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Abstract- An Intelligent Autopilot System (IAS) is the one that 
can learn piloting skills by observing and imitating expert 
human pilots. IAS is a potential solution to the current 
problem of Automatic Flight Control Systems of being unable 
to handle flight uncertainties and the need to construct control 
models manually. A robust Learning by Imitation approach 
uses human pilots to demonstrate the task to be learned in a 
flight simulator while training datasets are captured from 
these demonstrations. The datasets are then used by Artificial 
Neural Networks to generate control models automatically. 
The control models imitate the skills of the human pilot when 
performing piloting tasks including handling flight 
uncertainties such as severe weather conditions and flight 
emergencies such as engine(s) failure or fire, Rejected Take 
Off (RTO), and emergency landing, while a flight manager 
program decides which ANNs to be fired given the current 
condition. 
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I. INTRODUCTION 
 

There are numerous crisis circumstances and flight 
vulnerabilities, for example, extreme climate conditions or 
framework disappointment which may emerge amid various 
periods of the flight. All the human pilots are all around 
prepared to take legitimate activities and handle these 
circumstances. Interestingly, Automatic Flight Control 
Systems (AFCS/Autopilot) are profoundly restricted, equipped 
for performing negligible steering undertakings in non-crisis 
conditions. For Example, solid turbulence can make the 
autopilot withdraw or even endeavor an undesired activity 
which could influence flight wellbeing. The autopilots require 
consistent checking of the framework and the flight status by 
the flight team to respond rapidly to any undesired 
circumstance or crises. Then again, endeavoring to discover 
everything that could turn out badly with a flight, and fusing 
that into the arrangement of principles or control models in an 
AFCS is infeasible. There have been reports either discussing 
the limitations of current autopilots [3] [4] such as the inability 

to handle severe weather conditions, or blaming autopilots for 
a number of aviation catastrophes. 

 
    This work plans to address this issue by examining 

an Intelligent Autopilot System (IAS) that can gain from 
human pilots by the Learning by Imitation idea with Artificial 
Neural Networks. By utilizing this approach we expect to 
broaden the abilities of present day autopilots and empower 
them to independently respond to various situations from 
typical to crisis circumstances. 
 

II. BACKGROUND 
 

A.  Automatic Flight Control Systems 
 
Currently used autopilots uses the Control Theory. 

Modern autopilots are based on controllers such as the 
Proportional Integral Derivative (PID) controller, and Finite-
State automation [5].  Many recent research efforts focus on 
enhancing flight controllers, through the introduction of 
various methods such as a non- adaptive Backstepping 
approach [6], Dynamical Inversion flight control approach 
based on Artificial Neural Network Disturbance Observer to 
handle the dynamical inversion error factor [7], an L1 adaptive 
controller which is based on piecewise constant adaptive laws 
[8], a multi-layered hybrid linear/non-linear controller for 
biologically inspired Unmanned Aerial Vehicles [9], and a 
fault-tolerant control based on Gain-Scheduled PID [10].   

 
In any case, physically planning and building up all 

the essential controllers to deal with the entire range of flight 
situations and vulnerabilities going from ordinary to crisis 
circumstances won't not be the perfect strategy because of 
attainability limitations, for example, the trouble in covering 
every single conceivable consequence. 
 
B. Fault/Failure Tolerant Systems for Flight Control  

 
Many recent research efforts focus on enhancing 

flight controllers by adding fault/failure tolerant capabilities. 
With respect to flight control systems, a fault is “an 
unpermitted deviation of at least one characteristic property of 
the system from the acceptable, usual, standard condition.” 
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[11], while failure is “a permanent interruption of a system’s 
ability to perform a required function under specified 
operating conditions.” [11].   

 
   To handle faults and disappointments, late research 

endeavors have been concentrating on planning Fault 
Detection and Diagnosis (FDD) systems that can either stream 
data to ground team individuals particularly on account of 
UAVs, or encourage fault tolerant systems that are fit for 
handling system faults.  

