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Abstract- In this paper, we introduce FairPlay, a novel system 
that discovers and leverages traces left behind by fraudsters, 
to detect both malware and apps subjected to search rank 
fraud. FairPlay coordinates review activities and uniquely 
combines detected review relations with linguistic and 
behavioural signals obtained from Google Play app data in 
order to identify the suspicious apps. FairPlay achieves over 
95% accuracy in classifying gold standard datasets of 
malware, fraudulent and legitimate apps. We observe that 
nearly 75% of the malware apps that have been identified are 
engaged in search rank fraud. FairPlay discovers hundreds of 
fraudulent apps that currently evade Google Bouncer’s 
detection technology. FairPlay also helped the discovery of 
more than 1,000 reviews, reported for 193 apps, that reveal a 
new type of “coercive” review campaign: users are harassed 
into writing positive reviews, and install and review other 
apps. 
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I. INTRODUCTION 
 
 The commercial success of Android app markets 
such as Google Play [1] and the incentive model they offer to 
popular apps, make them appealing targets for fraudulent and 
malicious behaviours. Some fraudulent developers deceptively 
boost the search rank and popularity of their apps (e.g., 
through fake reviews and bogus installation counts), while 
malicious developers use app markets as a launch pad for their 
malware. The motivation for such behaviours is impact: app 
popularity surges translate into financial benefits and 
expedited malware proliferation.Fraudulent developers 
frequently exploit crowd sourcing sites to hire teams of willing 
workers to commit fraud collectively, emulating realistic, 
spontaneous activities from unrelated people. We call this 
behaviour “search rank fraud”.In addition, the efforts of 
Android markets to identify and remove malware are not 
always successful. For instance, Google Play uses the Bouncer 
system to remove malware. However, out of the 7,756 Google 
Play apps we analysed using VirusTotal 12% (948) were 

flagged by at least one anti-virus tool and 2% (150) were 
identified as malware by at least 10 tools. Previous mobile 
malware detection work has focused on dynamic analysis of 
app executables as well as static analysis of code and 
permissions. However, recent Android malware analysis 
revealed that malware evolves quickly to bypass anti-virus 
tools.In this paper, we seek to identify both malware and 
search rank fraud subjects in Google Play. This combination is 
not arbitrary: we posit that malicious developers resort to 
search rank fraud to boost the impact of their malware.Unlike 
existing solutions, we build this work on the observation that 
fraudulent and malicious behaviours leave behind telltale signs 
on app markets. We uncover these nefarious acts by picking 
out such trails. For instance, the high cost of setting up valid 
Google Play accounts forces fraudsters to reuse their accounts 
across review writing jobs, making them likely to review more 
apps in common than regular users. Resource constraints can 
compel fraudsters to post reviews within short time intervals. 
Legitimate users affected by malware may report unpleasant 
experiences in their reviews. Increases in the number of 
requested permissions from one version to the next, which we 
will call “permission ramps”, may indicate benign to malware 
(Jekyll-Hyde) transitions. 
 
1.1 Contributions 
   

FairPlay is a proposed system that supports the above 
observations to efficiently detect fraud and malware apps in 
google play. Our major contributions are: 

 
A fraud and malware detection approach. To detect fraud 
and malware, we propose and generate 28 relational, 
behavioural and linguistic features, that we use to train 
supervised learning algorithms [§ 4]: 
 
 Firstly, we should formulate the notion of co-review 

graphs to model reviewing relations between users. We 
develop PCF, an efficient algorithm to identify temporally 
constrained, co-review pseudo-cliques — formed by 
reviewers with substantially overlapping co-reviewing 
activities across short time windows. 
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 Linguistic and behavioural type of information can be 
used for detecting the original reviews and for finding 
thefraud and malware apps. 

 
Tools to collect and process Google Play data. A tool called 
GPCrawler, has been developed to automatically collect the 
data for apps, users and reviews, as well as GPad, which is  a 
tool to download apks of free apps and scan them for malware 
using VirusTotal. 
 
