algorithms to schedule queries across processing node, in 
order to reduce the average query waiting and completion 
times. The works instead, address the problem to whether 
parallelize or not the processing of a query. In fact, parallel 
processing can reduce the execution time of long-running 
queries but provides limited benefits when dealing with short-
running ones. Both the works propose QEPs to detect long-
running queries. The processing of the query is parallelized 
only if their QEPs detect the query as a long-running one. 
Rather then combining term-based features, propose to 
analytically model the query processing stages and to use 
such model to predict the execution time of queries. In our 
work, we modify the QEPs described in  to develop our 
algorithm for reducing the energy consumption of a 
processing node while maintaining low tail latencies. 
 

III. PROBLEM FORMULATION 
 

In the following, we introduce the operative scenario 
of a query processing node , we formalize the general 
minimum-energy scheduling problem and we shortly present 
the state-of-the-art algorithm to solve it offline, and we discuss 
the issues of this offline algorithm in our scenario 
 
3.1 Operative scenario 

 
A query processing node is a physical server 

composed by several multi-core processors/CPUs with a 
shared memory which holds the inverted index. The inverted 
index can be partitioned into shards and distributed across 
multiple query 

 

 
processing nodes. In this work, we focus on reducing the CPU 
energy consumption of single query processing nodes, 
independently of the adopted partition strategy. In the 
following, we assume that each query processing node holds 
an identical replica of the inverted index . 
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A query server process is executed on top of each of 
the CPU core of the processing node. All query servers access 
a shared inverted index held in main memory to process 
queries. Each query server manages a queue, where the 
incoming queries are stored. The first query in the queue is 
processed as soon as the corresponding CPU core is idle. The 
queued queries are processed following the first-come first 
served policy. The number of queries in a query server’s 
queue represents the server load. Queries arrive to the 
processing node as a stream S = {q1, . . . , qn}. When a query 
reaches the processing node it is dispatched to a query server 
by a query router. The query router dispatches an incoming 
query to the least loaded query server, i.e., to the server with 
the smallest number of enqueued queries. Alternatively, the 
query processing node could have a single query queue and 
dispatch queries from the queue to idle query servers. In this 
work, we use a queue for each query servers since a single 
queue will not permit to take local decisions about the CPU 
core frequency to use for the relative query server. A similar 
queue-per-core architecture is assumed in , to schedule jobs 
across CPU cores to minimize the CPU energy consumption, 
and in  to schedule queries across different query servers. 
A query qi 2 S is characterized by its arrival time ai, when 
it “enters” the processing node at the query broker, and its 
completion time ci > ai, when it “leaves” the processing node 
after being processed by a query server. The query processing 
node is required to process queries with a tail latency of _ ms 
(e.g., 500 ms). Therefore, we impose that each query qi must 
be processed within _ time units from its arrival time, i.e., it 
has an absolute deadline di = ai + _ . If we assume negligible 
the time required by the query broker to dispatch the query, 
the completion time ci of qi is the sum of its arrival time, the 
time the query spent in the queue and its processing time. A 
query misses its deadline, i.e., ci > di, if it spends more than 
_ time units in queue and being processed. In fact, a query 
may have less than _ time units to be processed. At time t, 
the time budget bi(t) of query qi indicates how much time 
remains before qi misses its deadline. bi(t) is the difference 
between its deadline and the time it is spending in the queue, 
i.e. bi(t) = di−(t−ai). When a query exceeds its time budget, 
terminate the query, returning an incomplete list of results, 
or 2) to finish processing the query, delaying the processing of 
other request, but returning a complete list of results. In this 
work, we focus on the second option which does not degrade 
the quality of the search results. We do not consider here the 
time necessary to send the results to the users, as it involves 
network latencies which do not depend on the search engine. 
As seen in Section , a query server can process queries at 
different speeds, depending to the CPU core operational 
frequency. To reduce deadline violations, CPUs cores can 
operate at their maximum processing frequency. In fact, high 

frequencies lead to faster computations at the price of high 
power consumption. Conversely, lower frequencies mean 
slower computations, with lower power consumptions. 
 

Since the number of queries received by a query 
processing node along a day varies, we envision the possibility 
to dynamically change the CPU core frequencies of query 
servers to the number of queries received per time unit. Our 
goal is to maximize the number of queries that are processed 
within their deadline, in order to obtain a tail latency close 
to _ ms. At the same time, we want to minimize the energy 
consumption of the processing node. In other words, for each 
query qi we need to select the most appropriate frequency 
f 2 F for the CPU core associated to the server processing qi. 
 
3.2 The minimum-energy scheduling problem 
 

Consider the following scenario, where a single-core 
CPU must execute a set J = {J1, . . . , Jn} of generic 
computing jobs rather than queries. Jobs must be executed 
over a time interval [t0, t1]. Each job Ji has an arrival time ai 
and an arbitrary deadline di which are known a priori. 
Moreover, each job Ji has a processing volume vi, i.e., how 
much work it requires from the CPU, and jobs can be 
preempted. The CPU can operate at any processing speed s 2 
R+ (in time units per unit of work) and its power consumption 
is a convex function of the processing speed, e.g., P(s) = s 
with  > 1 [7]. Jobs in J must be scheduled on the CPU. A 
schedule is a pair of functions S = ( , _) denoting, respectively, 
the processing speed and the job in execution, both at time t. 
A schedule is feasible if each job in J is completed within its 
deadline. The minimum-energy scheduling problem (MESP) 
aims at finding a feasible schedule such that the total energy 
consumption is minimized, i.e., arg min 
 

