
IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2624 www.ijsart.com

Scene Generation From Text Using Natural Language
Processing

Nikhil Viradiya1, Ambika Prasad Tripathi2, Dhruv Nagpal3, Yash Dixit4, Prof. K. Jayamalini5

1, 2, 3, 4, 5 Dept of Computer Engineering
1, 2, 3, 4, 5 Shree L.R. Tiwari College of Engineering, Thane

Abstract- Expressing mental images visually as 3D scenes is a
time-consuming challenge. Therefore, we employ natural
language to facilitate the creation of virtual environments. In
this paper, we present a framework, which automatically
converts an arbitrary descriptive text into a representative 3D
scene. Our system parses a user-written input text, extracts
information using techniques from Natural Language
Processing (NLP) and identifies relevant units. Our system
associates every object with an appropriate 3D model and
evaluates spatial dependencies of the entities. Finally, a
physics engine is used to render a realistic and interactive 3D
scene which enables the user to actively manipulate the stage
setup. The system relies on a database of models and poses to
depict entities and actions

Keywords- Scene Generation from Text, Natural Language
Processing, Text, Raw Text, Query

I. INTRODUCTION

 The Scene Generation from Text system presents a
framework which automatically generates visual descriptive
scenes from natural language. Nowadays graphics are used in
many applications, such as cartoons, animations and games.
However, creating graphics is a difficult and time-consuming
task. Typical scene modelling tools tend to be overwhelming
at first sight. Before starting to model the scene, the user has
to familiarize himself with the supporting graphics software,
i.e., learning all the menus and buttons and finding out, how to
tweak parameters. After that, the task of actually creating the
visualization still remains.

Natural language is an easy and effective medium for
describing visual ideas and mental images. It is a tool that
allows people to describe visual scenes in a straightforward
manner. Automatic generation of scene by using text
descriptions as input offers an efficient approach to human
computer interaction with graphics and could speed up the
whole generating process. It also makes graphics more
accessible to users in non-graphics domains. Thus, we foresee
the emergence of language-based scene generation systems to
let ordinary users quickly create scenes without having to

learn special software, acquire artistic skills, or even touch a
desktop window-oriented interface.

II. LITERATURE REVIEW

Here we will elaborate the aspects like the literature

survey of the project and what all projects are existing and
been actually used in the market which the makers of this
project took the inspiration from and thus decided to go ahead
with the project covering with the problem statement.

The paper [1] is “Frame Semantics in Text-to-Scene

Generation “by Bob Coyne, Owen Rambow, Julia Hirschberg,
and Richard Sproat. In this paper they describe some of our
recent work designing, building, and utilizing the SBLR in
order to produce a system with much broader and robust
coverage. Also they describe related work with natural
language interfaces to graphics.

The paper [2] is “Creation of Scene from Raw Text”
by Sneha N. Dessai, Rachel Dhanaraj. In this paper the main
task in text to scene system is to extract explicit and infer
implicit constraints. Clay et al [2] discusses one of such
system where input is expressions in the form of Put (X, P, Y).
X and Y represented objects and P was spatial preposition.

The paper [3] is “Text to Scene Generation with Rich
Lexical Grounding” by Angel Chang, Will Monroe, M anolis
Savva, Christopher Potts and Christopher D. Manning. In this
paper The ability to map descriptions of scenes to geometric
representations has a wide variety of applications; many
creative industries use scenes.

III. SYSTEM ARCHITECTURE

In the text to 3D scene generation task, the input is a

natural language description, and the output is a 3D
representation of a plausible scene that fits the description and
can be viewed and rendered from multiple perspectives. A
naive approach to scene generation might use keyword search
to retrieve 3D models. However, such an approach is unlikely
to generalize well in that it fails to capture important object
attributes and spatial relations. In order for the generated scene

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2625 www.ijsart.com

to accurately reflect the input description, a deep
understanding of language describing environments is
necessary. Our system architecture is shown in below figure.

Fig- Architecture of SGFT.

IV. IMPLEMENTATION

A. System Description

 The technical execution of the system has been
divided into 3 main phases namely,

Phase 1: Information extraction and refinement.

 This phase consists of extracting information
which will be needed for the smooth execution of later stages.
Extracted information belonging to the same data type are
later saved in similar data structures for future reference.

For information extraction, Stanford CoreNLP Toolkit is used
because of the following:

 An integrated toolkit with a good range of
grammatical analysis tools

 Fast, reliable analysis of arbitrary texts

 The overall highest quality text analytics

 Support for a number of major (human) languages

 Interfaces available for various major modern
programming languages

 Ability to run as a simple web service

Phase 2: Creation of directed graph.

