
IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2348 www.ijsart.com

Search Rank Fraud And Malware Detection In Google
Play

B. Sudheer Kumar1, Y. Venkata Ramesh2 ,Y. Jahnavi3

1Dept of CSE
2Assistant Professor, Dept of CSE

3Professor, Dept of CSE
1, 2, 3 GIST, Gangavaram, Kovur , Nellore

Abstract- In this paper, we introduce FairPlay, a novel system
that discovers and leverages traces left behind by fraudsters,
to detect both malware and apps subjected to search rank
fraud. FairPlay coordinates review activities and uniquely
combines detected review relations with linguistic and
behavioural signals obtained from Google Play app data in
order to identify the suspicious apps. FairPlay achieves over
95% accuracy in classifying gold standard datasets of
malware, fraudulent and legitimate apps. We observe that
nearly 75% of the malware apps that have been identified are
engaged in search rank fraud. FairPlay discovers hundreds of
fraudulent apps that currently evade Google Bouncer’s
detection technology. FairPlay also helped the discovery of
more than 1,000 reviews, reported for 193 apps, that reveal a
new type of “coercive” review campaign: users are harassed
into writing positive reviews, and install and review other
apps.

Keywords- Android market, search rank fraud, malware
detection

I. INTRODUCTION

 The commercial success of Android app markets
such as Google Play [1] and the incentive model they offer to
popular apps, make them appealing targets for fraudulent and
malicious behaviours. Some fraudulent developers deceptively
boost the search rank and popularity of their apps (e.g.,
through fake reviews and bogus installation counts), while
malicious developers use app markets as a launch pad for their
malware. The motivation for such behaviours is impact: app
popularity surges translate into financial benefits and
expedited malware proliferation.Fraudulent developers
frequently exploit crowd sourcing sites to hire teams of willing
workers to commit fraud collectively, emulating realistic,
spontaneous activities from unrelated people. We call this
behaviour “search rank fraud”.In addition, the efforts of
Android markets to identify and remove malware are not
always successful. For instance, Google Play uses the Bouncer
system to remove malware. However, out of the 7,756 Google
Play apps we analysed using VirusTotal 12% (948) were

flagged by at least one anti-virus tool and 2% (150) were
identified as malware by at least 10 tools. Previous mobile
malware detection work has focused on dynamic analysis of
app executables as well as static analysis of code and
permissions. However, recent Android malware analysis
revealed that malware evolves quickly to bypass anti-virus
tools.In this paper, we seek to identify both malware and
search rank fraud subjects in Google Play. This combination is
not arbitrary: we posit that malicious developers resort to
search rank fraud to boost the impact of their malware.Unlike
existing solutions, we build this work on the observation that
fraudulent and malicious behaviours leave behind telltale signs
on app markets. We uncover these nefarious acts by picking
out such trails. For instance, the high cost of setting up valid
Google Play accounts forces fraudsters to reuse their accounts
across review writing jobs, making them likely to review more
apps in common than regular users. Resource constraints can
compel fraudsters to post reviews within short time intervals.
Legitimate users affected by malware may report unpleasant
experiences in their reviews. Increases in the number of
requested permissions from one version to the next, which we
will call “permission ramps”, may indicate benign to malware
(Jekyll-Hyde) transitions.

1.1 Contributions

FairPlay is a proposed system that supports the above
observations to efficiently detect fraud and malware apps in
google play. Our major contributions are:

A fraud and malware detection approach. To detect fraud
and malware, we propose and generate 28 relational,
behavioural and linguistic features, that we use to train
supervised learning algorithms [§ 4]:

 Firstly, we should formulate the notion of co-review

graphs to model reviewing relations between users. We
develop PCF, an efficient algorithm to identify temporally
constrained, co-review pseudo-cliques — formed by
reviewers with substantially overlapping co-reviewing
activities across short time windows.

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2349 www.ijsart.com

 Linguistic and behavioural type of information can be
used for detecting the original reviews and for finding
thefraud and malware apps.

Tools to collect and process Google Play data. A tool called
GPCrawler, has been developed to automatically collect the
data for apps, users and reviews, as well as GPad, which is a
tool to download apks of free apps and scan them for malware
using VirusTotal.