The MESP is similar to an offline version of our 
problem,where jobs, corresponding to queries, are 
preemptable, andprocessor speeds can assume any positive 
value.The YDS algorithm [26] solves the MESP in polynomial 
time. Consider an interval I = [z, z0] _ [t0, t1] and the set of 
jobs in that interval JI = {Ji 2 J : [ai, di] _ I}. The intensity 
g(I) of interval I is the ratio between the amount of work 
required by the jobs in JI and the length of the interval 
g(I) = 1 
z − z0 
X 
Ji2JI 
vi (2) 

 
A feasible schedule must use a processing speed s _ 

g(I) during the interval I, or jobs will not meet their deadlines 
if s < g(I). Moreover, P(g(I)) is the lowest possible power 
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consumption on the interval I, since P is a convex function. 
Algorithm 1 illustrates the YDS algorithm, that optimally 
solves the MESP in O(n3) [26], [27]. YDS works by analyzing 
each possible time interval I included in [t0, t1]. Then, it finds 
the critical interval I_ that maximizes g(I). YDS schedules the 
jobs in JI_ using the earliest deadline first (EDF) policy [28] 
and processing speed g(I_). Then, if not preempted, the jobs 
in JI_ will terminate in ri = vi · g(I_) time units since the 
beginning of their execution. Jobs in JI_ are then removed 
from J. The interval I_ as well is removed from [t0, t1], i.e., it 
cannot be used to schedule jobs other than those in JI_ . For 
this reason, YDS updates the arrival times and deadlines of the 
remaining jobs to be outside I_. Finally, YDS repeatedly finds 
a new critical interval for the remaining jobs, until all jobs 
are eventually scheduled. Note that the MESP always admit 
a feasible schedule, since arbitrary large amounts of work can 
be performed in infinitesimal time when s ! 1. 
 
Algorithm 1: The YDS algorithm 
 
Data: A set of jobs J = {j1, . . . , jn} to schedule in [t0, t1] 
Result: A feasible schedule S for J minimizing E(S) 
OYDS(J): 
1     {} 
2 _   {} 
3 while J 6= {} do 
4 Identify I_ = [z, z0] and compute g(I_) 
5 Set processor speed to g(I_) for jobs in JI_ in   
6 Schedule jobs in JI_ according to EDF in _ 
7 Remove I_ from [t0, t1] 
8 Remove JI_ from J 
9 foreach Ji 2 J do 
10 if ai 2 I_ then 
11 ai   z0 // Update arrival times 
12 if di 2 I_ then 
13 di   z // Update deadlines 
14 return S = ( , _ 

 
 
The above fig show an example for YDS. Input jobs 

are illustrated in the upper part of the picture. The left end of a 
box indicates the arrival time of the job, while the right end 
indicates its deadline. Processing volumes for the jobs are 
reported inside the relative boxes. The bottom part of the 
picture illustrates the optimal solution provided by YDS. The 
picture shows the order in which the jobs are scheduled, their 
start and end time, and the processing speeds s used for each 

job. Note that J3 is executed over two different time intervals, 
as it is preempted to schedule J4 and J5, which have an higher 
joint intensity.  
 
3.3 Issues with YDS 
 

YDS finds an optimal solution for the MESP, but 
poses various issues that make difficult to use it in a search 
engine to reduce its energy consumption: 
 
1) YDS is an offline algorithm to schedule generic computing 
jobs and cannot be used to schedule online queries. In fact, 
YDS input is the set of jobs to be scheduled in a interval, with 
their arrival times and deadlines, that must be known a priori. 
In contrast, query arrival times are not known until query 
arrives. Moreover, YDS relies on EDF, which contemplates 
job preemption. Context switch and cache flushing cause time 
overheads with non-negligible impacts on the query 
processing time. Therefore, preemption is unacceptable for 
search engines. 
 
2) YDS requires to know in advance the processing volumes 
of jobs. Conversely, we do not know how much work a query 
will require before its completion. 
 
3) YDS schedules job using processing speeds (defined as 
units of work per time unit). The speed value is continuous 
and unbounded (i.e., the speed can be indefinitely large). 
However, the frequencies available to CPU cores are generally 
discrete and bounded. For such reasons, in the following 
Section we modify YDS in order to exploit it in a search 
engine. 
 

IV. PROBLEM SOLUTION 
 

YDS has several issues that make unfeasible to use it 
in a search engine. In the following, we discuss: 
 
1) an heuristic based on YDS which works in online scenarios 
without job preemption , 
 
2) a methodology to estimate the processing volume of a 
query , 
 
3) an algorithm to translate processing speeds into CPU 
core frequencies . 
 
Eventually, we introduce and discuss our approach to select 
the most appropriate CPU core frequency to process a query 
in a search engine . 
 
