
IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1129 www.ijsart.com

Energy-Efficient Query Processing In Web Search
Engines

K.Darshan1, A.Mallikarjuna2, prof.S.Ramakrishna3

1, 2, 3 Dept of Computer Science
1, 2, 3 S.V.University, Tirupati, INDIA

Abstract- Web search engines are composed by thousands of
query processing nodes, i.e., servers dedicated to process user
queries.Such many servers consume a significant amount of
energy, mostly accountable to their CPUs, but they are
necessary to ensure low latencies, since users expect sub-
second response times . However, users can hardly notice
response times that are faster than their expectations. Hence,
we propose the Predictive Energy Saving Online Scheduling
Algorithm (PESOS) to select the most appropriate CPU
frequency to process a query on a per-core basis. PESOS aims
at process queries by their deadlines, and leverage high-level
scheduling information to reduce the CPU energy
consumption of a query processing node. PESOS bases its
decision on query efficiency predictors, estimating the
processing volume and processing time of a query. We
experimentally evaluate PESOS upon the TREC ClueWeb09B
collection and the MSN2006 query log. Results show that
PESOS can reduce the CPU energy consumption of a query
processing node up to _48% compared to a system running at
maximum CPU core frequency. PESOS outperforms also the
best state-of-the-art competitor with a _20% energy saving,
while the competitor requires a fine parameter tuning and it
mayincurs in uncontrollable latency violations.

I. INTRODUCTION

 Web search engines continuously crawl and index an
immense number of Web pages to return fresh and relevant
results to the users’ queries. Users’ queries are processed
by query processing nodes, i.e., physical servers dedicated
to this task. Web search engines are typically composed by
thousands of these nodes, hosted in large datacenters which
also include infrastructures for telecommunication, thermal
cooling, fire suppression, power supply, etc . This complex
infrastructure is necessary to have low tail latencies (e.g., 95-
th percentile) to guarantee that most users will receive results
in sub-second times (e.g., 500 ms), in line with their
expectations At the same time, such many servers consume a
significant amount of energy, hindering the profitability of the
search engines and raising environmental concerns. In fact,
datacenters can consume tens of megawatts of electric power
and the related expenditure can exceed the original investment
cost for a datacenter . Because of their energy consumption,

datacenters are responsible for the 14% of the ICT sector
carbon dioxide emissions , which are the main cause of global
warming. For this reason, governments are promoting codes of
conduct and best practices to reduce the environmental impact
of datacenters. Since energy consumption has an important
role on the profitability and environmental impact of Web
search engines, improving their energy efficiency is an
important Noticeably, users can hardly notice response times
that are faster than their expectations . Therefore, to reduce
energy consumption, Web search engines should answer
queries no faster than user expectations. In this work, we focus
on reducing the energy consumption of servers’ CPUs, which
are the most energy consuming components in search systems
To this end, Dynamic Frequency and Voltage Scaling (DVFS)
technologies can be exploited. DVFS technologies allow to
vary the frequency and voltage of the CPU cores of aserver,
trading off performance (i.e., longer response times) for lower
energy consumptions. Several power management policies
leverage DVFS technologies to scale the frequency of CPU
cores accordingly to their utilization . However, core
utilization-based policies have no mean to impose a required
tail latency on a query processing node. As a result, the query
processing node can consume more energy than necessary in
providing query results faster than required, with no benefit
for the users.

In this work we propose the Predictive Energy
Saving Online Scheduling algorithm (PESOS), which
considers the tail latency requirement of queries as an explicit
parameter. Via the DVFS technology, PESOS selects the most
appropriate CPU frequency to process a query on a per-core
basis, so that the CPU energy consumption is reduced while
respecting required tail latency. The algorithm bases its
decision on query efficiency predictors rather than core
utilization. Query efficiency predictors are techniques to
estimate the processing time of a query before its processing.
They have been proposed to improve the performance of a
search engine, for instance to take decision about query
scheduling or query process parallelization . However, to the
best of our knowledge, query efficiency predictor have not
been considered for reducing the energy consumption of query
processing . We build upon the approach described in and

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1130 www.ijsart.com

propose two novel query efficiency predictor techniques: one
to the number of postings that must be scored to process a
query, and one to estimate the response time of a query under
a particular core frequency given the number of postings to
score. PESOS exploits these two predictors to determine
which is the lowest possible core frequency that can be used to
process a query, so that the CPU energy consumption is
reduced while satisfying the required tail latency. As
predictors can be inaccurate, in this work we also propose and
investigate a way to compensate prediction errors using the
root mean square error of the predictors. We experimentally
evaluate PESOS upon the TREC ClueWeb09 corpus and the
query stream from the MSN2006 query log. We compare the
performance of our approach with those of three baselines:
which always uses the maximum CPU core frequency, power
which throttles CPU core frequencies according to the core
utilizations, and cons which performs frequency throttling
according to the query server utilization. PESOS, with
predictors correction, is able to meet the tail latency
requirements while reducing the CPU energy consumption
from _24% up to _44% with respect to perf and up to _20%
with respect to cons, which however incurs in uncontrollable
latency violations. Moreover, the experiments show that
energy consumption can be further reduced by PESOS when
prediction correction is not used, but with higher tail latencies.
The rest of the paper is structured as follows: Section 2
provides background information about the energy
consumption of Web search engine datacenters, the query
processing activity, and the query efficiency predictors.
Section 3 formulates the problem of minimizing the energy
consumption of a query processing node while maximizing the
number of queries which meet their deadlines. Section 4
illustrates our proposed solution to the problem, describes our
query efficiency predictors, and the PESOS algorithm. Section
5 illustrates our experimental setup while Section 6 analyzes
the obtained results. Related works are discussed in Section 7.

II. BACKGROUND

In this section we will discuss the energy-related
issues incurred By Web search engines . Then, we will explain
how query processing works and some techniques to reduce
query response times . Finally, we will discuss about query
efficiency predictors, which we exploit to reduce the energy
consumption of a Web search engine while maintaining low
tail latencies.

