
IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 924 www.ijsart.com

Enhancement Of De-Duplication And Security In
Cloud Using Chunks

Ms. MC. Marakatha valle1, Ms. S. Purnambigai2, Ms. M. Vanitha3

1, 2, 3 Dept of Information Technology
1, 2, 3 Saranathan College of Engineering, Tiruchirapalli-620012, Tamil Nadu, India.

Abstract- Data de-duplication is one of the most important
data compression technique which is used to remove duplicate
copies of repeating data, and it has been widely used in cloud
storage to increase the amount of storage capacity and to save
bandwidth. The convergent encryption technique has been
proposed to encrypt the data to provide data confidentiality
while supporting de-duplication. This project addresses the
problem of data de-duplication, to provide better data
security. In this the uploaded file is divided into fragments,
and reproduced the fragmented data in the cloud nodes. It
makes use of graph T-coloring to prohibit attacker in locating
the data by storing the fragments at certain distance apart.
Furthermore, it makes use of computationally expensive
methodologies to improve performance of primary storage
systems and to decrease performance overhead.

Keywords- De-duplication, Fragmented Data, Encryption
Techniques, Data Security, Cloud Nodes.

I. INTRODUCTION

 1.1 CLOUD COMPUTING
The cloud computing paradigm has reformed the usage and
management of the information technology infrastructure.
Cloud computing is characterized by on-demand self-services,
ubiquitous network accesses, resource pooling, elasticity, and
measured services. The characteristics of cloud computing
make it a striking candidate for businesses, organizations, and
individual users for adoption. The future aspects of computing
as a utility is cloud computing, where cloud customers can
remotely store their data into the cloud so as to enjoy the on-
demand high-quality applications and services from a shared
pool of configurable computing resources. The standards for
connecting systems and software will need cloud computing.
The privacy concerns are possessed by cloud computing
because the service provider can access the data in the cloud at
any time. The cloud data concerns certain space and crashes
other data while interrupting it. The computing model brought
may benefits including: the burden for storage management is
relieved, global data access with independent geographical
locations, and reduction in capital expenditure on hardware,
software, and personnel maintenance.

1.2 DATA DE-DUPLICATION
Technique in Cloud backup and archiving

applications to reduce backup window, improve the storage-
space efficiency and network bandwidth utilization. Recent
studies reveal that moderate to high data redundancy clearly
exists in VM (Virtual Machine) enterprise and High-
Performance Computing (HPC) storage systems. These studies
have shown that by applying the data de-duplication has been
demonstrated to be an effective technology to large-scale data
sets HPC storage systems, can be achieved. For example, the
time for the live VM migration in the Cloud can be
significantly reduced by adopting the data de-duplication
technology. Primary and secondary de-duplication systems
can be further subdivided into inline and offline de-duplication
systems. Inline systems de-duplicate requests in the write path
before the data is written to disk. Since inline de-duplication
introduces work into the critical write path, it often leads to an
increase in request latency. On the other hand, offline systems
tend to wait for system idle time to de-duplicate previously
written data. Since no operations are introduced within the
write path; write latency is not affected, but reads remain
fragmented. The rationale is that the small I/O requests only
account for a tiny fraction of storage capacity requirement,
making de-duplication on them unprofitable and potentially
counterproductive considering the substantial de-duplication
overhead involved. However, previous workload studies have
revealed that small files dominate in primary storage systems
and are at the root of the system performance bottleneck.
Furthermore, due to the buffer effect, primary storage
workloads exhibit obvious I/O burstiness. From a performance
perspective, the existing data de-duplication schemes fail to
consider these workload characteristics in primary. The
storage systems will miss the opportunity to address one of the
most important issues in primary storage, that of performance.

1.3 DEDUP-METADATA CACHE

This is a fixed-size pool of small entries called
content nodes, managed as an LRU cache. The size of this
pool is configurable at compile time. Each content-node
represents a single disk block and is about 64 bytes in size.
The content-node contains the block’s DBN and its
fingerprint. In the prototype, use the checksum of the

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 925 www.ijsart.com

block’s contents as its fingerprint. Using a stronger
fingerprint would increase the memory overhead of each entry
by, thus leading to fewer blocks cached. Other than this effect,
using MD5 is not expected to alter other experimental results.
All the content-nodes are allocated as a single global array.
This allows the nodes to be referenced by their array index
instead of by a pointer. Each content node is indexed by three
data structures: the fingerprint hash table, the DBN hash table
and the LRU list.