4.1 On-line scheduling without preemption 
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Online YDS2 (OYDS) is an heuristic for the online 
version of the MESP, proposed in . In an online scenario, we 
are not given a set of jobs over a fixed time interval, but the 
set of jobs that must be processed by the CPU changes over 
time. Every time ˆt a new job arrives, OYDS considers the 
newly arrived job and all the jobs still to be (completely) 
processed, and computes an optimal solution using YDS for 
this set of jobs, assuming that all such jobs have the same 
arrival time ˆt. As YDS, OYDS guarantees that each job will 
be terminated by its deadline. In fact, it can schedule any 
processing volume by simply using an arbitrarily large 
processing speed s. On the other hand, its energy consumption 
can be sub-optimal. While OYDS is an heuristics for the 
online version of the MESP, it still schedules jobs using the 
EDF policy which contemplates job preemption. However, in 
our operative scenario we deal with queries rather than generic 
computing jobs. Preemption is unacceptable for search 
engines and a  
 
2. In the original paper, OYDS is called Optimal Available 
(OA). In this work, we will use OYDS for the sake of clarity. 
query cannot be preempted once its processing has started. 
Since all queries must be processed within the same relative 
deadline _ , for any two queries qh and qk, such that ak > ah, 
we have dk > dh, i.e., later queries have later deadlines. As 
a consequence, EDF will always schedule firstly the earliest 
query, without any preemption. This means that, under these 
conditions, EDF coincides with the first-in first-out (FIFO) 
scheduling policy. We will use OYDS as a base for build our 
frequency selection algorithm, described in Section 4.4. In the 
remaining of this work, then, we will stop discussing about 
generic computing jobs but we will focus on the processing of 
search engine queries. 
 
4.2 Predicting processing volumes 
 

The OYDS heuristic must know the processing 
volumes of the queries to schedule. For this purpose, we 
propose to use the number of scored posting during the 
processing of query. Indeed, for queries with the same number 
of terms, the number of scored postings correlates with their 
processing times [10]. If exhaustive processing is performed, 
it is possible to know a priori the number of scored postings, 
which is equal to the sum of the posting lists lengths of the 
query terms. 
 

However, when dynamic pruning is applied we do 
not know in advance how many postings will be scored, since 
portions of the posting lists could be skipped. Then, we need a 
way to predict the number of scored posting for a query. We 
use the query efficiency predictors (QEPs) described in [10] 
but we modify them to predict the number of scored 

postings for a query. This means that we learn a set _ of linear 
functions _x(q) that, given a query q with x query terms, 
estimate the number of scored postings. 
 

We note that OYDS requires exact query processing 
volumes. If the reported processing volumes are less than the 
actual ones, the algorithm does not guarantee that all the 
queries deadlines will be meet. QEPs are not precise, but they 
give only an estimate on the number of scored postings. 
 

For this reason, we add an offline validation phase 
after the QEPs training. During the validation, we use the 
regressors in _ to predict the number of scored posting for a 
validation set of pre-processed queries. Then, we record the 
root mean squared error (RMSE) for the predictions. In the 
online query processing, we use the RMSE _x of predictor _x 
to compensate its errors, by adding _x to the predicted number 
of scored postings. In other words, our modified QEPs e_x(q) 
will be 
e_x(q) = _x(q) + _x. (3) 
 

In this way, we will likely over-estimate the 
processing volume of some queries, requiring higher 
processing speeds at the cost of higher energy consumptions. 
However, we will miss less deadlines, as we reduce the 
number of queries for which we predict fewer scored postings 
lower than the actual ones. 
 
4.3 Translating processing speeds into CPU frequencies 
 

CPU cores can operate at frequencies f 2 F, where F 
is a discrete set of available frequencies (measured in Hz). 
Nevertheless, OYDS assigns processing speeds (seconds per 
unit of work) to queries. Therefore, we need to map 
processing speeds to CPU core frequencies. To do so, for each 
frequency f we train a single-variable linear predictor _fx 
which forecasts the processing time of a query q composed by 
x     terms at frequency f through the estimated number of its 
scored postings: 
_fx 
(q) = _fx 
e_x(q) + _fx 
, (4) 
where _fx and _fx are the coefficients learned by the 
regressors. 
 
Thus, we learn offline a new set _ of single-variable linear 
regressors _fx , one for each frequency f. Once again, we add 
a validation phase after the training to build _, similarly to 
approach described in Section 4.2.We compensate a predictor 
error adding its RMSE (_fx) computed over the validation 
queries to the actual prediction, i.e., 
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e_fx 
(q) = _fx 
(q) + _f 
x.  

 
We can use _ to translate processing speeds to CPU core 
frequencies, as shown in Algorithm 2. When a query qi is 
associated to a processing speed s by OYDS, we compute 
its required processing time ri by multiplying the predicted 
number of scored postings e_x(qi) by s. Then, we check each 
regressor e_fx (qi) in _0 in ascending order of frequency f. If 
the expected query processing time at frequency f is less than 
ri, we use frequency f to process qi. If we are not able to find a 
suitable frequency f, we use the maximum available 
 

. 
 

As shown in Algorithm 2, a suitable frequency f 
among the frequencies of the CPU cores for a query qi does 
not always exists. For example, this happens when the query 
server is overloaded with queries to process. However, we 
can ignore this scenario by assuming that a query processing 
node has a computing capacity that, at maximum frequency, 
is sufficient to process its peak query volume. Moreover, a 
suitable frequency for a query qi cannot be found if, at time 
t, qi requires a processing time that is greater than its time 
budget bi(t). In such cases, we use the maximum CPU core 
frequency to minimize that query processing time. 
 
4.4 Frequency selection algorithm for search engines 
 

In this section, we describe PESOS (Predictive 
Energy Saving Online Scheduling). PESOS is an algorithm to 
select the most appropriate frequency to process a query in a 
search engine.  
 