1.2 Results

 FairPlay achieves over 97% accuracy in classifying

fraudulent and benign apps, and over 95% accuracy in
classifying malware and benign apps. So we can say that it has
a higher accuracy rate FairPlay significantly outperforms the
malware indicators of Sarma et al. Furthermore, we show that
malware often engages in search rank fraud as well: When
trained on fraudulent and benign apps, FairPlay flagged as
fraudulent more than 75% of the gold standard malware apps
[§ 5.3].

The reviewers of 93.3% of them form at least 1

pseudo-clique, 55% of these apps have at least 33% of their
reviewers involved in a pseudo-clique, and the reviews of
around 75% of these apps contain at least 20 words indicative
of fraud.Through fairPlay we have discovered a novel,
coercive review campaign attack type, where app users
areforcely asked to write a positive review for the app, and
install and review other apps. We have discovered 1,024
reviews, from users complaining about 193 such apps [§ 5.4
&§ 5.5].

Fig. 2: Google Play components and relations.

Google Play’s functionality centers on apps, shown as red
disks. Developers, shown as orange disks upload apps. A
developer may upload multiple apps. Users, shown as blue
squares, can install and review apps. A user can only review
an app that he previously installed.

II. BACKGROUND, RELATED WORK, AND OUR
DIFFERENCES

System model. We focus on the Android app market
ecosystem of Google Play. The participants, consisting of
users and developers, have Google accounts. Developers
create and upload apps, that consist of executables (i.e.,
“apks”), a set of required permissions, and a description. The
app market publishes this information, along with the app’s
received reviews, ratings, aggregate rating (over both reviews
and ratings), install count range (predefined buckets, e.g., 50-
100, 100-500), size, version number, price, time of last update,
and a list of “similar” apps. Each review consists of a star
rating ranging between 1-5 stars, and some text. The text is
optional and consists of a title and a description. Google Play
limits the number of reviews displayed for an app to 4,000.
Figure 2 illustrates the participants in Google Play and their
relations.To review or rate an app, a user needs to have a
Google account, register a mobile device with that account.
The reason for search rank fraud attacks is impact. When the
search rank of the apps is high such apps will be downloaded
mostly. This is beneficial both for fraudulent developers, who
increase their revenue, and malicious developers, who increase
the impact of their malware.

III. THE DATA

We have collected longitudinal data from 87K+
newly released apps over more than 6 months, and identified
gold standard data. In the following, we briefly describe the
tools we developed, then detail the data collection effort and
the resulting datasets.

Data collection tools. We have developed the Google Play
Crawler (GPCrawler) tool, to automatically collect data
published by Google Play for apps, users and reviews. Thus,
to collect the ids of more than 20 apps reviewed by a user. To
overcome this limitation, we developed a Python script and a
Firefox add-on. Given a user id, the script opens the user page
in Firefox. When the script loads the page, the add-on
becomes active. The add-on interacts with Google Play pages
using content scripts and port objects for message
communication. The add-on displays a “scroll down” button
that enables the script to scroll down to the bottom of the page.
The script then uses a DOMParser to extract the content
displayed in various formats by Google Play. It then sends this
content over IPC to the add-on. The add-on stores it, using
Mozilla XPCOM components, in a sand-boxed environment
of local storage in a temporary file. The script then extracts the
list of apps rated or reviewed by the user.

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2350 www.ijsart.com

We have also developed the Google Play App
Downloader (GPad), a Java tool to automatically download
apks of free apps on a PC, using the open-source Android
Market API [26]. GPad takes as input a list of free app ids, a
Gmail account and password, and a GSF id. GPad creates a
new market session for the “androidsecure” service and logs
in. GPad sets parameters for the session context (e.g., mobile
device Android SDK version, mobile operator, country), then
issues a GetAssetRequest for each app identifier in the input
list. GPad introduces a 10s delay between requests. The result
contains the URL for the app; GPad uses this URL to retrieve
and store the app’s binary stream into a local file. After
collecting the binaries of the apps on the list, G Pad scans each
app using VirusTotal an online malware detector provider, to
find out the number of anti-malware tools (out of 57: AVG,
McAfee, Symantec, Kaspersky, Malwarebytes, F-Secure, etc.)
that identify the apk as suspicious. We used 4 servers
(PowerEdge R620, Intel Xeon E-26XX v2 CPUs) to collect

our datasets, which we describe next. Data

We approximate the first upload date of an app using

the day of its first review. We have started collecting new
releases in July 2014 and by October 2014 we had a set of
87,223 apps, whose first upload time was under 40 days prior
to our first collection time, when they had at most 100
reviews.

