Half companion sequences of dio 3-tuples from $\frac{CC_n}{Gno_n}$

G.Janaki², P.Saranya¹

²Associate Professor, ¹Assistant Professor, Department of Mathematics,

Cauvery College for women, Trichy-620018.

¹chandikajey@gmail.com

Abstract-

In this paper we try to explicate sequence of dio

3-tuples $\{p_1, p_2, p_3\}, \{p_2, p_3, p_4\}, \{p_3, p_4, p_5\}, \dots$ involving half companion sequences under 3 cases with the properties $D[CS_n + (1-n)], D(-3)$ and D(2-n).

Keywords - Centered cubic number, Gnomonic number, Centered square number, dio 3-tuples.

I.INTRODUCTION

A sequence is an enumerated collection of object in which repetitions are not allowed. The number of elements describes the length of the sequence. A tuple is a finite ordered list of elements. An n-tuple is defined inductively using the construction of an ordered pair. The word tuple is originated as an abstraction of the sequence single, double, triple, quadruple, quintuple,.....n-tuple ,where the prefixes are taken from Latin names of the numerals. A 3-tuple is a triple or a triplet.

[1-6] has been referred for various ideas on number theory. [7-13] has been studied for interesting ideas on diophantine triples. In [14, 15] special dio 3- tuples were constructed from a special number. Recently in [16], Gaussian triples were constructed with the property D (25).

In this paper we try to explicate sequence of dio 3-tuples $\{p_1, p_2, p_3\}, \{p_2, p_3, p_4\}, \{p_3, p_4, p_5\}, \dots$ involving half companion sequences under 3 cases with the properties $D[CS_n + (1-n)], D(-3)$ and D(2-n).

Notations:

 CC_n = centered cubic number of rank n

Gno $_{n}$ = Gnomonic number of rank n

$$\operatorname{CG}_{n} = \frac{\operatorname{CC}_{n}}{\operatorname{Gno}_{n}}$$

= centered square number of rank n

II.METHOD OF ANALYSIS

Case (i):

CS "

Let
$$p_1 = CG_{n-1} = n^2 - 3n + 2$$

 $p_2 = CG_n = n^2 - n + 1$

We then have

$p_1 p_2 + 2n^2 - 3n + 2 = \alpha^2$	(1)
Where $\alpha = n^2 - 2n + 2$	(2)

Page | 3013

Let p_3 be any positive integer such

that
$$p_1 p_3 + 2n^2 - 3n + 2 = \beta_1^2$$
 (3)

$$p_2 p_3 + 2n^2 - 3n + 2 = \gamma_1^2 \tag{4}$$

Introduce the linear transformation

$$\beta_1 = x_1 + p_1 y_1 \qquad \gamma_1 = x_1 + p_2 y_1 \tag{5}$$

Using some algebra from (3), (4) and (5) with taking $y_1 = 1$ we've

$$x_1 = n^2 - 2n + 2 \tag{6}$$

Using (6) in (5) we get $\beta_1 = 2n^2 - 5n + 4$

Therefore from (3) we've $p_3 = 4n^2 - 8n + 7 = CG_{2n-2} + 2n$ Hence $\{p_1, p_2, p_3\}$ is a dio 3-tuple.

ie., $\{CG_{n-1}, CG_n, CG_{2n-2} + 2n\}$ is a dio 3-tuple with the property $D[CS_n + (1-n)]$.

Now let p_4' be any non-zero integer such that

$$p_2 p_4 + 2n^2 - 3n + 2 = \beta_2^2 \tag{7}$$

$$p_3 p_4 + 2n^2 - 3n + 2 = \gamma_2^{-2} \tag{8}$$

Introduce linear transformation $\beta_2 = x_2 + p_2 y_2$, $\gamma_2 = x_2 + p_3 y_2$ (9)

Using some algebra from (7), (8) and (9) with taking $y_2=1$ we have

$$x_2 = 2n^2 - 3n + 3 \tag{10}$$

Using (10) in (9) we get $\beta_2 = 3n^2 - 4n + 4$

Substituting β_2 in (7) we have

$$p_4 = 9n^2 - 15n + 14 = CG_{3n-2} + 7 \tag{11}$$

Therefore $\{p_2, p_3, p_4\}$ is a dio 3-tuple

ie.,
$$\{CG_n, CG_{2n-2} + 2n, CG_{3n-2} + 7\}$$
 is a dio 3-tuple with the property $D[CS_n + (1-n)]$.