Our algorithm is based on OYDS, but exploits 
predictors which can be inaccurate. Because of wrong 
predictions, some queries will miss their deadline no matter 
the selected CPU core frequency. Yet, this can happen because 
either queries have low time budgets or they require too much 

processing time. We call these late queries. Conversely, we 
call on time queries those that will be completely processed by 
their deadline. 

 
Given a query qi with deadline di and completion 

time ci, we define its tardiness as Ti = max{0, di −ci}. As 
such, an on time query will have 0 tardiness, while a late 
query will have a tardiness given by the amount of time a 
query requires to be completed exceeding its deadline. While 
missing a query deadline is always undesirable, low tardiness 
values are still better than higher ones. Therefore, we aim at 
minimizing the tardiness of late queries, by reducing the time 
budget of on time queries. Given a queue of queries Q sorted 
by arrival time, we compute the total tardiness of the late 
queries in Q when all queries are processed at maximum 
frequency. Then we compute the shared tardiness H(Q) of the 
on time queries in Q by dividing the total tardiness by the 
number of on time queries in Q, and we reduce the on time 
queries’ deadlines by H(Q). Hence, on time queries are 
required to finish their processing earlier, but this will leave 
more time to late queries and reduce their actual tardiness. 
Algorithm 3 recaps the steps 
 

 
 
Algorithm 4 describes how PESOS sets the most 

appropriate core frequency to process a query. The algorithm 
works as follow. Assume q1 is the first query in the query 
queue Q of a query server. At time t, query q1 begins being 
processed. 
 

Initially, we check if q1 is going to meet its own 
deadline. If the query is late, we set the core at its maximum 
frequency. Otherwise, we compute the shared tardiness H(Q) 
of the queued queries and we change the deadlines of all the 
queries in Q accordingly, i.e., for all qi in Q, we set edi = di − 
H(Q).  

In doing so, we should just reduce the time budgets 
of the on time queries to leave more time to late queries. In 
fact, reducing the time budget of late queries has no effect 
since late queries will be in any case processed at maximum 
core frequency. Nevertheless, we reduce all the time budget by 
H(Q) such that, for each couple of queries qj , qk 2 Q, if dj _ 
dk then e dj _ e dk. This property ensures that queries will 
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be processed following the FIFO policy, avoiding preemption 
(see Sec. 4.1). Then, we check if the query q1 is going to miss 
its modified deadline. In such case, we set the core at 
maximum frequency. On the contrary, we eventually run the 
OYDS algorithm to select which core frequency to use. Note 
that we need to compute just the core frequency for the query 
q1. Then, we do not need to analyze each time interval in the 
query queue Q. Instead, we will check only the time intervals 
[t, edi] = [t, di − H(Q)] for all queries qi 2 Q. If a query in the 
queue is likely to miss its deadline, we use the maximum  core 
frequency to process q1 at maximum speed. Otherwise, once 

 
we have identified the critical interval I_ (see Section 3.2) 
and its intensity g(I_), we select the most appropriate core 
frequency to process the first query q1 by using Algorithm 
 

 
 

PESOS is executed whenever a query server starts 
processing a new query. When the query processing is 
completed, the query is removed from the query queue Q. 
Also, PESOS is executed at each new query arrival, to take 
into account the increased workload in the query queue and to 
adjust the core frequency for the query which is currently 
being executed. PESOS runs in linear time. It computes the 
shared tardiness using Algorithm 3, which just need to 
traverse the query queue. Then, the algorithm checks each 
interval [t, edi] for all qi 2 Q, i.e., it analyzes |Q| intervals. 
Eventually, it translates a processing speed into a CPU core 
frequency using Algorithm 2. Algorithm 2 needs to analyze at 
most |F| CPU frequencies. In conclusion, the computational 
complexity of PESOS is O(|Q| + |F|). 
 

V. EXPERIMENTAL SETUP 
  

In this section, we firstly describe the experimental 
setup for the training and validation of our predictors . Then, 
we illustrate the experimental setup we adopt to measure the 
CPU energy consumption and the tail latency of a query 
processing node using our approach . All the experiments are 
conducted using the Terrier search engine . The platform is 
hosted on a dedicated server with 32 GB RAM. The operating 

system is Ubuntu, with Linux kernel version 3.13.0-79-
generic. 
 

The machine is equipped with an Intel i7-4770K 
CPU, a member of the Haswell product family. The CPU has 
4 physical cores which expose 15 operational frequencies F = 
{0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.1, 2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 
3.5} GHz. The inverted index used in the experiments is 
obtained by indexing the ClueWeb09 (Cat. B) document 
collection3  
3. http://lemurproject.org/clueweb09/ which contains more 
than 50 millions of Web pages. On each document, we remove 
stopwords and apply the Porter stemmer to all of its terms. 
The inverted index stores document identifiers and terms 
frequencies and it is kept in main memory, compressed with 
Elias-Fano encoding . For the queries, we use the MSN 2006 
query log4. 
 

In our experiments, we process queries using two 
dynamic pruning retrieval strategies: 1) MaxScore [22], and 2) 
WAND dynamic pruning [21]. For each query, we retrieve the 
top 1,000 documents according to the BM25 ranking function. 
The node operates with 4 query servers, i.e., processing 
threads, which are pinned to different CPU physical cores and 
share the same inverted index. 
 