Figure 3 shows the distribution of the fresh app

categories. We have collected app from each category
supported by Google Play, with at least 500 apps per category
(Music & Audio) and more than 4,500 for the most popular
category (Personalization).

 Most apps have at least a 3.5 rating aggregate rating,
with few apps between 1 and 2.5stars. However, we observe a
spike at more than 8,000 apps with less than one star.

We have collected longitudinal data from these
87,223 apps between October 24, 2014 and May 5, 2015.
Specifically, for each app we captured “snapshots” of its
Google Play metadata, twice a week. An app snapshot consists
of values for all its time varying variables, e.g., the reviews,
the rating and install counts, and the set of requested
permissions (see § 2 for the complete list). For each of the
2,850,705 reviews we have collected from the 87,223 apps, we
recorded the reviewer’s name and id (2,380,708 unique ids),
date of review, review title, text, and rating.

This app monitoring process enables us to extract a
suite of unique features, that include review, install and
permission changes. In particular, we note that this approach
enables us to overcome the Google Play limit of 4000
displayed reviews per app: each snapshot will capture only the
reviews posted after the previous snapshot.

1.3 Gold Standard Data

Malware apps. We used GPad to collect the apks of

7,756 randomly selected apps from the longitudinal set. Figure
6 shows the distribution of flags raised by VirusTotal, for the
7,756 apks. None of these apps had been filtered by Bouncer
From the 523 apps that were flagged by at least 3 tools, we
selected those that had at least 10 reviews, to form our
“malware app” dataset, for a total of 212 apps. We collected
all the 8,255 reviews of these apps. Fraudulent apps. We
used contacts established among Freelancer [7]’s search rank
fraud community, to obtain the identities of 15 Google Play
accounts that were used to write fraudulent reviews for 201
unique apps. We call the 15 accounts “seed fraud accounts”
and the 201 apps “seed”.

Fraudulent reviews. We have collected all the 53,625
reviews received by the 201 seed fraud apps. The 15 seed
fraud accounts were responsible for 1,969 of these reviews.
We used the 53,625 reviews to identify 188 accounts, such
that each account was used to review at least 10 of the 201
seed fraud apps (for a total of 6,488 reviews). We call these,
guilt by association (GbA) accounts. To reduce feature
duplication, we have used the 1,969 fraudulent reviews written
by the 15 seed accounts and the 6,488 fraudulent reviews
written by the 188 GbA accounts for the 201 seed fraud apps,
to extract a balanced set of fraudulent reviews. Specifically,
from this set of 8,457 (= 1,969+6,488) reviews, we have
collected 2 reviews from each of the 203 (= 188+15)

FairPlay system architecture. The CoReG module

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2351 www.ijsart.com

suspicious user accounts. Thus, the gold standard dataset of
fraudulent reviews consists of 406 reviews.

The reason for collecting a small number of reviews
from each fraudster is to reduce feature duplication: many of
the features we use to classify a review are extracted from the
user who wrote the review (see Table 2).

Benign apps. We have selected 925 candidate apps from the
longitudinal app set, that have been developed by Google
designated “top developers”. We have used GPad to filter out
those flagged by VirusTotal. We have manually investigated
601 of the remaining apps, and selected a set identifies
suspicious, time related co-review behaviours. The RF module
uses linguistic tools to detect suspicious behaviours reported
by genuine reviews. The IRR module uses behavioural
information to detect suspicious apps. The JH module
identifies permission ramps to pinpoint possible Jekyll-Hyde
app transitions.
of 200 apps that (i) have more than 10 reviews and (ii) were
developed by reputable media outlets (e.g., NBC, PBS) or
have an associated business model (e.g., fitness trackers). We
have also collected the 32,022 reviews of these apps. Genuine
reviews. We have manually collected a gold standard set of
315 genuine reviews, as follows. First, we have collected the
reviews written for apps installed on the Android smartphones
of the authors. We then used Google’s text and reverse image
search tools to identify and filter those that plagiarized other
reviews or were written from accounts with generic photos.
characters, and are informative (e.g., provide information
about bugs, crash scenario, version update impact, recent
changes).