2.1 Web search engine and energy consumption

In the past, a large part of a datacenter energy
consumption was accounted to inefficiencies in its cooling and
power supply systems. However, Barroso et al report that

modern datacenters have largely reduced the energy wastage
of those infrastructures, leaving little room for further
improvement. On the contrary, opportunities exist to reduce
the energy consumption of the servers hosted in a datacenter.
In particular, our work focuses on the CPU power
management of query processing nodes, since the CPUs
dominate the energy consumption of physical servers
dedicated to search tasks. In fact, CPUs can use up to 66% of
the whole energy consumed by a query processing node at
peak utilization . Modern CPUs usually expose two energy
saving mechanism, namely C-states and P-states. C-states
represent CPU cores idle states and they are typically managed
by the operating system . C0 is the operative state in which a
CPU core can perform computing tasks. When idle periods
occur, i.e., when there are no computing tasks to perform, the
core can enter one of the other deeper C-states and become
inoperative. However, Web search engines process a large and
continuous stream of queries. As a result, query processing
nodes are rarely inactive and experience particularly short idle
times. Consequently, there are little opportunities to exploit
deep C-states, reducing the energy savings provided by the
C-states in a Web search engine system .

When a CPU core is in the active C0 state, it can
operate at different frequencies (e.g., 800 MHz, 1.6 GHz, 2.1
GHz, . . .). This is possible thanks to the Dynamic Frequency
and Voltage Scaling (DVFS) technology which permits to
adjust the frequency and voltage of a core to vary its
performance and power consumption. In fact, higher core
frequencies mean faster computations but higher power
consumption.Vice versa, lower frequencies lead to slower
computations and reduced power consumption. The various
configurations of voltage and frequency available to the CPU
cores are mapped to different P-states, and are managed by the
operating system. For instance, the intel pstate driver controls
the P-states on Linux systems1 and can operate accordingly
to two different policies, namely perf and power. The perf
policy simply uses the highest frequency to process computing
tasks. Instead, power selects the frequency for a core
according to its utilization. When a core is highly utilized,
power selects an high frequency. Conversely, it will select a
lower frequency when the core is lowly utilized. However, Lo
et. al [15] argue that core utilization is a poor choice for
managing the cores frequencies of query processing nodes. In
fact, the authors report an increase of query response times
when core utilization-based policies are used in a Web search
engine. For such reason, Catena et al. propose to control the
frequency of CPU cores based on the utilization of the query
processing node rather than on the utilization of the cores.
The utilization of a node is computed as the ratio between the
query arrival rate and service rate. Then, they propose the
cons policy which throttles the frequency of the CPU cores

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1131 www.ijsart.com

when the utilization of the node is above or below certain
thresholds (e.g., 80% and 20%, respectively). The frequency is
selected so to produce a desirable utilization level (e.g., 70%).
Similarly, in our work we control the CPU cores frequencies
of a query processing node using information related to the
query processing activity rather than to the CPU cores
utilization. To this end, we build our approach on top of the
acpi cpufreq driver . This driver allows applications to directly
manage the CPU cores frequency, instead of relying on the
operative systems.

2.2 Query processing and dynamic pruning

Web search engines continuously crawl a large
amount of Web pages. The inverted index is a data structure
that maps each term in the document collection to a posting
list, i.e., a list of postings which indicates the occurrence of a
term in a document. A posting contains at least the identifier
(i.e., a natural number) of the document where the appears
and its term frequency, i.e., the number of occurrences of the
term in that particular document. The inverted index is usually
compressed and kept in main memory to increase the
performance of the search engine . When a query is submitted
to a Web search engine, it is dispatched to a query processing
node. This retrieves a ranked list of documents that are
relevant for the query, i.e., the top K documents relevant to a
user query, sorted in decreasingorder of relevance score (e.g.,
by using the popular BM25 weighting model . To generate the
top K results list, the processing node exhaustively traverses
all the posting lists relative to the query terms. This is
computationally expensive, since the inverted index can easily
measure tens of gigabytes, so dynamic pruning techniques are
adopted . Such techniques avoid to evaluate irrelevant
documents, skipping over portions of the posting lists. This
reduces the response time as the systems avoid to access and
decompress portion of the inverted index. At the same time,
these dynamic pruning techniques are safe-up-to-K, i.e., they
produce the same top K results list returned by an exhaustive
traversal of the posting lists. For such reasons, in this work we
apply dynamic pruning strategies to the processing of queries.

2.3 Query efficiency predictors

Query efficiency predictors (QEPs) are techniques
that estimate the execution time of a query before it is actually
processed. Knowing in advance the execution time of queries
permits to improve the performance of a search engine. Most
QEPs exploit the characteristics of the query and the inverted
index to pre-compute features to be exploited to estimate the
query processing times. For instance, Macdonald et al.
propose to use term-based features (e.g., the inverse document

frequency of the term, its maximum relevance score among
others) to predict the execution time of a query.

They exploit their QEPs to implement on-line
algorithms to schedule queries across processing node, in
order to reduce the average query waiting and completion
times. The works instead, address the problem to whether
parallelize or not the processing of a query. In fact, parallel
processing can reduce the execution time of long-running
queries but provides limited benefits when dealing with short-
running ones. Both the works propose QEPs to detect long-
running queries. The processing of the query is parallelized
only if their QEPs detect the query as a long-running one.
Rather then combining term-based features, propose to
analytically model the query processing stages and to use
such model to predict the execution time of queries. In our
work, we modify the QEPs described in to develop our
algorithm for reducing the energy consumption of a
processing node while maintaining low tail latencies.

III. PROBLEM FORMULATION

In the following, we introduce the operative scenario
of a query processing node , we formalize the general
minimum-energy scheduling problem and we shortly present
the state-of-the-art algorithm to solve it offline, and we discuss
the issues of this offline algorithm in our scenario

3.1 Operative scenario

A query processing node is a physical server

composed by several multi-core processors/CPUs with a
shared memory which holds the inverted index. The inverted
index can be partitioned into shards and distributed across
multiple query

processing nodes. In this work, we focus on reducing the CPU
energy consumption of single query processing nodes,
independently of the adopted partition strategy. In the
following, we assume that each query processing node holds
an identical replica of the inverted index .

