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Abstract- Recent news reveal a powerful attacker which 
breaks data confidentiality by acquiring cryptographic keys, 
by means of coercion or backdoors in cryptographic software. 
Once the encryption key is exposed, the only viable measure to 
preserve data confidentiality is to limit the attacker’s access to 
the ciphertext. This may be achieved, for example, by 
spreading ciphertext blocks across servers in multiple 
administrative domains—thus assuming that the adversary 
cannot compromise all of them. Nevertheless, if data is 
encrypted with existing schemes, an adversary equipped with 
the encryption key, can still compromise a single server and 
decrypt the ciphertext blocks stored therein. In this paper, we 
study data confidentiality against an adversary which knows 
the encryption key and has access to a large fraction of the 
ciphertext blocks. To this end,we propose BASTION, a novel 
and efficient scheme that guarantees data confidentiality even 
if the encryption key is leaked and the adversary has access to 
almost all ciphertext blocks. We analyze the security of 
BASTION, and we evaluate its performance by means of a 
prototype implementation. We also discuss practical insights 
with respect to the integration of BASTION in commercial 
dispersed storage systems. Our evaluation results suggest that 
BASTION is well-suited for integration in existing systems 
since it incurs less than 5% overhead compared to existing 
semantically secure encryption modes. 
 
Keywords- Key exposure, data confidentiality, dispersed 
storage. 
 

I. INTRODUCTION 
 
 The world recently witnessed a massive surveillance 
program aimed at breaking users’ privacy. 
 

Perpetrators were not hindered by the various 
security measures deployed within the targeted services [31]. 
For instance, although these services relied on encryption 
mechanisms to guarantee data confidentiality, the necessary 
keying material was acquired by means of backdoors, bribe, or 
coercion. 
 

If the encryption key is exposed, the only viable 
means to guarantee confidentiality is to limit the adversary’s 
access to the ciphertext, e.g., by spreading it across multiple 

administrative domains, in the hope that the adversary cannot 
compromise all of them. However, even if the data is 
encrypted and dispersed across different administrative 
domains, an adversary equipped with the appropriate keying 
material can compromise a server in one domain and decrypt 
cipher-text blocks stored therein. 
 

In this paper, we study data confidentiality against an 
adversary which knows the encryption key and has access to a 
large fraction of the ciphertext blocks. The adversary can 
acquire the key either by exploiting flaws or backdoors in the 
key-generation software [31], or by compromising the devices 
that store the keys (e.g., at the user-side or in the cloud). As far 
as we are aware, this adversary invalidates the security of most 
requires only one round of encryption which makes it well-
suited to be integrated in existing dispersed storage systems. 
We evaluate the performance of Bastion in comparison with a 
number of existing encryption schemes. Our results show that 
Bastion only incurs a negligible performance deterioration 
(less than 5%) when compared to symmetric encryption 
schemes, and considerably improves the performance of 
existing AON encryption schemes [12], [26]. We also discuss 
practical insights with respect to the possible integration of 
Bastion in commercial dispersed storage systems. Our 
contributions in this paper can be summarized as follows: 
 

 We propose Bastion, an efficient scheme which 
ensures data confidentiality against an adversary that 
knows the encryption key and has access to a large 
fraction of the ciphertext blocks. 

 
 We analyze the security of Bastion, and we show that 

it prevents leakage of any plaintext block as long as 
the adversary has access to the encryption key and to 
all but two ciphertext blocks. 

 
 We evaluate the performance of Bastion analytically 

and empirically in comparison to a number of 
existing encryption techniques. Our results show that 
Bastion considerably improves (by more than 50%) 
the performance of existing AON encryption 
schemes, and only incurs a negligible overhead when 
compared to existing semantically secure encryption 
modes (e.g., the CTR encryption mode). 
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 We discuss practical insights with respect to the 

deployment of Bastion within existing storage 
systems, such as the HYDRAstor grid storage system 
[13], [23]. 

 
The remainder of the paper is organized as follows. 