 
   The primary kind of such systems are known as the 

Passive Fault Tolerant Controllers which can handle direct 
faults, for example, parameters deviations by utilizing a hearty 
criticism controller. Nonetheless, if the faults are past the 
abilities of such controllers, another sort of fault tolerant 
systems turns into a need. This write is known as an Active 
Fault Tolerant control system which incorporates a different 
FDD system that includes an expanded and upgraded level of 
fault resilience capacities [12]. In the event of crisis 
circumstances, primarily motor disappointment, motor fire, 
flight instruments disappointment, or control surface harm or 
disappointment, proceeding to fly turns out to be either 
incomprehensible or can represents a genuine risk to the 
security of the flight. In such conditions, a constrained or 
crisis landing on a reasonable surface, for example, a level 
field turns into an absolute necessity particularly on the off 
chance that it isn't conceivable to return securely to the 
runway [13]. 
 
C. Artificial Neural Networks  
 

In gadgets building and related fields, artificial neural 
networks (ANNs) are scientific or computational models that 
are motivated by a human's focal sensory system (specifically 
the mind) which is equipped for machine learning and also 
design acknowledgment. Artificial neural networks are by and 
large introduced as systems of exceedingly interconnected 
"neurons" which can process esteems from inputs. With the 
assistance of these interconnected neurons all the parallel 
preparing is being done in body and the best case of Parallel 
Processing is human or creature's body. Numerical 
examination has tackled a portion of the puzzles postured by 
the new models however has left numerous inquiries for future 
examinations. There is no compelling reason to state, the 
investigation of neurons, their interconnections, and their part 
as the mind's rudimentary building squares is a standout 
amongst the most unique and vital research fields in current 
universe of gadgets and software engineering. 

 
 
 

III. THE INTELLIGENT AUTOPILOT SYSTEM 
 
The Intelligent Autopilot System (IAS) in this paper 

can be seen as a disciple that watches the exhibit of another 
errand by the accomplished educator, and then plays out a 
similar undertaking autonomously. An effective speculation of 
Learning by Imitation should mull over the catching of low-
level models and abnormal state models, which can be seen as 
fast and dynamic sub-activities that happen in divisions of a 
moment, and activities overseeing the entire procedure and 
how it ought to be performed deliberately. It is imperative to 
catch and impersonate the two levels keeping in mind the end 
goal to handle flight vulnerabilities effectively. The IAS is 
made of the accompanying parts: a pilot training program, an 
interface, a database, a flight chief program, and Artificial 
Neural Networks. The IAS execution technique has three 
stages: A. Pilot Data Collection, B. Training, and C. 
Autonomous Control. In each step, different IAS components 
are used. 
 
A. Pilot Data Collection  

 

 
Fig 1: Block diagram illustrating the IAS components used 

during the pilot data collection step. 
 

1). Flight Simulator 
     
Prior to the IAS can be prepared or can take control, 

we should gather data from a pilot. This is performed utilizing 
X-Plane which is a propelled pilot test program that has been 
utilized as the test system of decision in numerous 
examination papers, for example, [15] [16] [17].  

 
X-Plane is utilized by different associations and 

ventures, for example, NASA, Boeing, Cirrus, Cessna, Piper, 
Precession Flight Controls Incorporated, Japan Airlines, and 
the American Federal Aviation Administration. 1 X-Plane can 
speak with outside applications by sending and accepting 
flight status and control commands data over a system through 
User Datagram Protocol (UDP) parcels. For this work, the test 
system is set up to send and get parcels involving wanted data 
each 0.1 second. In X-Plane, it is conceivable to reenact 
various flight crises to train pilots. Crises extend from extreme 
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climate conditions to system disappointment, for example, 
motor disappointment or fire. 

 
2). The IAS Interface  

 
The IAS Interface is in charge of data stream between 

the pilot training program and the system in the two bearings. 
The Interface contains control command catches that give a 
streamlined yet adequate flying machine control interface 
which can be utilized to perform fundamental errands of 
piloting an air ship, for example, take-off and landing in the 
test system while having the capacity to control different 
systems, for example, fuel and fire systems. It likewise shows 
flight data got from the test system.  

 
     Data collection is begun promptly before exhibit, 

at that point; the pilot utilizes the Interface to play out the 
piloting assignment to be educated. The Interface gathers 
flight data from X-Plane over the system utilizing UDP 
bundles, and gathers the pilot's activities while playing out the 
undertaking, which are additionally sent back to the test 
system as manual control commands. The Interface sorts out 
the gathered flight data got from the test system (inputs), and 
the pilot's activities (yields) into vectors of information 
sources and yields, which are sent to the database each 1 
second. 
 