1.2 Results 

 
 FairPlay achieves over 97% accuracy in classifying 

fraudulent and benign apps, and over 95% accuracy in 
classifying malware and benign apps. So we can say that it has 
a higher accuracy rate FairPlay significantly outperforms the 
malware indicators of Sarma et al. Furthermore, we show that 
malware often engages in search rank fraud as well: When 
trained on fraudulent and benign apps, FairPlay flagged as 
fraudulent more than 75% of the gold standard malware apps 
[§ 5.3]. 

 
The reviewers of 93.3% of them form at least 1 

pseudo-clique, 55% of these apps have at least 33% of their 
reviewers involved in a pseudo-clique, and the reviews of 
around 75% of these apps contain at least 20 words indicative 
of fraud.Through fairPlay we have discovered a novel, 
coercive review campaign attack type, where app users 
areforcely asked to write a positive review for the app, and 
install and review other apps. We have discovered 1,024 
reviews, from users complaining about 193 such apps [§ 5.4 
&§ 5.5]. 

 

 
 
Fig. 2: Google Play components and relations. 

Google Play’s functionality centers on apps, shown as red 
disks. Developers, shown as orange disks upload apps. A 
developer may upload multiple apps. Users, shown as blue 
squares, can install and review apps. A user can only review 
an app that he previously installed. 

 
 
 

II. BACKGROUND, RELATED WORK, AND OUR 
DIFFERENCES 

 
System model. We focus on the Android app market 
ecosystem of Google Play. The participants, consisting of 
users and developers, have Google accounts. Developers 
create and upload apps, that consist of executables (i.e., 
“apks”), a set of required permissions, and a description. The 
app market publishes this information, along with the app’s 
received reviews, ratings, aggregate rating (over both reviews 
and ratings), install count range (predefined buckets, e.g., 50-
100, 100-500), size, version number, price, time of last update, 
and a list of “similar” apps. Each review consists of a star 
rating ranging between 1-5 stars, and some text. The text is 
optional and consists of a title and a description. Google Play 
limits the number of reviews displayed for an app to 4,000. 
Figure 2 illustrates the participants in Google Play and their 
relations.To review or rate an app, a user needs to have a 
Google account, register a mobile device with that account. 
The reason for search rank fraud attacks is impact. When the 
search rank of the apps is high such apps will be downloaded 
mostly. This is beneficial both for fraudulent developers, who 
increase their revenue, and malicious developers, who increase 
the impact of their malware. 
 

III. THE DATA 
 

We have collected longitudinal data from 87K+ 
newly released apps over more than 6 months, and identified 
gold standard data. In the following, we briefly describe the 
tools we developed, then detail the data collection effort and 
the resulting datasets. 

 
Data collection tools. We have developed the Google Play 
Crawler (GPCrawler) tool, to automatically collect data 
published by Google Play for apps, users and reviews. Thus, 
to collect the ids of more than 20 apps reviewed by a user. To 
overcome this limitation, we developed a Python script and a 
Firefox add-on. Given a user id, the script opens the user page 
in Firefox. When the script loads the page, the add-on 
becomes active. The add-on interacts with Google Play pages 
using content scripts and port objects for message 
communication. The add-on displays a “scroll down” button 
that enables the script to scroll down to the bottom of the page. 
The script then uses a DOMParser to extract the content 
displayed in various formats by Google Play. It then sends this 
content over IPC to the add-on. The add-on stores it, using 
Mozilla XPCOM components, in a sand-boxed environment 
of local storage in a temporary file. The script then extracts the 
list of apps rated or reviewed by the user. 
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We have also developed the Google Play App 
Downloader (GPad), a Java tool to automatically download 
apks of free apps on a PC, using the open-source Android 
Market API [26]. GPad takes as input a list of free app ids, a 
Gmail account and password, and a GSF id. GPad creates a 
new market session for the “androidsecure” service and logs 
in. GPad sets parameters for the session context (e.g., mobile 
device Android SDK version, mobile operator, country), then 
issues a GetAssetRequest for each app identifier in the input 
list. GPad introduces a 10s delay between requests. The result 
contains the URL for the app; GPad uses this URL to retrieve 
and store the app’s binary stream into a local file. After 
collecting the binaries of the apps on the list, G Pad scans each 
app using VirusTotal an online malware detector provider, to 
find out the number of anti-malware tools (out of 57: AVG, 
McAfee, Symantec, Kaspersky, Malwarebytes, F-Secure, etc.) 
that identify the apk as suspicious. We used 4 servers 
(PowerEdge R620, Intel Xeon E-26XX v2 CPUs) to collect 