In Section 2, we define our notation and building blocks. In 
Section 4, we describe our model and introduce our scheme, 
Bastion. In Section 5, we analyze our scheme in comparison 
with a number of existing encryption primitives. In Section 6, 
we implement and evaluate the performance of Bastion in 
realistic settings; we also discuss practical insights with 
respect to the integration of Bastion within existing dispersed 
storage systems. In Section 7, we overview related work in the 
area, and we conclude the paper in Section 8. 
 

II. PRELIMINARIES 
 

We adapt the notation of [12] for our settings. We define a 
block cipher as a map F : {0, 1}k × {0, 1}l → {0, 1}l, for 
positive k and l. If Pl is the space of all (2l)! l-bits 
permutations, then for any a ∈ {0, 1}k, we have 
F (a, ·) ∈ Pl. We also write Fa(x) to denote F (a, x). We 
model F as an ideal block cipher, i.e., a block cipher picked at 
random from BC(k, l), where BC(k, l) is the space of all block 
ciphers with parameters kand l. For a given block cipher F ∈ 
BC(k, l), we denote F −1 ∈ BC(k, l) as F −1(a, y) or as Fa

−1(y), 
for 
a ∈ {0, 1}k. 
 
2.1 Encryption modes 
 

An encryption mode based on a block cipher   F/F −1 
is given by a triplet of algorithms  

 
Q = (K, E, D) where: 
K The key generation algorithm is a probabilistic 
algorithm which takes as input a security parameter k and 
outputs a key 
a ∈ {0, 1}k that specifies Fa and Fa

−1. 
 
E The encryption algorithm is a probabilistic algorithm 
which takes as input a message 
 
x ∈ {0, 1}∗, and uses Fa and Fa

−1 as oracles to output ciphertext 
y. 
 
D The decryption algorithm is a deterministic algorithm 
which takes as input a ciphertext y, and uses Fa and Fa

−1 as 
oracles to output plaintext x ∈ {0, 1}∗, or ⊥ if y is invalid. 
 

For correctness, we require that for any key a ← 
K(1k), for any message x ∈ {0, 1}∗, and for any y ← 
E

FA ,F −1 (x), we have x ← D
FA ,F −1 (y). A A 

Security is defined through the following chosen-plaintext 
attack (CPA) game adapted for block ciphers: 
 

 
 
     In the ind experiment, the adversary has unrestricted 
oracle access to EFA ,FA−1 during the “find” stage. At this 
point, A outputs two messages of equal length x0, x1, and 
some state information that are passed as input when the 
adversary is initialized for the “guess” stage (e.g., state can 
contain the two messages x0, x1). During the “guess” stage, the 
adversary is given the ciphertext of one message out of x0, x1 
and must guess which message was actually encrypted. The 
advantage of the adversary in the ind experiment is: 
 
Advind(A) = |Pr[Expind(A, 0) = 1]−Pr[Expind(A, 1) = 1]| 
 
DEFINITION 1. An encryption mode Q = (K, E, D) is ind 
secure if for any probabilistic polynomial time (p.p.t.) 
adversary A, we have Advind(A) ≤ ǫ, where 
ǫ is a negligible function in the security parameter. 
 
REMARK 1. The ind experiment allows the adversary to see 
the entire (challenge) ciphertext. In a scenario where 
ciphertext blocks are dispersed across a number of storage 
servers, this means that the ind-adversary can compromise all 
storage servers and fetch the data stored therein. 
 
REMARK 2. In the ind experiment (and in other expe iments 
used in this paper), we adopt the Shannon Model of a block 
cipher that, in practice, instantiates an independent random 
permutation for every different key. This model has been used 
in previous related work [3], [12], [17] to disregard the 
algebraic or cryptanalysis specific to block ciphers and treat 
them as a black-box transformation. 
 