3). Database  

 
A SQL Server database stores all data caught from 

the pilot demonstrator and X-Plane, which are gotten from the 
Interface. The database contains tables intended to store: 1. 
Flight data as sources of info, and 2. Pilot's activities as yields. 
These tables are then utilized as training datasets to prepare 
the Artificial Neural Networks of the IAS. 
 
B.  Training 

 
After the human pilot data collection step is 

completed, Artificial Neural Networks are used to generate 
learning models from the captured datasets through offline 
training. 

 
Ten feedforward Artificial Neural Networks 

comprise the core of the IAS. Each ANN is designed and 
trained to handle specific controls and tasks. The ANNs are: 
Taxi Speed Gain ANN, Take Off ANN, Rejected Take Off 
ANN, Aileron ANN, Rudder ANN, Cruise Altitude ANN, 
Cruise Pitch ANN, Fire Situation ANN, Emergency Landing 
Pitch ANN, and Emergency Landing Altitude ANN. The 
inputs and outputs which represent the gathered data and 

relevant actions, and the topologies of the ten ANNs are 
illustrated in Fig. 3.   

 
Before training, the datasets are normalized, and 

retrieved from the database. Then, the datasets are fed to the 
ANNs. Next, Sigmoid (1) [18] and Hyperbolic Tangent (Tanh) 
(2) [18] functions are applied for the neuron activation step, 
where f(x) is the activation function for each neuron, and  x  is 
the relevant input value:       
 

 
 

The Sigmoid activation function (1) is used by the 
Taxi Speed Gain ANN, Take Off ANN, Emergency Landing 
Altitude ANN, Rejected Take Off ANN, and the Fire Situation 
ANN, while (2) is used by the rest since their datasets contain 
negative values. 

 
Next, Back propagation is applied. Based on the 

activation function, (3) [19], or (4) [19] are applied to 
calculate the error signal(δ) where tn is the desired target value 
and an is the actual activation value: 
 

 
 
Finally, coefficients of models (weights and biases) 

are updated using (5) [20] where δwi,j  is the change in the 
weight between nodes j and k. 

 

 
 
When training is completed, the learning models are 

generated, and the free parameters or coefficients represented 
by weights and biases of the models are stored in the database. 
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Fig 2: Inputs, outputs, and the topologies of the ten 

ANNs representing the core of the Intelligent Autopilot 
System. Each ANN is designed and trained to handle a 

specific task. 
 

C. Autonomous Control   
 
Once prepared, the IAS would now be able to be 

utilized for autonomous control. Fig.3 delineates the parts 
utilized amid the autonomous control step. 

 

 
Fig 3: Block diagram illustrating the IAS components used 

during autonomous control. 
 

1). The IAS Interface 
 
Here, the Interface recovers the coefficients of the 

models from the database for each prepared ANN, and gets 
flight data from the pilot training program each 0.1 second. 
The Interface sorts out the coefficients into sets of weights and 
biases, and arranges data got from the test system into sets of 
contributions for each ANN. The applicable coefficients, and 

flight data input sets are then encouraged to the Flight 
Manager and the ANNs of the IAS to deliver yields. The 
yields of the ANNs are sent to the Interface which sends them 
to the pilot test program as autonomous control commands 
utilizing UDP parcels each 0.1 second. 

 
2). The Flight Manager Program 

 
The reason for the Flight Manager is to deal with the 

ten ANNs of the IAS by choosing which ANNs are to be 
utilized all the while at every minute. The Flight Manager 
begins by accepting flight data from the pilot training program 
through the interface of the IAS, at that point it identifies the 
flight condition and stage by looking at the got flight data, and 
chooses which ANNs are required to be utilized given the 
flight condition (typical/crisis/fire circumstance) and stage 
(taxi speed pick up/take off/journey/crisis landing).  