IV. FAIRPLAY: PROPOSED SOLUTION

We now introduce FairPlay, a system to automatically detect
malicious and fraudulent apps.

1.4 FairPlay Overview

FairPlay organizes the analysis of longitudinal app

data into the following 4 modules, illustrated in Figure 7. The
CoReview Graph (CoReG) module identifies apps reviewed in
a contiguous time window by groups of users with
significantly overlapping review histories. The Review
Feedback (RF) module exploits feedback left by genuine
reviewers, while the Inter Review Relation (IRR) module
leverages relations between reviews, ratings and install counts.
The Jekyll-Hyde (JH) module monitors app permissions, with
a focus on dangerous ones, to identify apps that convert from
benign to malware. Each module produces several features
that are used to train an app classifier. FairPlay also uses

general features such as the app’s average rating, total number
of reviews, ratings and installs, for a total of 28 features.

1.5 The Co-Review Graph (CoReG) Module

This module exploits the observation that fraudsters

who control many accounts will re-use them across multiple
jobs. Its goal is then to detect sub-sets of an app’s reviewers
that have performed significant common review activities in
the past. In the following, we describe the co-review graph
concept, formally present the weighted maximal clique
enumeration problem, then introduce an efficient heuristic that
leverages natural limitations in the behaviors of fraudsters.
Co-review graphs. Let the co-review graph of an app, be a
graph where nodes correspond to user accounts who reviewed
the app, and undirected edges have a weight that indicates the
number of apps reviewed in common by the edge’s endpoint
users. Figure 16a shows the co-review clique of one of the
seed fraud apps (see § 3.2). The co-review graph concept
naturally identifies user accounts with significant past review
activities.

The weighted maximal clique enumeration problem.

Let G = (V,E) be a graph, where V denotes the sets of vertices
of the graph, and E denotes the set of edges. Let w be a weight
function, w : E → R that assigns a weight to each edge of G.
Given a vertex sub-set U ∈V , we use G[U] to denote the sub-
graph of G induced by U. A vertex sub-set U is called a clique
if any two vertices in U are connected by an edge in E. We say
that U is a maximal clique if no other clique of G contains U.
The weighted maximal clique enumeration problem takes as
input a graph G and returns the set of maximal cliques of G.
Maximal clique enumeration algorithms such as [27], [28]
applied to co-review graphs are not ideal to solve the problem
of identifying sub-sets of an app’s reviewers with significant
past common reviews. First, fraudsters may not consistently
use (or may even purposefully avoid using) all their accounts
across all fraud jobs that they perform. In addition, Google
Play provides incomplete information (up to 4,000 reviews per
app, may also detect and filter fraud). Since edge information
may be incomplete, original cliques may now also be
incomplete. To address this problem, we “relax” the clique
requirement and focus instead of pseudocliques:

The weighted pseudo-clique enumeration problem.
For a graph G = (V,E) and a threshold value θ, we say that a
vertex sub-set U (and its induced sub-graph G[U]) is a

Algorithm 1 PCF algorithm pseudo-code.

Input: days, an array of daily reviews, and θ, the weighted
threshold density

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2352 www.ijsart.com

Output: allCliques, set of all detected pseudo-cliques
1. for d :=0 d <days.size(); d++
2. Graph PC := new Graph();
3. bestNearClique(PC, days[d]);
4. c := 1; n := PC.size();
5. for nd := d+1; d <days.size() & c = 1; d++
6. bestNearClique(PC, days[nd]);
7. c := (PC.size() >n); endfor
8. if (PC.size() >2)
9. allCliques := allCliques.add(PC); fi endfor
10. return
11. function bestNearClique(Graph PC, Set
revs)