2.2 All or Nothing Transforms 
 

An All or Nothing Transform (AONT) is an 
efficiently computable transform that maps sequences of input 
blocks to sequences of output blocks with the following 
properties: (i) given all output blocks, the transform can be 
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efficiently inverted, and (ii) given all but one of the output 
blocks, it is infeasible to compute any of the original input 
blocks. The formal syntax of an AONT is given by a pair of 
p.p.t. algorithms Q = (E, D) where: 
 
E The encoding algorithm is a probabilistic algorithm 
which takes as input a message x ∈ 
{0, 1}∗, and outputs a pseudo-ciphertext y. 
 
D The decoding algorithm is a deterministic algorithm 
which takes as input a pseudo- 
 
ciphertext y, and outputs either a message x ∈ {0, 1}∗ or ⊥ to 
indicate that the input pseudo-ciphertext is invalid. 
 
For correctness, we require that for all x ∈ {0, 1}∗, and for all 
y ← E(x), we have x ← D(y). 
 

The literature comprises a number of security 
definitions for AONT (e.g., [8], [12], [26]). In this paper, we 
rely on the definition of [12] which uses the aont experiment 
below. This definition specifies a block length l such that the 
pseudo-ciphertext y can be written as 

 
y = y[1] . . . y[n], where |y[i]| = l and n ≥ 1. 
 

 
          

On input j, the oracle Yb returns yb[j] and accepts up 
to (n − 1) queries. The aont experiment models an adversary 
which must distinguish between the encoding of a message of 
its choice and a random string (of the same length), while the 
adversary is allowed access to all but one encoded blocks. The 
advantage of A in the aont experiment is given by: 
 
Advaont(A) = |Pr[Expaont(A, 0) = 1]− Pr[Expaont(A, 1) = 1]| 
 
DEFINITION 2. An All-or-Nothing Transform Q = (E, D) 
is aont secure if for any p.p.t. adversary A, we have Advaont(A) 
≤ ǫ, where ǫ is a negligible function in 
the security parameter. 
 
Known AONTs 
 

Rivest [26] suggested the package transform which 
lever-ages a block cipher F/F −1 and maps m block strings to 
n = m + 1 block strings. The first n − 1 output blocks 

 
are computed by XORing the i-th plaintext block with FK (i), 
where K is a random key. The n-th output block is computed 
XORing K with the encryption of each of the previous output 
blocks, using a key K0 that is publicly known. That is, given 
x[1] . . . x[m], the package transform outputs y[1] . . . y[n], 
with n = m + 1, where: 
y[i] = x[i] ⊕ FK (i), 1 ≤ i ≤ n − 1, 
 
n−1 
M 
y[n] = KFK0 (y[i] ⊕ i). 
 
i=1 
 
REMARK 3. Although most proposed AONTs are based on 
block ciphers [12], [26], an AONT is not an encryption 
scheme, because there is no secret-key information associated 
with the transform. Given all the output blocks of the AONT, 
the input can be recovered without knowledge of any secret. 

 
III. SYSTEM AND SECURITY MODEL 

 
In this section, we start by detailing the system and 

security models that we consider in the paper. We then argue 
that existing security definitions do not capture well the 
assumption of key exposure, and propose a new security 
definition that captures this notion.  
 
3.1 System Model 
 

We consider a multi-cloud storage system which can 
leverage a number of commodity cloud providers (e.g., 
Amazon, Google) with the goal of distributing trust across 
different administrative domains. This “cloud of clouds” 
model is receiving increasing attention nowadays [4], [6], [32] 
with cloud storage providers such as EMC, IBM, and 
Microsoft, offering products for multi-cloud systems [15], 
[16], [29]. 
 

In particular, we consider a system of s storage 
servers S1, . . . , Ss, and a collection of users. We assume that 
each server appropriately authenticates users. For simplicity 
and without loss of generality, we focus on the read/write 
storage abstraction of [21] which exports two operations. 
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Fig. 1. Our attacker model. We assume an adversary which 
can acquire all the cryptographic secret material, and can 

compromise a large fraction (up to all but one) of the storage 
servers. 