 
3). Artificial Neural Networks 

 
The pertinent arrangement of flight data inputs got 

through the Interface is utilized by the ANNs' information 
neurons alongside the applicable coefficients to foresee 
control commands given the flight status by applying (1) and 
(2). The estimations of the yield layers are sent to the Interface 
which sends them to the pilot test program as autonomous 
control commands. Taxi Speed Gain ANN is utilized while on 
the runway just before take off to foresee the appropriate 
brakes and throttle command esteems. Take Off ANN is 
utilized after a specific take off speed is accomplished to 
anticipate rigging, lift, and throttle command esteems. 
Rejected Take Off ANN is utilized to prematurely end take off 
if essential by foreseeing brakes, throttle, and turn around 
throttle command esteems. Aileron ANN is utilized to control 
the air ship's roll quickly after take off. Rudder ANN is 
utilized to control the airplane's taking before take off, and 
yaw when airborne on the off chance that one motor comes up 
short and makes drag. Journey Altitude ANN is utilized to 
control the flying machine's coveted cruising elevation by 
anticipating the throttle command esteem. Journey Pitch ANN 
controls the pitch while cruising by anticipating the lift 
command esteem. Fire Situation ANN is utilized as a part of 
instance of flame by anticipating fuel valve and fire quenching 
control commands. Crisis Landing Pitch ANN keeps up a 
specific pitch amid crisis landing to lose speed without 
slowing down and to keep a nose first crash. Crisis Landing 
Altitude ANN controls the throttle if there should arise an 
occurrence of a solitary motor disappointment.  
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IV. EXPERIMENTS AND RESULTS 
 
In research works [1] and [2] various experiments 

have been conducted to see if the discussed IAS model was 
capable of imitating the human pilot’s actions and behaviour. 
The experiments which were performed are: autonomous taxi 
speed gain, take off, climb, and applying rudder and aileron to 
correct heading and roll deviations under normal and severe 
weather conditions and Rejecting take off,  Emergency 
landing, Maintaining a cruising altitude, and  Handling single 
engine failure/fire while airborne. 

 
Each experiment was composed of 20 attempts by the 

IAS to perform autonomously under the given conditions. 
 
The experiments exhibited extremely alluring 

outcomes. The IAS was equipped for impersonating the 
human pilot's activities and conduct with striking precision, 
and solid consistency. They delineate the capacity of the IAS 
to perform superior to the human pilot educator due to the 
accomplished solid match of the learning models. . The IAS 
was fit for utilizing the effectively learned models to keep 
flying while bit by bit losing height. Despite the fact that the 
air ship's standard autopilot kept up a superior elevation for 
the time being, by forcefully expanding motor push it 
improves the probability of motor disappointment in the rest 
of the motor, with possibly disastrous outcomes.  

 
The system could impersonate numerous human 

pilot's abilities and conduct subsequent to being given 
exceptionally constrained illustrations. This is because of the 
approach of dividing the issue of autonomous piloting while at 
the same time handling vulnerabilities into little squares of 
undertakings, and doling out various ANNs uniquely outlined 
and prepared for each errand, which brought about the age of 
very precise models. 
 

V. CONCLUSION & FUTURE WORK 
 
In this work, a robust approach is discussed to 

“teach” autopilots how to handle uncertainties and 
emergencies with minimum effort by exploiting Learning by 
Imitation also known as Learning from Demonstration. The 
experiments showed the ability of the IAS to capture high-
level tasks such as coordinating the necessary actions to reject 
take off and extinguish fire. 

 
Breaking down the piloting tasks, and adding more 

Artificial Neural Networks enhanced performance and 
accuracy, and allowed the coverage of a wider spectrum of 
tasks. 

 

The aviation industry is currently working on 
solutions which should lead to decreasing the dependence on 
crew members. The reason behind this is to lower workload, 
human error, stress, and emergency situations where the 
captain or the first officer becomes incapable, by developing 
autopilots capable of handling multiple scenarios without 
human intervention. We anticipate that future Autopilot 
systems which make of methods proposed here could improve 
safety and save lives. 

 
Future effort will focus on giving the IAS the ability 

to learn how to fly a pre-selected course, and land safely in an 
airport. The IAS should be capable of avoiding no-fly zones 
that are either pre-identified, or detected during the flight such 
as severe weather systems detected by the aircraft’s radar. 

 
The Flight Manager program should be redesigned to 

utilize Artificial Neural Networks to classify the situation 
(normal or emergency), and predict the suitable flight control 
law or mode given the situation. 

 
The problem of sensor fault and denial should be 

investigated to test the feasibility of teaching the IAS how to 
handle such scenarios. 
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