our datasets, which we describe next. Data 
 
We approximate the first upload date of an app using 

the day of its first review. We have started collecting new 
releases in July 2014 and by October 2014 we had a set of 
87,223 apps, whose first upload time was under 40 days prior 
to our first collection time, when they had at most 100 
reviews. 

 
Figure 3 shows the distribution of the fresh app 

categories. We have collected app from each category 
supported by Google Play, with at least 500 apps per category 
(Music & Audio) and more than 4,500 for the most popular 
category (Personalization).  
 

 Most apps have at least a 3.5 rating aggregate rating, 
with few apps between 1 and 2.5stars. However, we observe a 
spike at more than 8,000 apps with less than one star. 
 

We have collected longitudinal data from these 
87,223 apps between October 24, 2014 and May 5, 2015. 
Specifically, for each app we captured “snapshots” of its 
Google Play metadata, twice a week. An app snapshot consists 
of values for all its time varying variables, e.g., the reviews, 
the rating and install counts, and the set of requested 
permissions (see § 2 for the complete list). For each of the 
2,850,705 reviews we have collected from the 87,223 apps, we 
recorded the reviewer’s name and id (2,380,708 unique ids), 
date of review, review title, text, and rating. 
 

This app monitoring process enables us to extract a 
suite of unique features, that include review, install and 
permission changes. In particular, we note that this approach 
enables us to overcome the Google Play limit of 4000 
displayed reviews per app: each snapshot will capture only the 
reviews posted after the previous snapshot. 
 
1.3 Gold Standard Data 

 
Malware apps. We used GPad to collect the apks of 

7,756 randomly selected apps from the longitudinal set. Figure 
6 shows the distribution of flags raised by VirusTotal, for the 
7,756 apks. None of these apps had been filtered by Bouncer 
From the 523 apps that were flagged by at least 3 tools, we 
selected those that had at least 10 reviews, to form our 
“malware app” dataset, for a total of 212 apps. We collected 
all the 8,255 reviews of these apps. Fraudulent apps. We 
used contacts established among Freelancer [7]’s search rank 
fraud community, to obtain the identities of 15 Google Play 
accounts that were used to write fraudulent reviews for 201 
unique apps. We call the 15 accounts “seed fraud accounts” 
and the 201 apps “seed”. 

 
Fraudulent reviews. We have collected all the 53,625 
reviews received by the 201 seed fraud apps. The 15 seed 
fraud accounts were responsible for 1,969 of these reviews. 
We used the 53,625 reviews to identify 188 accounts, such 
that each account was used to review at least 10 of the 201 
seed fraud apps (for a total of 6,488 reviews). We call these, 
guilt by association (GbA) accounts. To reduce feature 
duplication, we have used the 1,969 fraudulent reviews written 
by the 15 seed accounts and the 6,488 fraudulent reviews 
written by the 188 GbA accounts for the 201 seed fraud apps, 
to extract a balanced set of fraudulent reviews. Specifically, 
from this set of 8,457 (= 1,969+6,488) reviews, we have 
collected 2 reviews from each of the 203 (= 188+15) 

 
FairPlay system architecture. The CoReG module 
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suspicious user accounts. Thus, the gold standard dataset of 
fraudulent reviews consists of 406 reviews. 
 