 
3.2 Adversarial Model 
 

We assume a computationally-bounded adversary A 
which can acquire the long-term cryptographic keys used to 
encrypt the data. The adversary may do so either (i) by 
leveraging flaws or backdoors in the key-generation software 
[31], or (ii) by compromising the device that stores the keys 
(in the cloud or at the user). Since ciphertext blocks are 
distributed across servers hosted within different domains, we 
assume that the adversary cannot compromise all storage 
servers (cf. Figure 1). In particular, we assume that the 
adversary can com-promise all but one of the servers and we 
model this adversary by giving it access to all but λ ciphertext 
blocks. 
 

Note that if the adversary also learns the user’s 
credentials to log into the storage servers and downloads all 
the ciphertext blocks, then no cryptographic mechanism can 
preserve data confidentiality. We stress that compromising the 
encryption key does not necessarily imply the compromise of 
the user’s credentials. For example, encryption can occur on a 
specific-purpose device [10], and the key can be leaked, e.g., 
by the manufacturer; in this scenario, the user’s credentials to 
access the cloud servers are clearly not compromised. 
 
3.3 (n − λ)-CAKE Security 
 

Existing security notions for encryption modes 
capture data confidentiality against an adversary which does 
not have the encryption key. That is, if the key is leaked, the 
confidentiality of data is broken. 
 

In this paper we study an adversary that has access to 
the encryption key but does not have the entire ciphertext. We 
therefore propose a new security definition that models our 
scenario. 

 
As introduced above, we allow the adversary to 

access an encryption/decryption oracle and to “see” all but λ 
ciphertext blocks. Since confidentiality with λ = 0 is clearly 
not achievable1, we instead seek an encryption mode where λ 
= 1. However, having the flexibility of setting λ ≥ 1 allows the 
design of more efficient schemes while keeping a high degree 
of security in practical deployments. 
 

We call our security notion (n−λ) Ciphertext Access 
under Key Exposure, or (n − λ)CAKE. Similar to [12], (n − 
λ)CAKE specifies a block length l such that a ciphertext y can 
be written as y = y[1] . . . y[n] where |y[i]| = l and n > 1. 

 

 
 

The adversary has unrestricted access to EFA ,FA−1 in 
both the “find” and “guess” stages. On input j, the oracle Yb 
returns yb[j] and accepts up to n − λ queries. On the one hand, 
unrestricted oracle access to EFA ,FA−1 captures the 
adversary’s knowledge of the secret key. On the other hand, 
the oracle Yb models the fact that the adversary has access to 
all but λ ciphertext blocks. This is the case when, for example, 
each server stores λ ciphertext blocks and the adversary cannot 
compromise all servers. The advantage of the adversary is 
defined as: 
 
Adv(n−λ)CAKE(A) = P r[Exp(n−λ)CAKE(A, 1) = 1]− 
 
P r[Exp(n−λ)CAKE(A, 0) = 1] 
 
DEFINITION  3. An encryption mode Q = (K, E, D) is 
 
(n − λ)CAKE secure if for any p.p.t. adversary A, we have 
Adv(n−λ)CAKE(A) ≤ ǫ, where ǫ is a negligible 
function in the security parameter. 
 

Definition 3 resembles Definition 2 but has two 
fundamental differences. First, (n − λ)CAKE refers to a keyed 
scheme and gives the adversary unrestricted access to the 
encryption/decryption oracles. Second, (n − λ)CAKE relaxes 
the notion of all-or-nothing and parameterizes the number of 
ciphertext blocks that are not given to the adversary. As we 
will show in Section 4.2, this relaxation allows us to design 
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encryption modes that are considerably more efficient than 
existing modes which offer a comparable level of security. 
1. Any party with access to all the ciphertext blocks and 
the encryption key can recover the plaintext. the (n − λ)CAKE-
adversary has the encryption key but can compromise up to s 
− 1 storage servers. Therefore, we seek an encryption mode 
with the following properties: 
 
1) must be ind secure against an adversary which does 
not know the encryption key but has access to all ciphertext 
blocks (cf. Definition 1), by compromising all storage servers. 