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1132 www.ijsart.com

A query server process is executed on top of each of
the CPU core of the processing node. All query servers access
a shared inverted index held in main memory to process
queries. Each query server manages a queue, where the
incoming queries are stored. The first query in the queue is
processed as soon as the corresponding CPU core is idle. The
queued queries are processed following the first-come first
served policy. The number of queries in a query server’s
queue represents the server load. Queries arrive to the
processing node as a stream S = {q1, . . . , qn}. When a query
reaches the processing node it is dispatched to a query server
by a query router. The query router dispatches an incoming
query to the least loaded query server, i.e., to the server with
the smallest number of enqueued queries. Alternatively, the
query processing node could have a single query queue and
dispatch queries from the queue to idle query servers. In this
work, we use a queue for each query servers since a single
queue will not permit to take local decisions about the CPU
core frequency to use for the relative query server. A similar
queue-per-core architecture is assumed in , to schedule jobs
across CPU cores to minimize the CPU energy consumption,
and in to schedule queries across different query servers.
A query qi 2 S is characterized by its arrival time ai, when
it “enters” the processing node at the query broker, and its
completion time ci > ai, when it “leaves” the processing node
after being processed by a query server. The query processing
node is required to process queries with a tail latency of _ ms
(e.g., 500 ms). Therefore, we impose that each query qi must
be processed within _ time units from its arrival time, i.e., it
has an absolute deadline di = ai + _ . If we assume negligible
the time required by the query broker to dispatch the query,
the completion time ci of qi is the sum of its arrival time, the
time the query spent in the queue and its processing time. A
query misses its deadline, i.e., ci > di, if it spends more than
_ time units in queue and being processed. In fact, a query
may have less than _ time units to be processed. At time t,
the time budget bi(t) of query qi indicates how much time
remains before qi misses its deadline. bi(t) is the difference
between its deadline and the time it is spending in the queue,
i.e. bi(t) = di−(t−ai). When a query exceeds its time budget,
terminate the query, returning an incomplete list of results,
or 2) to finish processing the query, delaying the processing of
other request, but returning a complete list of results. In this
work, we focus on the second option which does not degrade
the quality of the search results. We do not consider here the
time necessary to send the results to the users, as it involves
network latencies which do not depend on the search engine.
As seen in Section , a query server can process queries at
different speeds, depending to the CPU core operational
frequency. To reduce deadline violations, CPUs cores can
operate at their maximum processing frequency. In fact, high

frequencies lead to faster computations at the price of high
power consumption. Conversely, lower frequencies mean
slower computations, with lower power consumptions.

Since the number of queries received by a query
processing node along a day varies, we envision the possibility
to dynamically change the CPU core frequencies of query
servers to the number of queries received per time unit. Our
goal is to maximize the number of queries that are processed
within their deadline, in order to obtain a tail latency close
to _ ms. At the same time, we want to minimize the energy
consumption of the processing node. In other words, for each
query qi we need to select the most appropriate frequency
f 2 F for the CPU core associated to the server processing qi.

3.2 The minimum-energy scheduling problem

Consider the following scenario, where a single-core
CPU must execute a set J = {J1, . . . , Jn} of generic
computing jobs rather than queries. Jobs must be executed
over a time interval [t0, t1]. Each job Ji has an arrival time ai
and an arbitrary deadline di which are known a priori.
Moreover, each job Ji has a processing volume vi, i.e., how
much work it requires from the CPU, and jobs can be
preempted. The CPU can operate at any processing speed s 2
R+ (in time units per unit of work) and its power consumption
is a convex function of the processing speed, e.g., P(s) = s
with > 1 [7]. Jobs in J must be scheduled on the CPU. A
schedule is a pair of functions S = (, _) denoting, respectively,
the processing speed and the job in execution, both at time t.
A schedule is feasible if each job in J is completed within its
deadline. The minimum-energy scheduling problem (MESP)
aims at finding a feasible schedule such that the total energy
consumption is minimized, i.e., arg min

The MESP is similar to an offline version of our
problem,where jobs, corresponding to queries, are
preemptable, andprocessor speeds can assume any positive
value.The YDS algorithm [26] solves the MESP in polynomial
time. Consider an interval I = [z, z0] _ [t0, t1] and the set of
jobs in that interval JI = {Ji 2 J : [ai, di] _ I}. The intensity
g(I) of interval I is the ratio between the amount of work
required by the jobs in JI and the length of the interval
g(I) = 1
z − z0
X
Ji2JI
vi (2)

A feasible schedule must use a processing speed s _

g(I) during the interval I, or jobs will not meet their deadlines
if s < g(I). Moreover, P(g(I)) is the lowest possible power

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1133 www.ijsart.com

consumption on the interval I, since P is a convex function.
Algorithm 1 illustrates the YDS algorithm, that optimally
solves the MESP in O(n3) [26], [27]. YDS works by analyzing
each possible time interval I included in [t0, t1]. Then, it finds
the critical interval I_ that maximizes g(I). YDS schedules the
jobs in JI_ using the earliest deadline first (EDF) policy [28]
and processing speed g(I_). Then, if not preempted, the jobs
in JI_ will terminate in ri = vi · g(I_) time units since the
beginning of their execution. Jobs in JI_ are then removed
from J. The interval I_ as well is removed from [t0, t1], i.e., it
cannot be used to schedule jobs other than those in JI_ . For
this reason, YDS updates the arrival times and deadlines of the
remaining jobs to be outside I_. Finally, YDS repeatedly finds
a new critical interval for the remaining jobs, until all jobs
are eventually scheduled. Note that the MESP always admit
a feasible schedule, since arbitrary large amounts of work can
be performed in infinitesimal time when s ! 1.

Algorithm 1: The YDS algorithm

Data: A set of jobs J = {j1, . . . , jn} to schedule in [t0, t1]
Result: A feasible schedule S for J minimizing E(S)
OYDS(J):
1 {}
2 _ {}
3 while J 6= {} do
4 Identify I_ = [z, z0] and compute g(I_)
5 Set processor speed to g(I_) for jobs in JI_ in
6 Schedule jobs in JI_ according to EDF in _
7 Remove I_ from [t0, t1]
8 Remove JI_ from J
9 foreach Ji 2 J do
10 if ai 2 I_ then
11 ai z0 // Update arrival times
12 if di 2 I_ then
13 di z // Update deadlines
14 return S = (, _

The above fig show an example for YDS. Input jobs

are illustrated in the upper part of the picture. The left end of a
box indicates the arrival time of the job, while the right end
indicates its deadline. Processing volumes for the jobs are
reported inside the relative boxes. The bottom part of the
picture illustrates the optimal solution provided by YDS. The
picture shows the order in which the jobs are scheduled, their
start and end time, and the processing speeds s used for each

job. Note that J3 is executed over two different time intervals,
as it is preempted to schedule J4 and J5, which have an higher
joint intensity.

3.3 Issues with YDS

YDS finds an optimal solution for the MESP, but
poses various issues that make difficult to use it in a search
engine to reduce its energy consumption:

1) YDS is an offline algorithm to schedule generic computing
jobs and cannot be used to schedule online queries. In fact,
YDS input is the set of jobs to be scheduled in a interval, with
their arrival times and deadlines, that must be known a priori.
In contrast, query arrival times are not known until query
arrives. Moreover, YDS relies on EDF, which contemplates
job preemption. Context switch and cache flushing cause time
overheads with non-negligible impacts on the query
processing time. Therefore, preemption is unacceptable for
search engines.