The reason for collecting a small number of reviews 
from each fraudster is to reduce feature duplication: many of 
the features we use to classify a review are extracted from the 
user who wrote the review (see Table 2). 
 
Benign apps. We have selected 925 candidate apps from the 
longitudinal app set, that have been developed by Google 
designated “top developers”. We have used GPad to filter out 
those flagged by VirusTotal. We have manually investigated 
601 of the remaining apps, and selected a set identifies 
suspicious, time related co-review behaviours. The RF module 
uses linguistic tools to detect suspicious behaviours reported 
by genuine reviews. The IRR module uses behavioural 
information to detect suspicious apps. The JH module 
identifies permission ramps to pinpoint possible Jekyll-Hyde 
app transitions. 
of 200 apps that (i) have more than 10 reviews and (ii) were 
developed by reputable media outlets (e.g., NBC, PBS) or 
have an associated business model (e.g., fitness trackers). We 
have also collected the 32,022 reviews of these apps. Genuine 
reviews. We have manually collected a gold standard set of 
315 genuine reviews, as follows. First, we have collected the 
reviews written for apps installed on the Android smartphones 
of the authors. We then used Google’s text and reverse image 
search tools to identify and filter those that plagiarized other 
reviews or were written from accounts with generic photos. 
characters, and are informative (e.g., provide information 
about bugs, crash scenario, version update impact, recent 
changes). 
 

IV. FAIRPLAY: PROPOSED SOLUTION 
 
We now introduce FairPlay, a system to automatically detect 
malicious and fraudulent apps. 
 
1.4 FairPlay Overview 

 
FairPlay organizes the analysis of longitudinal app 

data into the following 4 modules, illustrated in Figure 7. The 
CoReview Graph (CoReG) module identifies apps reviewed in 
a contiguous time window by groups of users with 
significantly overlapping review histories. The Review 
Feedback (RF) module exploits feedback left by genuine 
reviewers, while the Inter Review Relation (IRR) module 
leverages relations between reviews, ratings and install counts. 
The Jekyll-Hyde (JH) module monitors app permissions, with 
a focus on dangerous ones, to identify apps that convert from 
benign to malware. Each module produces several features 
that are used to train an app classifier. FairPlay also uses 

general features such as the app’s average rating, total number 
of reviews, ratings and installs, for a total of 28 features.  
 
1.5 The Co-Review Graph (CoReG) Module 

 
This module exploits the observation that fraudsters 

who control many accounts will re-use them across multiple 
jobs. Its goal is then to detect sub-sets of an app’s reviewers 
that have performed significant common review activities in 
the past. In the following, we describe the co-review graph 
concept, formally present the weighted maximal clique 
enumeration problem, then introduce an efficient heuristic that 
leverages natural limitations in the behaviors of fraudsters. 
Co-review graphs. Let the co-review graph of an app, be a 
graph where nodes correspond to user accounts who reviewed 
the app, and undirected edges have a weight that indicates the 
number of apps reviewed in common by the edge’s endpoint 
users. Figure 16a shows the co-review clique of one of the 
seed fraud apps (see § 3.2). The co-review graph concept 
naturally identifies user accounts with significant past review 
activities. 

 
The weighted maximal clique enumeration problem. 