 
2) must be (n − λ)CAKE secure against an adversary 
which knows the encryption key but has access to n − λ 
ciphertext blocks 
 
REMARK 4. Property 2 ensures data confidentiality against 
the attacker model outlined in Section 3.2. Nevertheless, we 
must also account for weaker adversaries that do not know the 
encryption key but can access the entire ciphertext —hence, 
ind security. Note that if the adversary which has access to the 
encryption key, can also access all the ciphertext blocks, then 
no cryptographic mechanism can preserve data confidentiality. 
 

IV. BASTION: SECURITY AGAINST  
KEY EXPOSURE 

 
In this section, we present our scheme, dubbed Bastion, which 
ensures that plaintext data cannot be recovered as long as the 
adversary has access to all but two ciphertext blocks—even 
when the encryption key is exposed. We then analyze the 
security of Bastion with respect to Definition 1 and Definition 
3. 
 
4.1 Overview 
  
 Bastion departs from existing AON encryption 
schemes. Current schemes require a pre-processing round of 
block cipher encryption for the AONT, fol-lowed by another 
round of block cipher encryption (cf. Figure 2 (a)). 
Differently, Bastion first encrypts the data with one round of 
block cipher encryption, and then applies an efficient linear 
post-processing to the ciphertext (cf. Figure 2 (b)). By doing 
so, Bastion relaxes the notion of all-or-nothing encryption at 
the benefit of increased performance (see Figure 2). 
 
 More specifically, the first round of Bastion 
consists of CTR mode encryption with a randomly chosen key 
K, i.e., y′ = Enc(K, x). The output ciphertext y ′ is then fed to a 
linear transform which is inspired by the scheme of [28]. 
Namely, our transform basically computes y = y′ · A where A 
is a square matrix such that: (i) all diagonal elements are set to 

0, and (ii) the remaining off-diagonal elements are set to 1. As 
we shown later, such a matrix is invertible and has the nice 
property that A−1 = A. Moreover, y = y′ · A ensures that each 
input block yj

′ will depend on all output blocks yi except from 
yj . This transformation—combined with the fact that the 
original input blocks have high entropy result in an ind-secure 
and (n − 2)CAKE secure encryption mode. In the following 
section, we show how to efficiently compute y′ · A by means 
of bitwise XOR operations. 
 
4.2 Bastion: Protocol Specification  
 
 On input a security parameter k, the key generation 
algorithm of Bastion outputs a key K ∈ {0, 1}k for the 
underlying block-cipher. Bastion leverages block cipher 
encryption in the CTR mode, which on input a plaintext 
bitstream x, divides it in blocks x[1], . . . , x[m], where m is 
odd2 such that each block has size l.3 The set of input blocks is 
encrypted under key K, resulting in ciphertext y′ = y′[1], . . . , 
y′[m + 1], where y′[m + 1] is an initialization vector which is 
randomly chosen from 
{0, 1}l. 
 
 Next, Bastion applies a linear transform to y′ as 
follows. Let n = m + 1 and assume A to be an n- by-n matrix 
where element ai,j  =  0l  if i  =  j or = 1l, otherwise.4  Bastion 
computes y = y′ · A, 
ai,j 
  
 where additions and multiplications are 
implemented by means of XOR and AND operations, 
respectively. 
That is, y[i] ∈ y is computed as y[i] = Lj=n(y′[j]∧aj,i), 
j=1 
for i = 1 . . . , n. 
  
 Given key K, inverting Bastion entails computing 
y′ = y · A−1 and decrypting y′ using K. Notice that matrix A is 
invertible and A = A−1. The pseudocode of the encryption and 
decryption algorithms of Bastion are shown in Algorithms 1 
and 2, respectively. Both algorithms use F to denote a generic 
block cipher (e.g., AES). 
 
 In our implementation, we efficiently compute the 
linear transform using 2n XOR operations as follows: 
 
t = y′[1] ⊕ y′[2] ⊕ · · ⊕ y′[n], y[i] = t ⊕ y′[i],        
1 ≤ i≤ n. 
 