2) YDS requires to know in advance the processing volumes
of jobs. Conversely, we do not know how much work a query
will require before its completion.

3) YDS schedules job using processing speeds (defined as
units of work per time unit). The speed value is continuous
and unbounded (i.e., the speed can be indefinitely large).
However, the frequencies available to CPU cores are generally
discrete and bounded. For such reasons, in the following
Section we modify YDS in order to exploit it in a search
engine.

IV. PROBLEM SOLUTION

YDS has several issues that make unfeasible to use it
in a search engine. In the following, we discuss:

1) an heuristic based on YDS which works in online scenarios
without job preemption ,

2) a methodology to estimate the processing volume of a
query ,

3) an algorithm to translate processing speeds into CPU
core frequencies .

Eventually, we introduce and discuss our approach to select
the most appropriate CPU core frequency to process a query
in a search engine .

4.1 On-line scheduling without preemption

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1134 www.ijsart.com

Online YDS2 (OYDS) is an heuristic for the online
version of the MESP, proposed in . In an online scenario, we
are not given a set of jobs over a fixed time interval, but the
set of jobs that must be processed by the CPU changes over
time. Every time ˆt a new job arrives, OYDS considers the
newly arrived job and all the jobs still to be (completely)
processed, and computes an optimal solution using YDS for
this set of jobs, assuming that all such jobs have the same
arrival time ˆt. As YDS, OYDS guarantees that each job will
be terminated by its deadline. In fact, it can schedule any
processing volume by simply using an arbitrarily large
processing speed s. On the other hand, its energy consumption
can be sub-optimal. While OYDS is an heuristics for the
online version of the MESP, it still schedules jobs using the
EDF policy which contemplates job preemption. However, in
our operative scenario we deal with queries rather than generic
computing jobs. Preemption is unacceptable for search
engines and a

2. In the original paper, OYDS is called Optimal Available
(OA). In this work, we will use OYDS for the sake of clarity.
query cannot be preempted once its processing has started.
Since all queries must be processed within the same relative
deadline _ , for any two queries qh and qk, such that ak > ah,
we have dk > dh, i.e., later queries have later deadlines. As
a consequence, EDF will always schedule firstly the earliest
query, without any preemption. This means that, under these
conditions, EDF coincides with the first-in first-out (FIFO)
scheduling policy. We will use OYDS as a base for build our
frequency selection algorithm, described in Section 4.4. In the
remaining of this work, then, we will stop discussing about
generic computing jobs but we will focus on the processing of
search engine queries.

4.2 Predicting processing volumes

The OYDS heuristic must know the processing
volumes of the queries to schedule. For this purpose, we
propose to use the number of scored posting during the
processing of query. Indeed, for queries with the same number
of terms, the number of scored postings correlates with their
processing times [10]. If exhaustive processing is performed,
it is possible to know a priori the number of scored postings,
which is equal to the sum of the posting lists lengths of the
query terms.

However, when dynamic pruning is applied we do
not know in advance how many postings will be scored, since
portions of the posting lists could be skipped. Then, we need a
way to predict the number of scored posting for a query. We
use the query efficiency predictors (QEPs) described in [10]
but we modify them to predict the number of scored

postings for a query. This means that we learn a set _ of linear
functions _x(q) that, given a query q with x query terms,
estimate the number of scored postings.

We note that OYDS requires exact query processing
volumes. If the reported processing volumes are less than the
actual ones, the algorithm does not guarantee that all the
queries deadlines will be meet. QEPs are not precise, but they
give only an estimate on the number of scored postings.

For this reason, we add an offline validation phase
after the QEPs training. During the validation, we use the
regressors in _ to predict the number of scored posting for a
validation set of pre-processed queries. Then, we record the
root mean squared error (RMSE) for the predictions. In the
online query processing, we use the RMSE _x of predictor _x
to compensate its errors, by adding _x to the predicted number
of scored postings. In other words, our modified QEPs e_x(q)
will be
e_x(q) = _x(q) + _x. (3)

In this way, we will likely over-estimate the
processing volume of some queries, requiring higher
processing speeds at the cost of higher energy consumptions.
However, we will miss less deadlines, as we reduce the
number of queries for which we predict fewer scored postings
lower than the actual ones.

4.3 Translating processing speeds into CPU frequencies

CPU cores can operate at frequencies f 2 F, where F
is a discrete set of available frequencies (measured in Hz).
Nevertheless, OYDS assigns processing speeds (seconds per
unit of work) to queries. Therefore, we need to map
processing speeds to CPU core frequencies. To do so, for each
frequency f we train a single-variable linear predictor _fx
which forecasts the processing time of a query q composed by
x terms at frequency f through the estimated number of its
scored postings:
_fx
(q) = _fx
e_x(q) + _fx
, (4)
where _fx and _fx are the coefficients learned by the
regressors.

Thus, we learn offline a new set _ of single-variable linear
regressors _fx , one for each frequency f. Once again, we add
a validation phase after the training to build _, similarly to
approach described in Section 4.2.We compensate a predictor
error adding its RMSE (_fx) computed over the validation
queries to the actual prediction, i.e.,

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1135 www.ijsart.com

e_fx
(q) = _fx
(q) + _f
x.

We can use _ to translate processing speeds to CPU core
frequencies, as shown in Algorithm 2. When a query qi is
associated to a processing speed s by OYDS, we compute
its required processing time ri by multiplying the predicted
number of scored postings e_x(qi) by s. Then, we check each
regressor e_fx (qi) in _0 in ascending order of frequency f. If
the expected query processing time at frequency f is less than
ri, we use frequency f to process qi. If we are not able to find a
suitable frequency f, we use the maximum available

.

As shown in Algorithm 2, a suitable frequency f
among the frequencies of the CPU cores for a query qi does
not always exists. For example, this happens when the query
server is overloaded with queries to process. However, we
can ignore this scenario by assuming that a query processing
node has a computing capacity that, at maximum frequency,
is sufficient to process its peak query volume. Moreover, a
suitable frequency for a query qi cannot be found if, at time
t, qi requires a processing time that is greater than its time
budget bi(t). In such cases, we use the maximum CPU core
frequency to minimize that query processing time.

4.4 Frequency selection algorithm for search engines

In this section, we describe PESOS (Predictive
Energy Saving Online Scheduling). PESOS is an algorithm to
select the most appropriate frequency to process a query in a
search engine.