1.4 SELECT-DE-DUPE PERFORMANCE

Full-Dedupe, iDe-dup and Select Dedupe all use the

fixed cache partition that allocates equal spaces to the index
cache and read cache. Shows the response-time performance
of the different de-duplication schemes normalized to that of
the Native system, driven by the three traces. Full-De-dupe
degrades the Native system performance for the homes trace,
indicating that directly applying data de-duplication to primary
storage systems may introduce extra performance overhead.
iDe-dup improves the performance of Native system slightly,
which indicates that capacity-oriented de-duplication schemes
are not effective in improving system performance. The web-
vm and homes traces respectively, but outperforms the Native
system for the mail trace. The read performance degradation is
caused by the read amplification problem for the web-vm and
homes traces. Since the mail trace has a significant percentage
of fully redundant write requests, the positive effect of
reducing a large number of write requests far overshadows the
less serious read amplification problem, thus improving the
read performance. iDe-dup achieves comparable read
performance to the Native system by only de-duplicating
redundant large I/O requests to reduce the HDD seek
overhead. In contrast, Select-Dedupe consistently outperform
the Native system in read performance by for the web-vm,
homes and mail traces, respectively.

Select-Dedupe improve the read performance

indirectly by reducing the write traffic and avoiding the read
amplification problem as much as possible. The significant
number of reduced write requests in Select-De-dupe greatly
shortens the length of the disk I/O queue and relieves its
pressure, thus allowing the read requests to be serviced more
quickly. We also plot the normalized storage capacity used by
the different schemes. Full-Dedupe saves the largest amount
of storage capacity among all the de-duplication-based
schemes because it de-duplicates all redundant write data,
which is not the case for iDe-dup and Select-Dedupe. Select-
Dedupe achieve comparable or better capacity savings than
the capacity-oriented de-duplication scheme iDe-dup,
especially for the mail trace. This is because, while iDedup
only de-duplicates large I/O requests, Select- de-duplicates

both large and small I/O requests. When the small I/O requests
become a major part of the total requests, the capacity saving
is also increased accordantly.

1.5 INDEXING AND DUPLICATE ELIMINATION

As the index update process incorporates information

about recently modified blocks recorded in the write logs, in
addition to detecting hash matches that indicate potential
duplicates, it also performs the actual COW sharing operations
to eliminate these duplicates. The duplicate elimination
process must be interleaved with the index scanning process
because the results of block content verification can affect the
resulting index entries. In order to update the index, a host
sorts the recent write records by hash and traverses this sorted
list of write records in tandem with the sorted entries in the
index. A matching hash between the two indicates a potential
duplicate, which is handled differently depending on the state
of the matching index entry. Overview of all possible
transitions a matching index entry can undergo, given its
current state. When DEDE detects a potential duplicate, it
depends on the file system’s compare-and-share operation,
described to atomically verify that the block’s content has not
changed and replace it with a COW reference to another
block. Based on user-specified policy, this verification can
either be done by reading the contents of the potential
duplicate block and ensuring that it matches the expected
hash, or by reading the contents of both blocks and performing
a bit-wise comparison. If the latter policy is in effect, hash
collisions reduce DEDE’s effectiveness, but do not affect its
correctness. Furthermore, because hashes are used solely for
finding potential duplicates, if SHA-1 is ever broken, DEDE
has the unique capability of gracefully switching to a different
hash function by simply rebuilding its index. The content
verification step can be skipped altogether if a host can prove
that a block has not changed; for example, if it has held the
lock on the file containing the block for the entire duration.
The write record was generated and no write records have
been dropped, while this is a fairly specific condition.

1.6 RUN-TIME EFFECTS OF DE-DUPLICATION

DEDE operates primarily out of band and engenders

no slowdowns for accessing blocks that haven’t benefited
from de-duplication. It can also improve file system
performance in certain workloads. Further reducing the
working set size of the storage array cache. For access to de-
duplicated blocks, however, in-band write monitoring and the
effects of COW blocks and mixed block sizes can impact the
regular performance of the file system. Unless otherwise
noted, all of our measurements of the run-time effects of de-
duplication were performed using IOmeter in a virtual