5.1 Training processing volume predictors 
 

In this section, we adapt the query efficiency 
predictors (QEPs) introduced in [10] to originally predict the 
response times of a query. Instead, we modify these predictor 
to estimate the number of scored postings for a query. We 
divide queries into six query classes according to their number 
of terms, i.e., the first class includes queries with one term, 
while the last class includes queries with six or more terms. 
To train and validate our predictors, we extract a number of 
unique queries from the MSN 2006 query log. We use unique 
queries to avoid any caching mechanism from the operating 
system that could distort our measurements. For each query 
class, we extract 10,000 unique queries from the MSN 2006 
query log, generating a query set of 60,000 unique queries. 
Before training the modified QEPs, we process each single 
term in the query set as detailed in . We treat single terms as 
queries of length one. During the processing, we record the 
ranking scores obtained by all the documents relative to the 
terms, to obtain a set of 13 term-based features for each query 
term. Then we aggregate these to generate query-based 
features using three functions: maximum, variance and sum, 
generating a feature set containing 39 query-based aggregated 
features per query. 
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We then process the original queries in the query set 
to record the number of scored postings. This value is 
independent by the CPU frequency and we can use any f 2 F. 
From the execution of the query set, we collect a processing 
log which contains the number of scored posting for each 
query in the query set. We use this processing log in the 
training and validation phase of the predictors. 
 

To train our predictors, we split the feature set and 
the processing log: 50% of the queries for training and 50% 
for validation. We use the training set to learn the set of linear 
regressors _x, one for each query class. Each regressors takes 
in input the 39 query-based aggregated features from the 
feature set, and estimates the number of postings scored in 
the processing log5. Note that linear regressors can return 
negative values for a set of input features. However, the 
number of scored postings is always a positive quantity. If a 
regressor returns a negative value, we set its prediction to the 
minimum between the shortest posting list length for the query 
terms and 1,000 (the number of retrieved document). 
 

Similarly, a linear regressor may return a value that 
exceeds the sum of the posting lists lengths for a query. Since 
this is not possible in practice, in such cases we set the 
prediction to the sum of the posting lists lengths. 
 

Once we have trained the regressors on the training 
set, we use the validation set to see how predictors perform 
(results are reported in the Supplemental Material). We then 
use the RMSE _x computed in the validation phase to correct 
the value of the predictors  This will provide more 
conservative predictions to use into OYDS. 
The result of the training and validation phases is a set of 
predictors _ = {˜_1, ˜_2, . . . ..., ˜_6+}. 
5.2 Training processing time predictors 

 
OYDS produces processing speeds that need to be 

mapped into CPU core frequencies. For this purpose, we 
process the 60,000 queries set described in Section  to collect 
the number of scored postings and the processing times of 
each query. From these data, we learn a set of single-variable 
linear regressors _fx that estimate the processing time of a 
query given the number of its scored postings. The processing 
time of a query is influenced by the CPU core frequency but 
also by the workload faced by the query processing node. In 
fact, high workloads increase the contention among the query 
servers (i.e., processing threads) for the main memory and the 
processor caches. This contention increases the time required 
to process a query. We want our regressors to predict 
processing times that match high workload conditions. This is 
a worst-case choice that will lead to higher energy 
consumption when the query processing node deals with low 

workloads. However, we expect to miss less query deadlines 
when the query processing node faces high query volumes.We 
process the 60,000 query set sending the to the processing 
node at the rate of 100 queries per second since this rate 
ensure than our node is constantly busy processing queries, 
simulating an high query workload. We process the query set 
15 times, one for each frequency f 2 F. We hence obtain 15 
different processing logs reporting the number of scored 
postings and the processing time for each query in the query 
set. 
 

Again, we divide the queries into six classes . For 
each query class and each frequency f, we learn a 
singlevariable linear regressor _fx . To learn these regressors, 
we split each processing log for training and validation: 50% 
of the logs are used for training the regressors, the remaining 
50% is used to validate them. We use the validation set to 
check how well the predictors perform after the training phase, 
measuring their RMSE _f x and the coefficient of 
determination R2. Results are reported in the Supplemental 
Material. As expected, the mean processing times decrease by 
increasing the CPU frequency. Moreover the processing times 
are lower when using MaxScore rather than WAND. This 
confirms the findings , where MaxScore outperforms WAND 
for memory-resident indexes. 
 

As explained in Section 4.3, we use the RMSE Rfx 
Computed in the validation phase to compensate the 
predictors’ estimates. The result of the training and validation 
phases is a set of predictors _ = {˜_f 1 , ˜_f 2 , . . . ..., ˜_f 6+}. 
 