4.3 Correctness Analysis 
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 We show that for every x ∈ {0, 1}lm where m is 
odd, and for every K ∈ {0, 1}l 

 

 
Fig. 2. (a) Current AON encryption schemes require a pre-
processing round of block cipher encryption for the AONT, 

followed by another round of block cipher encryption. (b) On 
the other hand, BASTION first encrypts the data with one round 
of block cipher encryption, and then applies an efficient linear 

post-processing to the ciphertext 

 

 
 Therefore, we are only left to show that the linear 
transformation computed in lines 7-14 of Algorithm 1 is 
correctly reverted in lines 2-8 of Algorithm 2 
 
Recall that t can be computed as follows: 
 

t = M y[i]     
 i=1..n       

= 
M 

(y′[i] ⊕ t) 
   

    
 i=1..n     

y′[i]
!! 

 
= 

M 
y′[i] ⊕  

M 
 

      
 i=1..n 

 

  i=1..n  

= 
   

y′[j] 
  

    

 

 
 i=1..n j ..n,j  i  

 M  =1M 
6
=   

= M y′[i]     
 i=1..n       

 
 
Notice that the last step holds because n is even 
and therefore each y′[j] is XORed for an odd number 
of times. 
 
REMARK 5. We point out that Bastion is not restricted 
to the CTR encryption mode and can be instanti 
ated with other ind-secure block cipher 

To interface with our cloud storage model described 
in Section 3.1, we assume that each user encrypts the 
 
data using Bastion before invoking the WRITE() routine. 
More specifically, let Enc(K, ·), Dec(K, ·) denote the 
encryption and decryption routines of Bastion, respectively. 
 
 
4.4 Security Analysis 
 
In this section, we show that Bastion is mathemind secure and 
(n − 2)CAKE secure. 
 
LEMMA 1. Bastion is ind secure. 
 
Proof 1 : Bastion uses an ind secure encryption mode to encrypt 
a message, and then applies a linear transform on the ciphertext 
blocks. It is straight-forward to conclude that Bastion is ind 
secure. In other words, a polynomial-time algorithm A that has 
non-negligible advantage in breaking the ind security of Bastion 
can be used as a black-box by another polynomial-time 
algorithm B to break the ind security of the underlying 
encryption mode. In particular, B forwards A’s queries to its 
oracle and applies the linear transformation of Algorithm 1 lines 
7-14 to the received ciphertext before forward-ing it to A. The 
same strategy is used when A outputs two messages at the end 
of the find stage: the two messages are forwarded to B’s oracle; 
upon receiving the challenge ciphertext, B applies the linear 
transformation and forwards it to A. When A replies with its 
guess b′, B outputs the same guess. It is easy to see that if A has 
non-negligible advantage in guessing correctly which message 
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was encrypted, so does B. Furthermore, the running time of B is 
the one of A plus the time to apply the linear transformation to 
A’s queries. 
 
LEMMA 2: Given any n − 2 blocks of y[1] . . . y[n] as output 
by Bastion, it is infeasible to compute any y′[i], for 1 ≤ i ≤ n. 
 
Proof 2: Let  y = y[1], . . . , y[n] ← E(K, 
x=x[1] . . . x[m]). Note that given any (n − 1) blocks of y, the 
adversary can compute one block of y′.   

particular, y′[i] =  j=n y[j], for any 1 ≤ i ≤ n. 
 
 Definition 3. However, if only (n − 2) blocks of y 
are given, then each of the n blocks of y′ can take on any 
possible values in {0, 1}l, depending on the two unknown 
blocks of y. Recall that each block y′[i] is dependent on (n − 1) 
blocks of y and it is pseudo-random as output by the CTR 
encryption mode. Therefore, given any (n − 2) blocks of y, then 
y′[i] could take any of the 2l possibilities, for 1 ≤ i ≤ n. 
 
LEMMA 3: Bastion is (n − 2)CAKE secure. 
 