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 926 www.ijsart.com

machine stored on a volume of an EMC storage array.
Overhead of In-Band Write Monitoring since DEDE’s design
is resilient to dropped write log entries, if the system becomes
overloaded, we can shed or defer the work of in-band hash
computation based on user-specified policy. Still, if write
monitoring is enabled, the hash computation performed by
DEDE on every write IO can represent a non-trivial overhead.
To understand the worst-case effect of this, we ran a write-
intensive workload with minimal computation on a virtual
disk. Table 1 shows that these worst case effects can be
significant. However, because VMware ESX Server offloads
the execution of the IO issuing path code, including the hash
computation, onto idle processor cores, the actual IO
throughput of this workload was unaffected. Backup data also
tends to be well-structured and presented to the backup system
in sequential streams, whereas live file systems must cope
with random writes. Many CAS-based storage systems,
including address data exclusively by its content hash. Write
operations return a content hash which is used for subsequent
read operations. Applying this approach to VM disk storage
implies multi-stage block address resolution, which can
negatively affect performance. Furthermore, since data is
stored in hash space, spatial locality of VM disk data is lost,
which can result in significant loss of performance for some
workloads. DEDE avoids both of these issues by relying on
regular file system layout policy and addressing all blocks by
filename; offset tuples, rather than content addresses. DEDE
uses content hashes only for identifying duplicates. Both
NetApp’s ASIS and Microsoft’s Single Instance Store use out
of band de-duplication to detect duplicates. The detected live
file system in the background is similar to DEDE. SIS builds
atop NTFS and applies content addressable storage to whole
files. To using NTFS filters to implement file-level COW-like
semantics. While SIS depends on a centralized file system
and a single host to perform scanning and indexing, Farsite
builds atop SIS to perform de-duplication in a distributed file
system. Farsite assigns responsibility for each file to a host
based on a hash of the file’s content. Each host stores files in
its local file system, relying on SIS to locally de-duplicate
them. However, this approach incurs significant network
overheads because most file system operations, including
reads, require cross-host communication and file
modifications require at least updating the distributed content
hash index.

II. EXISTING SYSTEM

The data outsourced to a public cloud must be

secured. Unauthorized data access by other users and
processes (whether accidental or deliberate) must be
prevented. Moreover; the probable amount of loss (as a result
of data leakage) must also be minimized. A cloud must ensure

throughput, reliability, and security. A key factor determining
the throughput of a cloud that stores data is the data retrieval
time. In large-scale systems, the problems of data reliability,
data availability, and response time are dealt with data
replication strategies. The existing data de-duplication
schemes for primary storage, such as iDedup and Offline- De-
dupe are capacity oriented in that they focus on storage
capacity savings and only select the large requests to de-
duplicate and bypass all the small requests. The rationale is
that the small I/O requests only account for a tiny fraction of
the storage capacity requirement, making de-duplication on
them unprofitable and potentially counterproductive
considering the substantial de-duplication overhead involved.

2.1 DRAWBACKS OF EXISTING SYSTEM

Placing replicas data over a number of nodes

increases the attack surface for that particular data. For
instance, storing m replicas of a file in a cloud instead of one
replica increases the probability of a node holding file to be
chosen as attack victim, from 1/ n to m /n, where n is the total
number of nodes.

III. PROPOSED SYSTEM

A proxy-based storage system designed for providing

fault-tolerant storage over multiple cloud storage providers.
The system can interconnect different clouds and transparently
stripe data across the clouds. Propose the first implementable
design for the functional minimum-storage regenerating
(FMSR) codes. Our FMSR code implementation maintains
double-fault tolerance and has the same storage cost as in
traditional erasure coding schemes based on RAID-6 codes,
but uses less repair traffic when recovering a single-cloud
failure. In particular, we eliminate the need to perform
encoding operations within storage nodes during repair, while
preserving the benefits of network coding in reducing repair
traffic.

3.1 FMSR

 FMSR (Functional Minimum-Storage Regenerating)
codes provide the same fault-tolerance and bandwidth as
traditional regenerating codes, but use less repair traffic by
enabling uncoded repair, therefore typically saving money
because the data transfers faster.

3.2 ADVANTAGES OF PROPOSED SYSTEM

The proposed CDC scheme ensures that even in the

case of a successful attack, no meaningful information is
revealed to the attacker. We ensure a controlled replication of

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 927 www.ijsart.com

the file fragments, where each of the fragments is replicated
only once for the purpose of improved security. To improving
the performance of primary storage systems and minimizing
performance overhead of de-duplication.

IV. SYSTEM ARCHITECTURE

Fig.5.1 De-duplication Architecture.

V. MODULES

5.1 CLOUD ACCOUNT CREATION

The Login Form module presents site visitors with a
form with username and password fields. If the user enters a
valid username/password combination they will be granted
access to additional resources. The login is categorized into
three types

 1) Data Owner
 2) User

Data owner can upload the file. He/ She has the

privileges to delete the uploaded file. User can perform
keyword search on those files.