5.3 Measuring energy consumption and tail latency 
 

We now describe the experimental setup for 
measuring the CPU energy consumption and the tail latency 
for processing a stream of queries on a query processing node. 
We here focus on the tail latency since it is assumed to be a 
better performance indicator than the mean/median latency 
forWeb search engines [34]. In fact, measuring the tail 
latency, we can affirm that most of the requests are served 
within the measured time interval. We require that queries are 
processed with a certain tail latency. We experiment with a 
required tail latency of 500 ms and 1,000 ms. The first value 
represents a scenario where we want to promptly answer the 
queries, while the second represents the case where we are 
willing to wait more time to obtain query results. In fact, 
search engine users are likely to not notice response delays up 
to 500 ms, while they are very likely to perceive delays higher 
than 1,000 ms [2]. In PESOS we can impose the tail latency 
constrain setting _ = {500, 1, 000} ms, i.e., requiring that 
queries are processed within _ ms since their arrival. We test 
different latency requirements to observe if PESOS can 
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produce energy savings while meeting the required tail 
latency. The query processing is performed using the Max 
Score and the WAND retrieval strategies, to understand how 
PESOS behaves when different retrieval strategies are 
deployed. Also, we test PESOS with predictors corrected 
using their RMSE (as discussed in Sec. 4.2 and 4.3), and 
without any correction. We will refer to the first configuration 
as time conservative (TC) and to the second as energy 
conservative (EC). In the TC configuration, we are likely to 
over-estimate the processing volume and time of some 
queries, requiring higher core frequencies. However, we also 
expect to miss less query deadlines hence producing lower tail 
latencies. In the EC configuration, instead, we use predictors 
without any correction which should lead to lower core 
frequencies and produce higher energy savings. Comparing 
the two configurations, we want to understand if acceptable 
tail latencies are achievable even without predictors 
correction. 

 
To perform our measurements, we carry out two 

different kinds of experiment. Firstly, we observe the behavior 
of PESOS under a synthetic query workload. For this purpose, 
we send a stream of 60,000 unique queries from the MSN2006 
log to the processing node. Table 1 shows the number of 
queries for each query class, with an average of _3 terms per 
query. This value reflects the average query length observable 
on the original MSN2006 log. To test the robustness of 
PESOS, we experiment with different query arrival rates, i.e., 
{5, 10, 15, 20, 25, 30, 35} query per second (QPS) sent to the 
processing node6. The second kind of experiment aims to 
observe the behavior of PESOS under a realistic query 
workload. For this, we process 544,718 unique queries from 
the MSN2006  log following the actual query arrivals of the 
second day ofthe query log. Table 1 reports the number of 
queries for each query class, while show the number of query 
arrivalsduring the day. For both query workloads, we process 
unique queries to avoid caching mechanism that could 
compromise the evaluation of the experiment results. 
Nevertheless, for the realistic query workload we are still 
processing the same number of queries reported in the second 
day of the MSN2006 query log to reflect a realistic query 
traffic. 
 

Finally, we compare the energy consumption and the 
tail latency of PESOS against three baselines, namely perf, 
power, and cons. perf and power are provided by the intel 
pstate driver . The perf policy simply uses the highest core 
frequency to process queries and then race to an idle state. The 
power policy, instead, selects the frequency for a core 
according to its utilization. High frequencies are selected when 
a core is highly utilized. Conversely, lower frequencies are 
selected when a core is lowly utilized. Differently, the cons 

policy bases its decisions upon the utilization of a query server 
rather than on the utilization of a CPU core. The utilization of 
a query server is computed as the ratio between the query 
arrival rate and service rate. The frequency of a core is then 
throttled if the server utilization is above 80% or below 20%, 
to produce a desirable utilization of 70%. The cons policy 
executes every 2 seconds. We select these parameter settings 
to achieve the best energy savings while maintaining 
acceptable latencies, reflecting those used in . With these 
experiments we want to address the following research 
questions: 
 

• RQ1: Does PESOS meet the required tail latencies? 
• RQ2: Does PESOS help reducing the CPU energy 

consumption 
of a query processing node? 

• RQ3: Is prediction correction necessary to achieve 
acceptable 
tail latencies? 

• RQ4: How does PESOS behave using different 
retrieval 
strategies, with different prediction accuracies? 
 
We measure the 95-th percentile tail latency of the 

processing node to answer our first research question. The 95-
th percentile tail latency is used to measure the effects of 
power management mechanism on the responsiveness of 
search systems in . To answer the second research question 
we measure the energy consumption of the CPU using the 
Mammut library7 which relies on the Intel Running Aver- 
7. http://danieledesensi.github.io/mammut/ age Power Limit 
(RAPL) interface. The RAPL component performs actual 
measurements of the energy consumption in Haswell 
processors. Hackenberg et al.  show the reliability of such 
measurements, and the RAPL interface is used in other works 
to measure the energy consumption of CPUs . 
 

Finally, to address the third research question we 
compare the performance of our approach with and without 
prediction corrections. We compare the performance of 
PESOS with MaxScore and WAND to answer the last 
research question. All experiments are conducted using the 
query processing node described at the beginning of this 
Section 
. 

VI. RESULTS 
 
In this Section we discuss the results of our 

experiments. We firstly describe the results relatively to the 
experiments conducted with synthetic query workloads. Then, 
we illustrate the results obtained using the realistic query 
workload. 
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6.1 Synthetic query workload results 
 

We begin by analyzing the behavior of perf and 
power. We  recall that perf always uses the maximum 
available CPU core frequency, while power is an utilization-
based policy which throttles a CPU core frequency 
accordingly to its utilization. Both perf and power, however, 
do not permit to impose the required tail latency of a query 
processing node. From Table 2 we can observe that, when 
MaxScore is deployed, perf meets the 500 ms tail latency 
requirement up to 30 QPS, while the 1,000 ms tail latency 
requirement is always satisfied. 
 