12. if (PC.size() = 0)
13. for root := 0; root <revs.size(); root++
14. Graph candClique := new Graph ();
15. candClique.addNode (revs[root].getUser());
16. do candNode := getMaxDensityGain(revs);
17. if (density(candClique∪{candNode}) ≥ θ))
18. candClique.addNode(candNode); fi
19. while (candNode != null);
20. if (candClique.density() >maxRho)
21. maxRho := candClique.density();
22. PC := candClique; fi endfor
23. else if (PC.size() >0)
24. do candNode := getMaxDensityGain(revs);
25. if (density(candClique∪candNode) ≥ θ))
26. PC.addNode(candNode); fi
27. while (candNode != null);
28. return

pseudo-clique of G if its weighted density

exceeds θ; n = |V | 1. U is a maximal
pseudo-clique if in addition, no other pseudo-clique of G
contains U. The weighted pseudo-clique enumeration problem
outputs all the vertex sets of V whose induced subgraphs are
weighted pseudo-cliques of G.

The Pseudo Clique Finder (PCF) algorithm. We
propose PCF (Pseudo Clique Finder), an algorithm that
exploits the observation that fraudsters hired to review an app
are likely to post those reviews within relatively short time
intervals (e.g., days). PCF (see Algorithm 1), takes as input the
set of the reviews of an app, organized by days, and a
threshold value θ. PCF outputs a set of identified pseudo-
cliques with ρ ≥ θ, that were formed during contiguous time
frames. In Section 5.3 we discuss the choice of θ. For each day
when the app has received a review (line 1), PCF finds the
day’s most promising pseudo-clique (lines 3 and 12 − 22):
start with each review, then greedily add other reviews to a

candidate pseudo-clique; keep the pseudo clique (of the day)
with the highest density. With that “workin-progress” pseudo-
clique, move on to the next day (line 5): greedily add other
reviews while the weighted density of the new pseudo-clique
equals or exceeds θ (lines 6 and 23 − 27). When no new nodes
have been added to the work-in-progress pseudo-clique (line
8), we add the pseudoclique to the output (line 9), then move
to the next day (line
1). The greedy choice (getMaxDensityGain, not depicted in
Algorithm 1) picks the review not yet in the work-inprogress
pseudo-clique, whose writer has written the most apps in
common with reviewers already in the pseudoclique. Figure 8
illustrates the output of PCF for several θ values.
If d is the number of days over which A has received reviews
and r is the maximum number of reviews received in a day,
PCF’s complexity is O(dr2(r + d)).

CoReG features. CoReG extracts the following features from
the output of PCF (see Table 1) (i) the number of cliques
whose density equals or exceeds θ, (ii) the maximum, median
and standard deviation of the densities of identified pseudo-
cliques, (iii) the maximum, median and standard deviation of
the node count of identified pseudo-cliques, normalized by n
(the app’s review count), and (iv) the total number of nodes of
the co-review graph that belong to at least one pseudo-clique,
normalized by n.

1.6 Reviewer Feedback (RF) Module

Reviews written by genuine users of malware and

fraudulent apps may describe negative experiences. The RF
module exploits this observation through a two-step approach:
(i) detect and filter out fraudulent reviews, then (ii) identify
malware and fraud indicative feedback from the remaining
reviews.

1.7 Inter-Review Relation (IRR) Module

This module leverages temporal relations between

reviews, as well as relations between the review, rating and
install counts of apps, to identify suspicious behaviours.
Temporal relations. In order to compensate for a negative
review, an attacker needs to post a significant number of
positive reviews. Specifically, Claim 1An attacker needs to

post at least positive reviews., in order to counteract for
the 1 star review

Proof: Let σ be the sum of all the k reviews received by a
before time T. Then, be the number of
fraudulent reviews received by A. To compensate for the 1-

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2353 www.ijsart.com

starreview posted at time T, qr is minimized when all those

reviews are 5 star. We then have that: .
The numerator of the last fraction denotes the sum of all the
ratings received by A after time T and the denominator is the
total number of reviews. Rewriting the last equality, we
Rating vs Install count

obtain that . The last equality follows by
dividing both the numerator and denominator by k.
Such a “compensatory” behaviour is likely to lead to doubtful
high numbers of positive reviews. We detect such behaviours
by identifying outliers in the number of daily positive reviews
received by an app. Figure 9 shows the timelines and
suspicious spikes of positive reviews for 2 apps from the
fraudulent app dataset (see Section 3.2).