Fig.5.1 Cloud Account Creation.

5.2 DATA DE-DUPLICATION

Data De-duplication involves finding and removing
of duplicate data’s without considering its fidelity. Here the
goal is to store more data with less bandwidth. Files are
uploaded to the CSP and only the Data owners can view and
download it. De-duplication is a technique where the server
stores only a single copy of each file, regardless of how many
clients asked to store that file, such that the disk space of cloud
servers as well as network bandwidth are saved. For example,
a server telling a client that it need not send the file reveals
that some other client has the exact same file, which could be
sensitive information in some case.

Fig.5.2 Uploading user data to cloud.

5.3 SELECT DE-DUPE

 In this module, the uploaded file is encoded using
Base64 Encoding, and the file content is stored in the server.
Here the duplication check is processed, if the encoded file

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 928 www.ijsart.com

content and the content already stored in the server matches,
then the file is marked as duplicate and it tells the owner that
the content already exists in the cloud server.

Fig.5.3 De-duplication of user data and creation of chunks.

5.4 ENCRYPTION & DECRYPTION

Encryption and decryption provides data

confidentiality in de-duplication. A user (or data owner)
derives a convergent key from the data content and encrypts
the data copy with the convergent key. In addition, the user
derives a tag for the data copy, such that the tag will be used to
detect duplicates. Here, we assume that the tag correctness
property holds, i.e., if two data copies are the same, then their
tags are the same.

Fig.5.4 Encryption of user data using convergent key.

5.5 SWAP

 Once the key request was received, the sender can

send the key or he can decline it. With this key and request id
which was generated at the time of sending key request the
receiver can decrypt the message. Based on Access Monitor
information, the Swap module dynamically adjusts the cache
space partition between the index cache and read cache.

Moreover, it swaps in/out the cached data from/to the back-
end storage.

5.6 FILE UPLOAD& FRAGMENTATION

This module is available to the data owner category.
In this module the data owner can upload the files. Each file
has a unique id. The data owner should mention the name of
the file while uploading. The file owner encrypts his files and
outsources the cipher texts to the server. The server validates
the outsourced cipher texts and stores them for the owner. The
file owner can specify the fragmentation threshold in terms of
either percentage or the number and size of different
fragments.

Fig.5.5 File uploading and fragmentation of user data.

VI. PSEUDOCODE

Input: base_chunk, src; input_chunk, tgt;
Output: output_chunk, otc;
function COMPUT(src,tgt)
 otc=empty
slink=Chunking(src)
 tlink=Chunking(tgt)
 sindex=INITMatch(slink)
 str=tlink;
 len=size(str)
while(str!=NULL)
do
 pos=FINDMatch(src,sindex,str,len)
 if(pos<0)
 then
 otc+=Instruction(insert str,len)
 output_chunk

else
 otc+=Instruction(copy pos,len)

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 929 www.ijsart.com

 chunk
end if
str=(str->next)
len=size(str)
end while
end function

function INITMATCH(Slink)
 str=slink
 pos=0
 sindex=empty
 while(str!=empty)
 do
 f=dedup(key,str)
 sindex[hash[f]]=pos
 pos+=size(str)
 str=str->next
 end while
 return sindex
end function

function dedup (fileHashKey , data)
isUnique = false
if (existInBloomFilter(fileHashKey))
if(!isDuplicateInCache(fileHashKey))
isUnique = true
 else
isUnique = true
 end if
if (isUnique)
saveInCache (fileHashKey)
sm.setBufferedData(fileHashKey , data)
end if
end function

VII. RELATED WORKS

7.1 SECURE DE-DUPLICATION WITH ENCRYPTED
DATA FOR CLOUD STORAGE

 ClouDedup, a secure and efficient storage service
which assures block level de-duplication [1] data
confidentiality at the same time using convergent key
encryption [2] added with block level key management.
Architecture of ClouDedup proposes to prevent well known
attacks against convergent encryption by embedding a user
authentication mechanisms and access control mechanisms.
Thus, a server encryption is applied on top of convergent
encryption performed by user. For each data segment a
signature is linked to it, and need to be verified for retrieving
it. To deal with block level key management a metadata
manager(MM) has been added to architecture.MM uses file

table- to store meta data about file, pointer table-to manage
storage and a signature table- to store meta data about
signature for meta data management.