When WAND is used, instead, perf satisfies the 500 
ms tail latency up to 20 QPS, and the 1,000 ms tail latency up 
to 30 QPS. We explain this difference by recalling that 
WAND provides longer response times than MaxScore (see 
Table 2 in Supplemental Material). With respect to tail 
latencies, we observe a similar behavior between perf and 
power. This is expected since, as the query arrival rate 
increases, the CPU cores utilization increases as well, leading 
power to select high core frequencies and hence behaving like 
perf. In terms of energy savings8, Table 3 shows little 
differences between the two baselines. Some energy savings 
are provided by power at low QPS, from _2% in the case of 
WAND up to _5% for MaxScore, at the cost of higher tail 
latency. For high query arrival rates, power can be even 
detrimental, increasing the energy consumption of the system. 
We explain this behavior with the longer query processing 
times and the overhead introduced by the policy, i.e., the CPU 
cores spend more time busy doing computations, hence 
consuming more energy. Regarding the other baseline, we 
observe in Table 2 that cons satisfies the 500 ms tail latency 
only for moderate QPS (from 15 to 25) when MaxScore is 
deployed, and only for 20-25 QPS with WAND. Again, this is 
due to the better performance of MaxScore over WAND. 
When considering a tail latency of 1000 ms, we observe that 
cons meets the latency requirement from 10 to 35 QPS with 
MaxScore and from 10 to 30 QPS with WAND. In general, we 
can conclude that cons produces latency violations when the 
query arrival rate is particularly low or high. We explain this 
behavior by recalling that cons requires to tune several 
parameters which we use a setting aimed to produce the best 
energy savings and acceptable latencies. However, our results 
suggests that a single parameter setting is not sufficient for 
cons to perform well under a wide range of query arrival rates. 
With respect to energy consumption, Table 3 shows that cons 
provides substantial energy savings with respect to perf at low 
QPS (up _ 45% with Maxscore and _ 40% withWAND). 
However,when the query arrival rate increases, cons can 
consume more energy. Again, we explain this behavior with 

the longer query processing times and the overhead introduced 
by the policy. 
 

We now discuss the results for PESOS when using _ 
= 500 ms and _ = 1, 000 ms. For the time conservative 
configuration, Table 2 shows that PESOS satisfies the 500 ms 
tail latency requirement from 5 to 20 QPS when using WAND 
and up to 25 QPS when using MaxScore. For the 1,000 ms tail 
latency requirement, in the time conservative configuration 
PESOS meets the required latency up to 30 QPS for both 
retrieval strategies. These results are similar to what reported 
for the perf policy. Relatively to our first research question 
(RQ1), we can state that PESOS is able to meet the required 
tail latencies for the same query workloads sustainable by a 
system which operates at maximum CPU core frequency. In 
terms of energy savings, Table 3 shows that PESO  markedly 
reduce the energy consumption of the query processing node’s 
CPUs. In the time conservative configuration, PESOS can 
reduce the energy consumption up to _25% when using 
MaxScore and up to _12% when using WAND. We explain 
the better results achieved with MaxScore with the higher 
accuracy of its processing time predictors compared to the 
ones for WAND . 
 

We also notice that energy savings diminish as the 
query arrival rate increases, as there are less opportunities for 
PESOS to use low core frequencies without violating query 
deadlines. Relatively to our second research question (RQ2), 
the results in Table 3 show that PESOS actually permits to 
reduce the CPU energy consumption of a query processing 
node. In most cases, these energy savings are higher than 
those provided by the state-of-the-art power and cons policies. 
This indicates that application-dependent information 
leveraged by PESOS, such as the state of the query queues and 
the query efficiency predictors, are a better input for managing 
the CPU cores frequencies than the cores or query servers 
utilizations. Also, an important role is played by the _ 
parameter, which permits to set the required tail latencies 
rather than processing the queries at maximum speed as in 
perf, which does not take into account latency requirements. 
 

We now analyze the performance of PESOS in the 
energy conservative configuration, i.e., when we do not 
correct the query efficiency predictors using their RMSE. 
Table 2 shows that, for both retrieval strategies, PESOS 
misses the 500 ms tail latency requirement. This answer our 
third research question (RQ3): predictors correction is 
necessary to meet the latency requirements. However, we 
highlight that the reported latency violations are limited: for 
the same QPS values for which the time conservative 
configuration meets the 500 ms tail latency requirement, the 
energy conservative configurations violates the requirement 
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by up to _8% with WAND and up to _15% with MaxScore. 
Additionally, we notice higher energy savings compared to the 
time conservative configuration (see Table 3). When _ = 500 
ms, the energy conservative configuration reduces the energy 
consumption of the CPU node by _29% in the case of WAND 
and by _34% in the case of MaxScore for low QPS. In Table 2 
we can observe that the 1,000 ms tail latency requirement is 
met up to 30 QPS when MaxScore is applied, and up to 25 
QPS when WAND is used. This suggests that predictors 
correction becomes less relevant as the latency requirement 
increases. Remarkably, the energy conservative configuration 
basically halves the energy consumption of the CPU node for 
5 QPS when _ = 1, 000 ms . 
 

Finally, to answer our last research question (RQ4), 
we compare the behavior of PESOS while deploying 
MaxScore and WAND. In general, PESOS shows better 
results with MaxScore. In fact, the tail latency requirements 
are met for slightly higher QPS values compared to WAND. 
Also, PESOS shows higher energy savings when the 
MaxScore retrieval strategy is applied. We explain this 
behavior with the faster response time provided by MaxScore 
and by the higher precision of its processing time predictors. 
 