Let G = (V,E) be a graph, where V denotes the sets of vertices 
of the graph, and E denotes the set of edges. Let w be a weight 
function, w : E → R that assigns a weight to each edge of G. 
Given a vertex sub-set U ∈V , we use G[U] to denote the sub-
graph of G induced by U. A vertex sub-set U is called a clique 
if any two vertices in U are connected by an edge in E. We say 
that U is a maximal clique if no other clique of G contains U. 
The weighted maximal clique enumeration problem takes as 
input a graph G and returns the set of maximal cliques of G. 
Maximal clique enumeration algorithms such as [27], [28] 
applied to co-review graphs are not ideal to solve the problem 
of identifying sub-sets of an app’s reviewers with significant 
past common reviews. First, fraudsters may not consistently 
use (or may even purposefully avoid using) all their accounts 
across all fraud jobs that they perform. In addition, Google 
Play provides incomplete information (up to 4,000 reviews per 
app, may also detect and filter fraud). Since edge information 
may be incomplete, original cliques may now also be 
incomplete. To address this problem, we “relax” the clique 
requirement and focus instead of pseudocliques: 
 

The weighted pseudo-clique enumeration problem. 
For a graph G = (V,E) and a threshold value θ, we say that a 
vertex sub-set U (and its induced sub-graph G[U]) is a 

 
Algorithm 1 PCF algorithm pseudo-code. 

 
Input: days, an array of daily reviews, and θ, the weighted 
threshold density 
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Output: allCliques, set of all detected pseudo-cliques 
1. for d :=0 d <days.size(); d++ 
2. Graph PC := new Graph(); 
3. bestNearClique(PC, days[d]); 
4. c := 1; n := PC.size(); 
5. for nd := d+1; d <days.size() & c = 1; d++ 
6. bestNearClique(PC, days[nd]); 
7. c := (PC.size() >n); endfor 
8. if (PC.size() >2) 
9. allCliques := allCliques.add(PC); fi endfor 
10. return 
11. function bestNearClique(Graph PC, Set 
revs) 
 

12. if (PC.size() = 0) 
13. for root := 0; root <revs.size(); root++ 
14. Graph candClique := new Graph (); 
15. candClique.addNode (revs[root].getUser()); 
16. do candNode := getMaxDensityGain(revs); 
17. if (density(candClique∪{candNode}) ≥ θ)) 
18. candClique.addNode(candNode); fi 
19. while (candNode != null); 
20. if (candClique.density() >maxRho) 
21. maxRho := candClique.density(); 
22. PC := candClique; fi endfor 
23. else if (PC.size() >0) 
24. do candNode := getMaxDensityGain(revs); 
25. if (density(candClique∪candNode) ≥ θ)) 
26. PC.addNode(candNode); fi 
27. while (candNode != null); 
28. return 
 

pseudo-clique of G if its weighted density 

exceeds θ; n = |V | 1. U is a maximal 
pseudo-clique if in addition, no other pseudo-clique of G 
contains U. The weighted pseudo-clique enumeration problem 
outputs all the vertex sets of V whose induced subgraphs are 
weighted pseudo-cliques of G. 
 

The Pseudo Clique Finder (PCF) algorithm. We 
propose PCF (Pseudo Clique Finder), an algorithm that 
exploits the observation that fraudsters hired to review an app 
are likely to post those reviews within relatively short time 
intervals (e.g., days). PCF (see Algorithm 1), takes as input the 
set of the reviews of an app, organized by days, and a 
threshold value θ. PCF outputs a set of identified pseudo-
cliques with ρ ≥ θ, that were formed during contiguous time 
frames. In Section 5.3 we discuss the choice of θ. For each day 
when the app has received a review (line 1), PCF finds the 
day’s most promising pseudo-clique (lines 3 and 12 − 22): 
start with each review, then greedily add other reviews to a 

candidate pseudo-clique; keep the pseudo clique (of the day) 
with the highest density. With that “workin-progress” pseudo-
clique, move on to the next day (line 5): greedily add other 
reviews while the weighted density of the new pseudo-clique 
equals or exceeds θ (lines 6 and 23 − 27). When no new nodes 
have been added to the work-in-progress pseudo-clique (line 
8), we add the pseudoclique to the output (line 9), then move 
to the next day (line 
1). The greedy choice (getMaxDensityGain, not depicted in 
Algorithm 1) picks the review not yet in the work-inprogress 
pseudo-clique, whose writer has written the most apps in 
common with reviewers already in the pseudoclique. Figure 8 
illustrates the output of PCF for several θ values. 
If d is the number of days over which A has received reviews 
and r is the maximum number of reviews received in a day, 
PCF’s complexity is O(dr2(r + d)). 
 