Our algorithm is based on OYDS, but exploits
predictors which can be inaccurate. Because of wrong
predictions, some queries will miss their deadline no matter
the selected CPU core frequency. Yet, this can happen because
either queries have low time budgets or they require too much

processing time. We call these late queries. Conversely, we
call on time queries those that will be completely processed by
their deadline.

Given a query qi with deadline di and completion

time ci, we define its tardiness as Ti = max{0, di −ci}. As
such, an on time query will have 0 tardiness, while a late
query will have a tardiness given by the amount of time a
query requires to be completed exceeding its deadline. While
missing a query deadline is always undesirable, low tardiness
values are still better than higher ones. Therefore, we aim at
minimizing the tardiness of late queries, by reducing the time
budget of on time queries. Given a queue of queries Q sorted
by arrival time, we compute the total tardiness of the late
queries in Q when all queries are processed at maximum
frequency. Then we compute the shared tardiness H(Q) of the
on time queries in Q by dividing the total tardiness by the
number of on time queries in Q, and we reduce the on time
queries’ deadlines by H(Q). Hence, on time queries are
required to finish their processing earlier, but this will leave
more time to late queries and reduce their actual tardiness.
Algorithm 3 recaps the steps

Algorithm 4 describes how PESOS sets the most

appropriate core frequency to process a query. The algorithm
works as follow. Assume q1 is the first query in the query
queue Q of a query server. At time t, query q1 begins being
processed.

Initially, we check if q1 is going to meet its own
deadline. If the query is late, we set the core at its maximum
frequency. Otherwise, we compute the shared tardiness H(Q)
of the queued queries and we change the deadlines of all the
queries in Q accordingly, i.e., for all qi in Q, we set edi = di −
H(Q).

In doing so, we should just reduce the time budgets
of the on time queries to leave more time to late queries. In
fact, reducing the time budget of late queries has no effect
since late queries will be in any case processed at maximum
core frequency. Nevertheless, we reduce all the time budget by
H(Q) such that, for each couple of queries qj , qk 2 Q, if dj _
dk then e dj _ e dk. This property ensures that queries will

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1136 www.ijsart.com

be processed following the FIFO policy, avoiding preemption
(see Sec. 4.1). Then, we check if the query q1 is going to miss
its modified deadline. In such case, we set the core at
maximum frequency. On the contrary, we eventually run the
OYDS algorithm to select which core frequency to use. Note
that we need to compute just the core frequency for the query
q1. Then, we do not need to analyze each time interval in the
query queue Q. Instead, we will check only the time intervals
[t, edi] = [t, di − H(Q)] for all queries qi 2 Q. If a query in the
queue is likely to miss its deadline, we use the maximum core
frequency to process q1 at maximum speed. Otherwise, once

we have identified the critical interval I_ (see Section 3.2)
and its intensity g(I_), we select the most appropriate core
frequency to process the first query q1 by using Algorithm

PESOS is executed whenever a query server starts
processing a new query. When the query processing is
completed, the query is removed from the query queue Q.
Also, PESOS is executed at each new query arrival, to take
into account the increased workload in the query queue and to
adjust the core frequency for the query which is currently
being executed. PESOS runs in linear time. It computes the
shared tardiness using Algorithm 3, which just need to
traverse the query queue. Then, the algorithm checks each
interval [t, edi] for all qi 2 Q, i.e., it analyzes |Q| intervals.
Eventually, it translates a processing speed into a CPU core
frequency using Algorithm 2. Algorithm 2 needs to analyze at
most |F| CPU frequencies. In conclusion, the computational
complexity of PESOS is O(|Q| + |F|).

V. EXPERIMENTAL SETUP

In this section, we firstly describe the experimental
setup for the training and validation of our predictors . Then,
we illustrate the experimental setup we adopt to measure the
CPU energy consumption and the tail latency of a query
processing node using our approach . All the experiments are
conducted using the Terrier search engine . The platform is
hosted on a dedicated server with 32 GB RAM. The operating

system is Ubuntu, with Linux kernel version 3.13.0-79-
generic.

The machine is equipped with an Intel i7-4770K
CPU, a member of the Haswell product family. The CPU has
4 physical cores which expose 15 operational frequencies F =
{0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.1, 2.3, 2.5, 2.7, 2.9, 3.1, 3.3,
3.5} GHz. The inverted index used in the experiments is
obtained by indexing the ClueWeb09 (Cat. B) document
collection3
3. http://lemurproject.org/clueweb09/ which contains more
than 50 millions of Web pages. On each document, we remove
stopwords and apply the Porter stemmer to all of its terms.
The inverted index stores document identifiers and terms
frequencies and it is kept in main memory, compressed with
Elias-Fano encoding . For the queries, we use the MSN 2006
query log4.

In our experiments, we process queries using two
dynamic pruning retrieval strategies: 1) MaxScore [22], and 2)
WAND dynamic pruning [21]. For each query, we retrieve the
top 1,000 documents according to the BM25 ranking function.
The node operates with 4 query servers, i.e., processing
threads, which are pinned to different CPU physical cores and
share the same inverted index.

5.1 Training processing volume predictors

In this section, we adapt the query efficiency
predictors (QEPs) introduced in [10] to originally predict the
response times of a query. Instead, we modify these predictor
to estimate the number of scored postings for a query. We
divide queries into six query classes according to their number
of terms, i.e., the first class includes queries with one term,
while the last class includes queries with six or more terms.
To train and validate our predictors, we extract a number of
unique queries from the MSN 2006 query log. We use unique
queries to avoid any caching mechanism from the operating
system that could distort our measurements. For each query
class, we extract 10,000 unique queries from the MSN 2006
query log, generating a query set of 60,000 unique queries.
Before training the modified QEPs, we process each single
term in the query set as detailed in . We treat single terms as
queries of length one. During the processing, we record the
ranking scores obtained by all the documents relative to the
terms, to obtain a set of 13 term-based features for each query
term. Then we aggregate these to generate query-based
features using three functions: maximum, variance and sum,
generating a feature set containing 39 query-based aggregated
features per query.

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1137 www.ijsart.com

We then process the original queries in the query set
to record the number of scored postings. This value is
independent by the CPU frequency and we can use any f 2 F.
From the execution of the query set, we collect a processing
log which contains the number of scored posting for each
query in the query set. We use this processing log in the
training and validation phase of the predictors.