6.2 Realistic query workload results 
 

Now we describe the results of the experiments 
conducted processing the realistic query workload. In this 
subsection we will not invetigate research question RQ4 as for 
these experiments we use only the MaxScore retrieval 
strategy, which provided the best results in Section 6.1. 
Firstly, we will analyze the performance of the three baselines. 
Then, we will discuss the results obtained by PESOS in the 
time conservative configuration. Finally, we will study the 
performance of PESOS in the energy conservative 
configuration. Figure 4 reports the tail latencies of the tested 
approaches during the day. As expected, perf provides lower 
latencies than the other approaches. Unsurprisingly, perf 
exhibits also the higher CPU energy consumption as it always 
uses the maximum core frequency . In terms of tail latency, 
power behaves similarly to perf during midday but exhibits 
higher latencies at the beginning and at the end of the day. 
This behavior is explained in Figure 5 (left). During midday, 
the CPU cores are highly utilized due to the higher number of 
query arrivals. In response to high core utilization, power 
selects the maximum core frequency as in perf. During the rest 
of the day, instead, the query arrivals decrease and the CPU 
cores are less utilized. Therefore, power selects lower core 
frequencies which explain longer latencies. For the same 
reasons, power provides limited energy savings compared to 
perf, reducing the CPU energy consumption by less than 4% 
as reported in Table 4. Figure 6 illustrate the energy reductions 

of power with respect to perf during the day. When power is 
applied, we can observe energy savings only at the beginning 
and at the end of the day, when power selects lower core 
frequencies as shown in Figure 5 (left). In these periods, the 
CPU consumes _20% less energy with respect to perf. 
However, during midday power does not provide any energy 
saving. Again, this is due to the high utilizations showed by 
the CPU cores during midday In this situation, power selects 
the maximum core frequency, behaving like perf and 
consuming the same amount of energy. 
 

Table 4 shows that cons can reduce by _27% the 
CPU energy consumption with respect to perf. As shown in 
Figure 6, energy consumption can be reduced by _45% during 
periods Finally, the works in  focus on reducing the energy 
consumption of a single query node.  Propose to use the query 
processing node utilization, rather than the CPU utilization, to 
accordingly throttle the CPU frequency and reduce the power 
consumption of the node. , propose an approach to improve 
the energy efficiency of a query node by equally distribute 
queries and power among the CPU cores. However, their work 
contemplates the early termination of query processing, 
possibly degrading the quality of the search results. In our 
work, instead, queries are always completely processed, even 
if this may delay the execution of other queries. Also, the 
approaches in [13], [43] do not consider the characteristics of 
the incoming queries, i.e., differently from PESOS, no form of 
query efficiency prediction is applied to achieve energy 
savings. 
 

VII. CONCLUSIONS 
 

In this paper we proposed the Predictive Energy 
Saving Online Scheduling (PESOS) algorithm. In the context 
of Web search engines, PESOS aims to reduce the CPU 
energy consumption of a query processing node while 
imposing a required tail latency on the query response times. 
For each query, PESOS selects the lowest possible CPU core 
frequency such that the energy consumption is reduced and 
the deadlines are respected. PESOS selects the right CPU core 
frequency exploiting two different kinds of query efficiency 
predictors (QEPs). The first QEP estimates the processing 
volume of queries. The second QEP estimates the query 
processing times under different core frequencies, given the 
number of postings to score. Since QEPs can be inaccurate, 
during their training we recorded the root mean square error 
(RMSE) of the predictions. In this work, we proposed to sum 
the RMSE to the actual predictions to compensate prediction 
errors.We then defined two possible configuration for PESOS: 
time conservative, where prediction correction is enforced, and 
energy conservative, where QEPs are left unmodified. We 
experimentally evaluated the performance of PESOS using the 
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ClueWeb09B corpus and processing queries from the 
MSN2006 log applying two different dynamic pruning 
retrieval strategies: MaxScore and WAND. We compared the 
performance of PESOS with those of three baselines: perf, 
which always uses the maximum CPU core frequency, power, 
which throttles frequencies according to the core utilizations, 
and cons, which throttles frequencies according to the 
utilization of the query servers.We found that time 
conservative PESOS was able to meet a required tail latency 
of 500 and 1,000 ms for the same workload sustainable by 
perf. At the same time, time conservative PESOS was able to 
reduce the CPU energy consumption of the CPU by _12% 
with WAND up to _25% with MaxScore, for which we could 
train more accurate query efficiency predictors than for 
WAND. Greater energy savings were observable with energy 
conservative PESOS, but at the cost of higher latencies. 
Predictors correction is hence necessary to obtain the required 
tail latency, still providing significant energy savings. 
Moreover, we processed a realistic query workload which 
reflects the query arrivals of one day of the MSN2006 log. We 
found that time conservative PESOS was able to meet a 500 
ms (with very few violations) and a 1,000 ms tail latency 
requirements, while reducing the CPU energy consumption, 
respectively, by _24% and by _44% when compared to perf. 
From the same set of experiments, we reported that power can 
reduce the CPU energy consumption by just _4% with respect 
to perf. On the other hand, cons was able to reduce the CPU 
energy consumption by _27% but incurring in considerable 
latency violations. We justified the superior perf provided by 
PESOS thanks to the applicationlevel information exploited by 
our algorithm, such as the knowledge about the state of the 
query queues and the query efficiency predictions. 
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