7.2 I/O DEDUPLICATION: UTILIZING CONTENT
SIMILARITY TO IMPROVE I/O PERFORMANCE

 Koller R, et al. [2] explained about the duplication of
data in storage systems is becoming increasingly common. We
introduce I/O De-duplication, a storage optimization that
utilizes content similarity for improving I/O performance by
eliminating I/O operations and reducing the mechanical delays
during I/O operations. I/O De-duplication consists of three
main techniques: content-based caching, dynamic replica
retrieval, and selective duplication. Each of these techniques is
motivated by our observations with I/O workload traces
obtained from actively-used production storage systems, all of
which revealed surprisingly high levels of content similarity
for both stored and accessed data. Evaluation of a prototype
implementation using these workloads revealed an overall
improvement in disk I/O performance of across these
workloads.

7.3 DUPLESS: SERVER AIDED ENCRYPTION FOR
DE-DUPLICATED STORAGE

DupLess Server-Aided Encryption for De-duplicated
Storage provide simple storage interface. Cloud Storage
provider like Dropbox, Mozy, and other providers can use de-
duplication technology to save space by storing single copy of
data. Message lock encryption is used to resolve the problem
of clients encrypt their file however the saving is lock.
Dupless is used to provide secure De-duplicated storage as
well as storage resisting brute-force attacks. Clients encrypt
under message-based keys obtained from a key-server via an
oblivious PRF protocol in dupless server. It allows clients to
store encrypted data.

7.4 WEAK LEAKAGE –RESILIENT CLIENT SIDE DE-
DUPLICATION OF ENCRYPTED DATA IN CLOUD
STORAGE

With the tremendous growth in data and number of

users for cloud storage providers, data de-duplication becomes
more important. De-duplication helps to store a unique copy
of redundant data which results in reduce storage space and
low bandwidth consumption. But the de-duplication result in
new privacy and security challenges. We propose a new
Secure Client Side de-duplication which provides secure de-
duplication at client side with the help of convergent
encryption and Merkle tree

IJSART - Volume 4 Issue 4 – APRIL 2018 ISSN [ONLINE]: 2395-1052

Page | 930 www.ijsart.com

7.5 A STUDY ON DATA DEDUPLICATION IN HPC
STORAGE SYSTEMS

 Kaiser J, et al. [4] created about the de-duplication is

a storage saving technique that is highly successful in
enterprise backup environments. On a file system, a single
data block might be stored multiple times across different
files, for example, multiple versions of a file might exist that
are mostly identical. With de-duplication, this data replication
is localized and redundancy is removed by storing data just
once, all files that use identical regions refer to the same
unique data. The most common approach splits file data into
chunks and calculates a cryptographic fingerprint for each
chunk. By checking if the fingerprint has already been stored,
a chunk is classified as redundant or unique. Only unique
chunks are stored. This paper presents the first study on the
potential of data de-duplication in HPC centers, which belong
to the most demanding storage producers.

VIII. CONCLUSION

In the analysis phase, the focus is on the data flow
diagrams and system architecture and subsequently on further
description of the proposed system. In design phase forms will
be designed according to its function. Later on, we discuss
about the system implementation and testing.

IX. FUTURE ENHANCEMENT

It is strategic to develop an automatic update

mechanism that can identify and update the required
fragments only. The aforesaid future work will save the time
and resources utilized in downloading, updating, and
uploading the file again. Moreover, the implications of TCP in
cast over the proposed methodology need to be studied that is
relevant to distributed data storage and access.

REFERENCES

[1] Pasquale Puzio, Refik Molva , Sergio Loureiro

Cloudedup: Secured De-duplication with encrypted data
for Cloud Storage. In FAST’12, Feb. 2012.

[2] Ricardo Koller, Raju Rangaswami: I/o de-duplication:
utilizing content similarity to improve i/o performance. In
USENIX ATC’09, Jun. 2009.

[3] Mihir Bellare, Sriram Keelveedhi, Thomas Ristenpart.
Dupless: server aided encryption for de-duplicated
storage. ACM Transactions on Storage, 10(2):1–22, 2014.

[4] Jia Xu, Ee-Chien Chang, Jianying Zhou. Weak leakage –
resilient client side de-duplication of encrypted data in
cloud storage. In SOSP’95, Dec. 1995.

[5] Kaiser J, A. Brinkmann, T. Cortes, M. Kuhn, and J.
Kunkel. A Study on Data De-duplication in HPC Storage
Systems. In SC’12, Nov.2012.