To train our predictors, we split the feature set and
the processing log: 50% of the queries for training and 50%
for validation. We use the training set to learn the set of linear
regressors _x, one for each query class. Each regressors takes
in input the 39 query-based aggregated features from the
feature set, and estimates the number of postings scored in
the processing log5. Note that linear regressors can return
negative values for a set of input features. However, the
number of scored postings is always a positive quantity. If a
regressor returns a negative value, we set its prediction to the
minimum between the shortest posting list length for the query
terms and 1,000 (the number of retrieved document).

Similarly, a linear regressor may return a value that
exceeds the sum of the posting lists lengths for a query. Since
this is not possible in practice, in such cases we set the
prediction to the sum of the posting lists lengths.

Once we have trained the regressors on the training
set, we use the validation set to see how predictors perform
(results are reported in the Supplemental Material). We then
use the RMSE _x computed in the validation phase to correct
the value of the predictors This will provide more
conservative predictions to use into OYDS.
The result of the training and validation phases is a set of
predictors _ = {˜_1, ˜_2,, ˜_6+}.
5.2 Training processing time predictors

OYDS produces processing speeds that need to be

mapped into CPU core frequencies. For this purpose, we
process the 60,000 queries set described in Section to collect
the number of scored postings and the processing times of
each query. From these data, we learn a set of single-variable
linear regressors _fx that estimate the processing time of a
query given the number of its scored postings. The processing
time of a query is influenced by the CPU core frequency but
also by the workload faced by the query processing node. In
fact, high workloads increase the contention among the query
servers (i.e., processing threads) for the main memory and the
processor caches. This contention increases the time required
to process a query. We want our regressors to predict
processing times that match high workload conditions. This is
a worst-case choice that will lead to higher energy
consumption when the query processing node deals with low

workloads. However, we expect to miss less query deadlines
when the query processing node faces high query volumes.We
process the 60,000 query set sending the to the processing
node at the rate of 100 queries per second since this rate
ensure than our node is constantly busy processing queries,
simulating an high query workload. We process the query set
15 times, one for each frequency f 2 F. We hence obtain 15
different processing logs reporting the number of scored
postings and the processing time for each query in the query
set.

Again, we divide the queries into six classes . For
each query class and each frequency f, we learn a
singlevariable linear regressor _fx . To learn these regressors,
we split each processing log for training and validation: 50%
of the logs are used for training the regressors, the remaining
50% is used to validate them. We use the validation set to
check how well the predictors perform after the training phase,
measuring their RMSE _f x and the coefficient of
determination R2. Results are reported in the Supplemental
Material. As expected, the mean processing times decrease by
increasing the CPU frequency. Moreover the processing times
are lower when using MaxScore rather than WAND. This
confirms the findings , where MaxScore outperforms WAND
for memory-resident indexes.

As explained in Section 4.3, we use the RMSE Rfx
Computed in the validation phase to compensate the
predictors’ estimates. The result of the training and validation
phases is a set of predictors _ = {˜_f 1 , ˜_f 2 ,, ˜_f 6+}.

5.3 Measuring energy consumption and tail latency

We now describe the experimental setup for
measuring the CPU energy consumption and the tail latency
for processing a stream of queries on a query processing node.
We here focus on the tail latency since it is assumed to be a
better performance indicator than the mean/median latency
forWeb search engines [34]. In fact, measuring the tail
latency, we can affirm that most of the requests are served
within the measured time interval. We require that queries are
processed with a certain tail latency. We experiment with a
required tail latency of 500 ms and 1,000 ms. The first value
represents a scenario where we want to promptly answer the
queries, while the second represents the case where we are
willing to wait more time to obtain query results. In fact,
search engine users are likely to not notice response delays up
to 500 ms, while they are very likely to perceive delays higher
than 1,000 ms [2]. In PESOS we can impose the tail latency
constrain setting _ = {500, 1, 000} ms, i.e., requiring that
queries are processed within _ ms since their arrival. We test
different latency requirements to observe if PESOS can

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1138 www.ijsart.com

produce energy savings while meeting the required tail
latency. The query processing is performed using the Max
Score and the WAND retrieval strategies, to understand how
PESOS behaves when different retrieval strategies are
deployed. Also, we test PESOS with predictors corrected
using their RMSE (as discussed in Sec. 4.2 and 4.3), and
without any correction. We will refer to the first configuration
as time conservative (TC) and to the second as energy
conservative (EC). In the TC configuration, we are likely to
over-estimate the processing volume and time of some
queries, requiring higher core frequencies. However, we also
expect to miss less query deadlines hence producing lower tail
latencies. In the EC configuration, instead, we use predictors
without any correction which should lead to lower core
frequencies and produce higher energy savings. Comparing
the two configurations, we want to understand if acceptable
tail latencies are achievable even without predictors
correction.

To perform our measurements, we carry out two

different kinds of experiment. Firstly, we observe the behavior
of PESOS under a synthetic query workload. For this purpose,
we send a stream of 60,000 unique queries from the MSN2006
log to the processing node. Table 1 shows the number of
queries for each query class, with an average of _3 terms per
query. This value reflects the average query length observable
on the original MSN2006 log. To test the robustness of
PESOS, we experiment with different query arrival rates, i.e.,
{5, 10, 15, 20, 25, 30, 35} query per second (QPS) sent to the
processing node6. The second kind of experiment aims to
observe the behavior of PESOS under a realistic query
workload. For this, we process 544,718 unique queries from
the MSN2006 log following the actual query arrivals of the
second day ofthe query log. Table 1 reports the number of
queries for each query class, while show the number of query
arrivalsduring the day. For both query workloads, we process
unique queries to avoid caching mechanism that could
compromise the evaluation of the experiment results.
Nevertheless, for the realistic query workload we are still
processing the same number of queries reported in the second
day of the MSN2006 query log to reflect a realistic query
traffic.

Finally, we compare the energy consumption and the
tail latency of PESOS against three baselines, namely perf,
power, and cons. perf and power are provided by the intel
pstate driver . The perf policy simply uses the highest core
frequency to process queries and then race to an idle state. The
power policy, instead, selects the frequency for a core
according to its utilization. High frequencies are selected when
a core is highly utilized. Conversely, lower frequencies are
selected when a core is lowly utilized. Differently, the cons

policy bases its decisions upon the utilization of a query server
rather than on the utilization of a CPU core. The utilization of
a query server is computed as the ratio between the query
arrival rate and service rate. The frequency of a core is then
throttled if the server utilization is above 80% or below 20%,
to produce a desirable utilization of 70%. The cons policy
executes every 2 seconds. We select these parameter settings
to achieve the best energy savings while maintaining
acceptable latencies, reflecting those used in . With these
experiments we want to address the following research
questions:

• RQ1: Does PESOS meet the required tail latencies?
• RQ2: Does PESOS help reducing the CPU energy

consumption
of a query processing node?