CoReG features. CoReG extracts the following features from 
the output of PCF (see Table 1) (i) the number of cliques 
whose density equals or exceeds θ, (ii) the maximum, median 
and standard deviation of the densities of identified pseudo-
cliques, (iii) the maximum, median and standard deviation of 
the node count of identified pseudo-cliques, normalized by n 
(the app’s review count), and (iv) the total number of nodes of 
the co-review graph that belong to at least one pseudo-clique, 
normalized by n. 
 
1.6 Reviewer Feedback (RF) Module 

 
Reviews written by genuine users of malware and 

fraudulent apps may describe negative experiences. The RF 
module exploits this observation through a two-step approach: 
(i) detect and filter out fraudulent reviews, then (ii) identify 
malware and fraud indicative feedback from the remaining 
reviews. 
 
1.7 Inter-Review Relation (IRR) Module 

 
This module leverages temporal relations between 

reviews, as well as relations between the review, rating and 
install counts of apps, to identify suspicious behaviours. 
Temporal relations. In order to compensate for a negative 
review, an attacker needs to post a significant number of 
positive reviews. Specifically, Claim 1An attacker needs to 

post at least  positive reviews., in order to counteract  for 
the 1 star review 

 
Proof: Let σ be the sum of all the k reviews received by a 
before time T. Then,  be the number of 
fraudulent reviews received by A. To compensate for the 1-
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starreview posted at time T, qr is minimized when all those 

reviews are 5 star. We then have that: . 
The numerator of the last fraction denotes the sum of all the 
ratings received by A after time T and the denominator is the 
total number of reviews. Rewriting the last equality, we 
Rating vs Install count 
 

obtain that . The last equality follows by 
dividing both the numerator and denominator by k.  
Such a “compensatory” behaviour is likely to lead to doubtful 
high numbers of positive reviews. We detect such behaviours 
by identifying outliers in the number of daily positive reviews 
received by an app. Figure 9 shows the timelines and 
suspicious spikes of positive reviews for 2 apps from the 
fraudulent app dataset (see Section 3.2).  
 
Reviews, ratings and install counts. To investigate 
relationships between the install count and the rating count at 
the end of the collection interval., we used the Pearson’s χ2 
test, as well as between the install count and the average app 
rating of the 87K new apps. As Google Play’s install count 
buckets, we grouped the rating count in buckets of the same 
size. Figure 10 shows the merimakko diagrams of the 
relationships between rating and install counts. p=0.0008924, 
thus we result that dependence between the rating and install 
counts. The cells(rectangles) are identified by the standardized 
residuals dangerous permissions. 
 
IRR features. We add temporal features (see Table 1): the 
number of days with detected spikes and the maximum 
amplitude of a spike. We also take out (i) the ratio of installs 
to the ratings as two features, I1/Rt1 and I2/Rt2 and (ii) the ratio 
of installs to reviews, as I1/Rv1 and I2/Rv2. (I1,I2] denotes the 
install count interval of an app, (Rt1,Rt2] its rating interval and 
(Rv1,Rv2] its (genuine) review interval. 
 the app’s number of dangerous permission ramps, and (iv) its 
total number of dangerous permissions added over all the 
ramps. 
 

V. CONCLUSION 
 
We have proposed Fair Play which is a system to 

detect both fraudulent and malicious software Google Play 
apps. These experiments on a newly introduced longitudinal 
app dataset, will be shown that a high percentage of malicious 
software is involved in search rank fraud; both are accurately 
identified by Fair Play. Including a new type of coercive fraud 
attack, these in addition we showed Fair Play’s ability to 
discover hundreds of apps that evade Google Play’s detection 
technology. 
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