Reviews, ratings and install counts. To investigate
relationships between the install count and the rating count at
the end of the collection interval., we used the Pearson’s χ2
test, as well as between the install count and the average app
rating of the 87K new apps. As Google Play’s install count
buckets, we grouped the rating count in buckets of the same
size. Figure 10 shows the merimakko diagrams of the
relationships between rating and install counts. p=0.0008924,
thus we result that dependence between the rating and install
counts. The cells(rectangles) are identified by the standardized
residuals dangerous permissions.

IRR features. We add temporal features (see Table 1): the
number of days with detected spikes and the maximum
amplitude of a spike. We also take out (i) the ratio of installs
to the ratings as two features, I1/Rt1 and I2/Rt2 and (ii) the ratio
of installs to reviews, as I1/Rv1 and I2/Rv2. (I1,I2] denotes the
install count interval of an app, (Rt1,Rt2] its rating interval and
(Rv1,Rv2] its (genuine) review interval.
 the app’s number of dangerous permission ramps, and (iv) its
total number of dangerous permissions added over all the
ramps.

V. CONCLUSION

We have proposed Fair Play which is a system to

detect both fraudulent and malicious software Google Play
apps. These experiments on a newly introduced longitudinal
app dataset, will be shown that a high percentage of malicious
software is involved in search rank fraud; both are accurately
identified by Fair Play. Including a new type of coercive fraud
attack, these in addition we showed Fair Play’s ability to
discover hundreds of apps that evade Google Play’s detection
technology.

REFERENCES

[1] Google Play. https://play.google.com/.
[2] Ezra Siegel. Fake Reviews in Google Play and Apple App

Store. Appentive, 2014.
[3] Zach Miners. Report: Malware-infected Android apps

spike in the Google Play store. PCWorld, 2014.
[4] Stephanie Mlot. Top Android App a Scam, Pulled From

Google Play. PCMag, 2014.
[5] Daniel Roberts. How to spot fake apps on the Google

Play store. Fortune, 2015.
[6] Andy Greenberg. Malware Apps Spoof Android Market

To Infect Phones.
[7] Forbes Security, 2014.
[8] Freelancer. http://www.freelancer.com.
[9] Fiverr. https://www.fiverr.com/.
[10] BestAppPromotion. www.bestreviewapp.com/.
[11] Gang Wang, Christo Wilson, Xiaohan Zhao, Yibo Zhu,

Manish Mohanlal, Haitao Zheng, and Ben Y. Zhao. Serf
and Turf: Crowdturfing for Fun and Profit. In Proceedings
of ACM WWW. ACM,
2012.

[12] Kazuhisa Makino and Takeaki Uno. New algorithms for
enumerating all maximal cliques. 3111:260–272, 2004.

[13] Takeaki Uno. An efficient algorithm for enumerating
pseudo cliques. In Proceedings of ISAAC, 2007.

[14] Steven Bird, Ewan Klein, and Edward Loper. Natural
Language Processing with Python. O’Reilly, 2009.

[15] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
Thumbs Up? Sentiment Classification Using Machine
Learning Techniques. In Proceedings of EMNLP, 2002.

[16] John H. McDonald. Handbook of Biological Statistics.
Sparky House Publishing, second edition, 2009.
New Google Play Store greatly simplifies permissions.
http://www.androidcentral.com/

[17] new-google-play-store-4820-greatly-simplifies-
permissions, 2014.
Weka. http://www.cs.waikato.ac.nz/ml/weka/.

[18] S. I. Gallant. Perceptron-based learning algorithms. Trans.
Neur.
Netw., 1(2):179–191, June 1990.

[19] Leo Breiman. Random Forests. Machine Learning, 45:5–
32, 2001.

[20] Ron Kohavi. A Study of Cross-Validation and Bootstrap
for Accuracy Estimation and Model Selection. In
Proceedings of IJCAI, 1995.

[21] D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and
C. Faloutsos. Polonium: Tera-scale graph mining and
inference for malware detection. In Proceedings of the
SIAM SDM, 2011.