Now let ' p_5 'be any positive non-zero integer We then have

$$p_3 p_5 + 2n^2 - 3n + 2 = \beta_3^2 \tag{12}$$

$$p_4 p_5 + 2n^2 - 3n + 2 = \gamma_3^2 \tag{13}$$

Introduce linear transformation

$$\beta_3 = x_3 + p_3 y_3 \quad , \gamma_3 = x_3 + p_4 y_3 \tag{14}$$

Using some algebra from (12), (13) and (14) with taking $y_3 = 1$, we've

$$x_3 = 6n^2 - 11n + 10$$

www.ijsart.com

(15)

IJSART - Volume 4 Issue 4 – APRIL 2018

$$p_5 = 25n^2 - 45n + 41 = CG_{5n-4} + 20$$

Hence
$$\{p_3, p_4, p_5\}$$
 is a dio 3-tuple.

ie., $\{CG_{2n-2} + 2n, CG_{3n-2} + 7, CG_{5n-4} + 20\}$ is a dio 3-tuple with the property $D[CS_n + (1-n)]$.

Some numerical examples satisfying the property are listed in the following table

TABLE 1					
n	(p_1, p_2, p_3)	(p_2, p_3, p_4)	(p_3, p_4, p_5)	D(n)	
3	(2,7,19)	(7,19,50)	(19,50,131)	11	
4	(6,13,39)	(13,39,98)	(39,98,261)	22	
5	(12,21,67)	(21,67,164)	(67,164,441)	37	
6	(20,31,103)	(31,103,248)	(103,248,671)	56	
7	(30,43,147)	(43,147,350)	(147,350,951)	79	

Hence $\{p_1, p_2, p_3\}, \{p_2, p_3, p_4\}, \{p_3, p_4, p_5\}, \dots$ is a sequence of dio 3-tuples involving half companion sequences with the property $D[CS_n + (1-n)]$ **Case (ii):**

Let
$$p_1 = CG_{n-2} = n^2 - 5n + 7$$

$$p_2 = CG_n = n^2 - n + 1$$

Proceeding as in case (i) we've

$$p_3 = 4n^2 - 12n + 12 = CG_{2n-3} + 2n - 1$$

$$p_4 = 9n^2 - 21n + 19 = CG_{3n-4} + 6n - 2$$

$$p_5 = 25n^2 - 65n + 61 = CG_{5n-7} + 10n + 4$$

: $\{p_1, p_2, p_3\}, \{p_2, p_3, p_4\}, \{p_3, p_4, p_5\}, \dots$ is a sequence of dio 3-tuples involving half companion sequences with the property D(-3).

Some numerical examples satisfying the property are listed in the following table.

TABLE 2				
n	(p_1, p_2, p_3)	(p_2, p_3, p_4)	(p_3, p_4, p_5)	D(n)
1	(3,1,4)	(1,4,7)	(4,7,21)	-3
2	(1,3,4)	(3,4,13)	(4,13,31)	-3
3	(1,7,12)	(7,12,37)	(12,37,91)	-3
4	(3,13,28)	(13,28,79)	(28,79,201)	-3
5	(7,21,52)	(21,52,139)	(52,139,361)	-3

Case (iii):