• RQ3: Is prediction correction necessary to achieve
acceptable
tail latencies?

• RQ4: How does PESOS behave using different
retrieval
strategies, with different prediction accuracies?

We measure the 95-th percentile tail latency of the

processing node to answer our first research question. The 95-
th percentile tail latency is used to measure the effects of
power management mechanism on the responsiveness of
search systems in . To answer the second research question
we measure the energy consumption of the CPU using the
Mammut library7 which relies on the Intel Running Aver-
7. http://danieledesensi.github.io/mammut/ age Power Limit
(RAPL) interface. The RAPL component performs actual
measurements of the energy consumption in Haswell
processors. Hackenberg et al. show the reliability of such
measurements, and the RAPL interface is used in other works
to measure the energy consumption of CPUs .

Finally, to address the third research question we
compare the performance of our approach with and without
prediction corrections. We compare the performance of
PESOS with MaxScore and WAND to answer the last
research question. All experiments are conducted using the
query processing node described at the beginning of this
Section
.

VI. RESULTS

In this Section we discuss the results of our

experiments. We firstly describe the results relatively to the
experiments conducted with synthetic query workloads. Then,
we illustrate the results obtained using the realistic query
workload.

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1139 www.ijsart.com

6.1 Synthetic query workload results

We begin by analyzing the behavior of perf and
power. We recall that perf always uses the maximum
available CPU core frequency, while power is an utilization-
based policy which throttles a CPU core frequency
accordingly to its utilization. Both perf and power, however,
do not permit to impose the required tail latency of a query
processing node. From Table 2 we can observe that, when
MaxScore is deployed, perf meets the 500 ms tail latency
requirement up to 30 QPS, while the 1,000 ms tail latency
requirement is always satisfied.

When WAND is used, instead, perf satisfies the 500
ms tail latency up to 20 QPS, and the 1,000 ms tail latency up
to 30 QPS. We explain this difference by recalling that
WAND provides longer response times than MaxScore (see
Table 2 in Supplemental Material). With respect to tail
latencies, we observe a similar behavior between perf and
power. This is expected since, as the query arrival rate
increases, the CPU cores utilization increases as well, leading
power to select high core frequencies and hence behaving like
perf. In terms of energy savings8, Table 3 shows little
differences between the two baselines. Some energy savings
are provided by power at low QPS, from _2% in the case of
WAND up to _5% for MaxScore, at the cost of higher tail
latency. For high query arrival rates, power can be even
detrimental, increasing the energy consumption of the system.
We explain this behavior with the longer query processing
times and the overhead introduced by the policy, i.e., the CPU
cores spend more time busy doing computations, hence
consuming more energy. Regarding the other baseline, we
observe in Table 2 that cons satisfies the 500 ms tail latency
only for moderate QPS (from 15 to 25) when MaxScore is
deployed, and only for 20-25 QPS with WAND. Again, this is
due to the better performance of MaxScore over WAND.
When considering a tail latency of 1000 ms, we observe that
cons meets the latency requirement from 10 to 35 QPS with
MaxScore and from 10 to 30 QPS with WAND. In general, we
can conclude that cons produces latency violations when the
query arrival rate is particularly low or high. We explain this
behavior by recalling that cons requires to tune several
parameters which we use a setting aimed to produce the best
energy savings and acceptable latencies. However, our results
suggests that a single parameter setting is not sufficient for
cons to perform well under a wide range of query arrival rates.
With respect to energy consumption, Table 3 shows that cons
provides substantial energy savings with respect to perf at low
QPS (up _ 45% with Maxscore and _ 40% withWAND).
However,when the query arrival rate increases, cons can
consume more energy. Again, we explain this behavior with

the longer query processing times and the overhead introduced
by the policy.

We now discuss the results for PESOS when using _
= 500 ms and _ = 1, 000 ms. For the time conservative
configuration, Table 2 shows that PESOS satisfies the 500 ms
tail latency requirement from 5 to 20 QPS when using WAND
and up to 25 QPS when using MaxScore. For the 1,000 ms tail
latency requirement, in the time conservative configuration
PESOS meets the required latency up to 30 QPS for both
retrieval strategies. These results are similar to what reported
for the perf policy. Relatively to our first research question
(RQ1), we can state that PESOS is able to meet the required
tail latencies for the same query workloads sustainable by a
system which operates at maximum CPU core frequency. In
terms of energy savings, Table 3 shows that PESO markedly
reduce the energy consumption of the query processing node’s
CPUs. In the time conservative configuration, PESOS can
reduce the energy consumption up to _25% when using
MaxScore and up to _12% when using WAND. We explain
the better results achieved with MaxScore with the higher
accuracy of its processing time predictors compared to the
ones for WAND .

We also notice that energy savings diminish as the
query arrival rate increases, as there are less opportunities for
PESOS to use low core frequencies without violating query
deadlines. Relatively to our second research question (RQ2),
the results in Table 3 show that PESOS actually permits to
reduce the CPU energy consumption of a query processing
node. In most cases, these energy savings are higher than
those provided by the state-of-the-art power and cons policies.
This indicates that application-dependent information
leveraged by PESOS, such as the state of the query queues and
the query efficiency predictors, are a better input for managing
the CPU cores frequencies than the cores or query servers
utilizations. Also, an important role is played by the _
parameter, which permits to set the required tail latencies
rather than processing the queries at maximum speed as in
perf, which does not take into account latency requirements.

We now analyze the performance of PESOS in the
energy conservative configuration, i.e., when we do not
correct the query efficiency predictors using their RMSE.
Table 2 shows that, for both retrieval strategies, PESOS
misses the 500 ms tail latency requirement. This answer our
third research question (RQ3): predictors correction is
necessary to meet the latency requirements. However, we
highlight that the reported latency violations are limited: for
the same QPS values for which the time conservative
configuration meets the 500 ms tail latency requirement, the
energy conservative configurations violates the requirement

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1140 www.ijsart.com

by up to _8% with WAND and up to _15% with MaxScore.
Additionally, we notice higher energy savings compared to the
time conservative configuration (see Table 3). When _ = 500
ms, the energy conservative configuration reduces the energy
consumption of the CPU node by _29% in the case of WAND
and by _34% in the case of MaxScore for low QPS. In Table 2
we can observe that the 1,000 ms tail latency requirement is
met up to 30 QPS when MaxScore is applied, and up to 25
QPS when WAND is used. This suggests that predictors
correction becomes less relevant as the latency requirement
increases. Remarkably, the energy conservative configuration
basically halves the energy consumption of the CPU node for
5 QPS when _ = 1, 000 ms .