 A directed graph is graph, i.e., a set of objects
(called vertices or nodes) that are connected together, where

all the edges are directed from one vertex to another. A
directed graph is sometimes called a digraph or a directed
network. In contrast, a graph where the edges are bidirectional
is called an undirected graph. When drawing a directed graph,
the edges are typically drawn as arrows indicating the
direction.

 In our system, the nodes represent various objects
and the links between them represent their dependency.

Phase 3: Rendering virtual environment.

This phase concentrates on importing the objects models and
placing them onto the rendering platform in a way which is
dictated by the information extracted from the initial phases.
Query is used to pick the correct model from the database and
bounding box coordinates are used to avoid collisions between
neighboring objects.

B. Methodologies of SGFT

INPUT: Descriptive Text from user.

OUTPUT: 3D scene as per input descriptive text.

Step 1: Accept input descriptive text from the user.

Step 2: POS Tagging.

Step 3: Dependency Extraction.

Step 4: Recognizing supporter, dependent and preposition.

Step 5: Creation of Directed Acyclic Graph.

Step 6: Import models from database.

Step 7: Applying Bounding Box Algorithm to each model.

Step 8: Object Placement according to spatial prepositions.

C. Algorithms Used in SGFT

Algorithm 1: Directed Acyclic Graph

INPUT: Supporter, Dependents, Dependencies, Prepositions.

OUTPUT: Directed Acyclic Graph.

If (object node does not exist)

 Create new dependent or supporter node and link it
using the preposition.

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2626 www.ijsart.com

If (supporter is not present)

 Then add new object node and link it using
preposition.

or else

 Abort to avoid repetition.

If (dependent is not present)

 Then add new object node and link it using
preposition.

or else

 Abort to avoid repetition.

If (supporter POSI acts as a dependent POSI)

 Link supporter POSI now acting as dependent to its
supporters.

If (dependent POSI acts as a supporter POSI)

 Link dependent POSI now acting as supporter to its
dependents.

If (a cycle is formed)

 Create another dependent node as the new child of
the parent node.

Algorithm 2: Object Placement according to spatial
preposition

INPUT: 3D models.

OUTPUT: 3D scene as per input descriptive text.

If (spatial preposition == “on”)

 Place new model just above the max height of the
previous model.

If (spatial preposition == “under”)

 Place new model below the base of the previous
model.

If (spatial preposition == “above”)

Place new model above the max height of the previous model
with some dynamically generated offset depending upon the
sizes of the two models.

If (spatial preposition == “near”)

 Place new model in any one of the four randomly
chosen primary faces (north, south, east, west) of the previous
object with some dynamically generated small offset
depending upon the sizes of the two models.

If (spatial prepositions == “away”)

 Place new model in any one of the four randomly
chosen primary faces (north, south, east, west) of the previous
object with some dynamically generated comparatively large
offset depending upon the sizes of the two models.

If (spatial preposition == “inside”)

 Place new model inside the previous model
(previous model must have a hollow core).

If (spatial preposition == “outside”)

 Place the new model just outside the previous
model in any one of the four randomly chosen primary faces
(north, south, east, west) of the previous object.

If (spatial preposition == “ahead”)

 Place the new model to the north of the previous
model (+y direction) with some dynamically generated offset
depending upon the sizes of the two models.

If (spatial preposition == “behind”)

 Place the model to the south of the previous model
(-y direction) with some dynamically generated offset
depending upon the sizes of the two models.

V. RESULTS

The following are the screenshots of the User interface and
Output: -

Consider an example:

The ball is on the table.

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2627 www.ijsart.com

Fig (1): Unlock system of SGFT

Fig (2): Option Panel OF SGFT

Fig (3): Input Query

Fig (4): Generated Scene

Fig (5): Rendered Scene

VI. CONCLUSION

We believe our system represents a unique approach

to creating scenes and images. Our system enables a user to
quickly generate virtual environments by using natural
language as input. Starting from a descriptive text, relevant
information about objects and spatial relations are gathered
and refined. The findings are used to link retrieved entities to
appropriate models as well as deriving a directed graph
representation of the text. With the aid of that digraph, spatial
relations between objects are evaluated. The resulting
locations and models are finally assembled in an interactive
virtual environment.

REFERENCES

[1] http://www.ling.upenn.edu/courses/Fall/ling/penn_treeban

k_pos.html
[2] https://nlp.stanford.edu/projects/text2scene.shtml
[3] https://www.wordseye.com
[4] http://nlp.stanford.edu:8080/corenlp/ process
[5] https://stackoverflow.com/questions/771918/how-do-i-do-

word-stemming-or- lemmatization
[6] https://www.youtube.com/watch?v=ALfl4tebiQM
[7] http://www.cs.columbia.edu/~coyne/related-research.html
[8] http://www.cs.columbia.edu/~coyne/related-research.html