Let
$$p_1 = CG_{n-2} = n^2 - 5n + 7$$

 $p_2 = CG_{n-1} = n^2 - 3n + 2$

Proceeding as in earlier cases we've

$$p_3 = 4n^2 - 16n + 17 = CG_{2n-3} - 2n + 4$$

$$p_4 = 9n^2 - 33n + 31 = CG_{3n-5}$$

$$p_5 = 25n^2 - 95n + 94 = CG_{5n-9} + 3$$

Hence $\{p_1, p_2, p_3\}, \{p_2, p_3, p_4\}, \{p_3, p_4, p_5\}, \dots$ is a sequence of dio 3-tuples involving half companion sequences with the property D(2-n)

Some numerical examples satisfying the property are listed in the following table

	TABLE 3					
n	(p_1, p_2, p_3)	(p_2, p_3, p_4)	(p_3, p_4, p_5)	D(n)		
3	(1,2,5)	(2,5,13)	(5,13,34)	-1		
4	(3,6,17)	(6,17,43)	(17,43,114)	-2		
5	(7,12,37)	(12,67,91)	(37,91,244)	-3		
6	(13,20,65)	(20,65,157)	(65,157,424)	-4		
7	(21,30,101)	(30,101,241)	(101,241,654)	-5		

III. CONCLUSION

In this paper we have explicated sequence of dio 3-tuples $\{p_1, p_2, p_3\}, \{p_2, p_3, p_4\}, \{p_3, p_4, p_5\}, \dots$ involving half companion sequences under 3 cases. One may also try to explicate similar dio 3-tuples from other numbers with suitable property.

REFERENCES

[1] L.E.Dickson, History of the theory of Numbers, Vol.2, Chelsea House, New York, 1966, 513-520.

[2] Bibhotibhusan Batta and Avadhesh Narayanan Singh, History of Hindu Mathematics, Asia Publishing House, 1938.

[3] Andre Weil, Number Theory: An Approach through History, From Hammurapito to Legendre, Birkahsuser, Boston, 1987.

[4] Boyer.C.B, A History of Mathematics, John Wiley and Sons Inc., New York, 1968.

[5] John Stilwell, Mathematics and its History, Springer Verlag, New York, 2004.

[6] Titu Andreescu, Dorin Andrica, "An Introduction to Diophantine equations" GIL Publishing House, 2002.

[7] M.N.Deshpande, (2003), Families of Diophantine Triplets, Bulletin of the Marathwada Mathematical Society, 4, 19-21.

[8] M.N.Deshpande, (2002), One Interesting Family of

Diophantine Triplets, Internet. J. Math. ed .Sci. Tech., 33, 253-256.

[9] M.A.Gopalan and V. Pandichelvi (2011), Construction of the Diophantine Triple Involving Polygonal Numbers, Impact J. Sci. Tech., 5(1), 7-11.

[10] M.A.Gopalan, V. Sangeetha and Manju Somanath (2014), Construction of the Diophantine Polygonal Numbers, Sch. J. Eng. Tech.2, 19-22.

[11] M.A.Gopalan, K.Geetha and Manju Somanath (2014), Special Dio-3Tuples, Bulletin of Society of Mathematical Services and Standards, 3(2), 41-45.

[12] M.A.Gopalan and G.Srividhya (2010), Diophantine Quadruples for Pell Numbers with Property D (1), Antarctica Journal of Mathematics, 7(3), 357-362.

[13] Pandichelvi V and Sivakamasundari P, The Sequence Of Diophantine Triples Involving Half Companion sequence and Pell Numbers, International Journal of Recent Scientific Research,

Vol. 8, Issue, 7, pp. 18482-18484, July, 2017

Tuples from $\frac{CC_n}{Gno_n} - I$ ", International Journal of Advanced

Research and Development, 2017, l(26), 151-154.

[15] Janaki G, Saranya P, Construction of Special Dio 3- CC_{n} ...

Tuples from $\frac{CC_n}{Gno_n} - II$, International Journal for Research in Applied Science and Engineering Technology, vol. 5

in Applied Science and Engineering Technology, vol 5, issue XII, 2017.

[16] Janaki G, Saranya P, Construction of Gaussian Diophantine, triples with the property D (25), International Journal of Statistics and Applied Mathematics, vol-2, issue-6,301-302, Dec 2017.