Finally, to answer our last research question (RQ4),
we compare the behavior of PESOS while deploying
MaxScore and WAND. In general, PESOS shows better
results with MaxScore. In fact, the tail latency requirements
are met for slightly higher QPS values compared to WAND.
Also, PESOS shows higher energy savings when the
MaxScore retrieval strategy is applied. We explain this
behavior with the faster response time provided by MaxScore
and by the higher precision of its processing time predictors.

6.2 Realistic query workload results

Now we describe the results of the experiments
conducted processing the realistic query workload. In this
subsection we will not invetigate research question RQ4 as for
these experiments we use only the MaxScore retrieval
strategy, which provided the best results in Section 6.1.
Firstly, we will analyze the performance of the three baselines.
Then, we will discuss the results obtained by PESOS in the
time conservative configuration. Finally, we will study the
performance of PESOS in the energy conservative
configuration. Figure 4 reports the tail latencies of the tested
approaches during the day. As expected, perf provides lower
latencies than the other approaches. Unsurprisingly, perf
exhibits also the higher CPU energy consumption as it always
uses the maximum core frequency . In terms of tail latency,
power behaves similarly to perf during midday but exhibits
higher latencies at the beginning and at the end of the day.
This behavior is explained in Figure 5 (left). During midday,
the CPU cores are highly utilized due to the higher number of
query arrivals. In response to high core utilization, power
selects the maximum core frequency as in perf. During the rest
of the day, instead, the query arrivals decrease and the CPU
cores are less utilized. Therefore, power selects lower core
frequencies which explain longer latencies. For the same
reasons, power provides limited energy savings compared to
perf, reducing the CPU energy consumption by less than 4%
as reported in Table 4. Figure 6 illustrate the energy reductions

of power with respect to perf during the day. When power is
applied, we can observe energy savings only at the beginning
and at the end of the day, when power selects lower core
frequencies as shown in Figure 5 (left). In these periods, the
CPU consumes _20% less energy with respect to perf.
However, during midday power does not provide any energy
saving. Again, this is due to the high utilizations showed by
the CPU cores during midday In this situation, power selects
the maximum core frequency, behaving like perf and
consuming the same amount of energy.

Table 4 shows that cons can reduce by _27% the
CPU energy consumption with respect to perf. As shown in
Figure 6, energy consumption can be reduced by _45% during
periods Finally, the works in focus on reducing the energy
consumption of a single query node. Propose to use the query
processing node utilization, rather than the CPU utilization, to
accordingly throttle the CPU frequency and reduce the power
consumption of the node. , propose an approach to improve
the energy efficiency of a query node by equally distribute
queries and power among the CPU cores. However, their work
contemplates the early termination of query processing,
possibly degrading the quality of the search results. In our
work, instead, queries are always completely processed, even
if this may delay the execution of other queries. Also, the
approaches in [13], [43] do not consider the characteristics of
the incoming queries, i.e., differently from PESOS, no form of
query efficiency prediction is applied to achieve energy
savings.

VII. CONCLUSIONS

In this paper we proposed the Predictive Energy
Saving Online Scheduling (PESOS) algorithm. In the context
of Web search engines, PESOS aims to reduce the CPU
energy consumption of a query processing node while
imposing a required tail latency on the query response times.
For each query, PESOS selects the lowest possible CPU core
frequency such that the energy consumption is reduced and
the deadlines are respected. PESOS selects the right CPU core
frequency exploiting two different kinds of query efficiency
predictors (QEPs). The first QEP estimates the processing
volume of queries. The second QEP estimates the query
processing times under different core frequencies, given the
number of postings to score. Since QEPs can be inaccurate,
during their training we recorded the root mean square error
(RMSE) of the predictions. In this work, we proposed to sum
the RMSE to the actual predictions to compensate prediction
errors.We then defined two possible configuration for PESOS:
time conservative, where prediction correction is enforced, and
energy conservative, where QEPs are left unmodified. We
experimentally evaluated the performance of PESOS using the

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 1141 www.ijsart.com

ClueWeb09B corpus and processing queries from the
MSN2006 log applying two different dynamic pruning
retrieval strategies: MaxScore and WAND. We compared the
performance of PESOS with those of three baselines: perf,
which always uses the maximum CPU core frequency, power,
which throttles frequencies according to the core utilizations,
and cons, which throttles frequencies according to the
utilization of the query servers.We found that time
conservative PESOS was able to meet a required tail latency
of 500 and 1,000 ms for the same workload sustainable by
perf. At the same time, time conservative PESOS was able to
reduce the CPU energy consumption of the CPU by _12%
with WAND up to _25% with MaxScore, for which we could
train more accurate query efficiency predictors than for
WAND. Greater energy savings were observable with energy
conservative PESOS, but at the cost of higher latencies.
Predictors correction is hence necessary to obtain the required
tail latency, still providing significant energy savings.
Moreover, we processed a realistic query workload which
reflects the query arrivals of one day of the MSN2006 log. We
found that time conservative PESOS was able to meet a 500
ms (with very few violations) and a 1,000 ms tail latency
requirements, while reducing the CPU energy consumption,
respectively, by _24% and by _44% when compared to perf.
From the same set of experiments, we reported that power can
reduce the CPU energy consumption by just _4% with respect
to perf. On the other hand, cons was able to reduce the CPU
energy consumption by _27% but incurring in considerable
latency violations. We justified the superior perf provided by
PESOS thanks to the applicationlevel information exploited by
our algorithm, such as the knowledge about the state of the
query queues and the query efficiency predictions.

Author’s Profile:

K.Darshan MCA Student
Dept. of Computer Science,
Sri venkateswara university
College of commerce management and
computer science
Sri Venkateswara University, Tirupati,
Andhrapradesh, India.
Email:kethinenidarshan@gmail.com

A.Mallikarjuna, Teaching Assistant
Dept. of Computer Science,
Sri venkateswara university
College of commerce management and
computer science
Sri Venkateswara University, Tirupati,
Andhrapradesh, India.
Email: mallisvu9@gmail.com

prof.S.Ramakrishna
Department of Computer Science,
Sri venkateswara university
College of commerce management and
computer science
Sri Venkateswara University, Tirupati ,
Andhrapradesh, India.
Email:drsrsmskrishna@yahoo.com