Proof 3: The security proof of Bastion resembles the standard 
security proof of the CTR encryption mode and relies on the 
existence of pseudo-random permutations. In particular, given a 
polynomial-type algorithm A which has non-negligible 
advantage in the (n − λ)CAKE experiment with λ = 2, we can 
construct a polynomial-time algorithm B which has non-
negligible advantage in distinguishing between a true random 
permutation and a pseudo-random permutation. 
 
 B has access to oracle O and uses it to answer the 
encryption and decryption queries issued by A. In particular, 
A’s queries are answered as follows: 
 
•    Decryption query for y[1] . . . y[n] 

1)  Compute t = y[1] ⊕ . . . ⊕ y[n] 
2) Compute y′[i] = y[i] ⊕ t, for 1 ≤ i ≤ n 
3) Compute x[i] = y′[i] ⊕ O(y′[n] + i), for 1 ≤ i ≤ n − 1 
 
4) Return x[1] . . . x[n − 1] 
 
 Encryption query for x[1] . . . x[n − 1] 
 
1) Pick random y′[n] ∈ {0, 1}l 
 
2) Compute y′[i] = x[i] ⊕ O(y′[n] + i), for 1 ≤ 
i ≤ n − 1 
3) Compute t = y′[1] ⊕ . . . ⊕ y′[n] 
4) Compute y[i] = y′[i] ⊕ t, for 1 ≤ i ≤ n 
5) Return y[1] . . . y[n] 
 
 When A outputs two messages x1[1] . . . x1[n−1] and 
x2[1] . . . x2[n − 1], B picks b ∈ {0, 1} at random and does the 
following: 
 
1) Pick random yb

′[n] ∈ {0, 1}l 
2) Compute yb

′[i] = xb[i]⊕O(yb
′[n], i), for 1 ≤ i ≤ n−1 

3) Compute t = yb
′[1] ⊕ . . . ⊕ yb

′[n] 
4) Compute yb[i] = yb

′[i] ⊕ t, for 1 ≤ i ≤ n 
 
 At this point, A selects (n − 2) indexes i1, . . . in−2 and 
B returns the corresponding yb[i1], . . . , yb[in−2].  
 

TABLE 1  Comparison between BASTION and existing 
constructs. We assume a plaintext of m = n − 1 blocks. Since all 
schemes are symmetric, we only show the computation 
overhead for the encryption/encoding routine in the column 
“Computation” (“b.c.” is the number of block cipher operations; 
“XOR” is the number of XOR operations. 

 
 

V. COMPARISON TO EXISTING SCHEMES 
 

In what follows, we briefly overview several 
encryption modes and argue about their security (according to 
Definitions 1 and 3) and performance when compared to 
Bastion. 
 
CPA-encryption modes 
 

Traditional CPA-encryption modes, such as the CTR 
mode, provide ind security but are only 1CAKE secure. That 
is, an adversary equipped with the encryption key must only 
fetch two ciphertext blocks to break data confidentiality.6 
 
CPA-encryption and secret-sharing 
 

Another option is to rely on the combination of CPA 
secure encryption modes and secret-sharing. 
 

If the file f is encrypted and then shared with an n-
out-of-n secret-sharing scheme (denoted as “encrypt-then-
secret-share” in the following), then the construction is clearly 
(n − 1)CAKE secure and is also ind secure. However, secret-
sharing the ciphertext comes at considerable storage costs; for 
example, each share would be as large as the file f using a 
perfect secret sharing scheme—which makes it impractical for 
storing large files. 
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Secret-sharing the encryption key and dispersing its 
shares across the storage servers alongside the cipher-text is 
not secure against an ind-adversary. Indeed, if the adversary 
can access all the storage servers and down-load all ciphertext 
blocks, the adversary may as well download all key shares and 
compute the encryption key. 
 
AON encryption 
 

Recall that an AONT is not an encryption scheme 
and does not require the decryptor to have any secret key. That 
is, an AONT is not secure against an ind-adversary which can 
access all the ciphertext blocks. One alter-native is to combine 
the use of AONT with standard encryption. Rivest [26] 
suggests to pre-process a mes-sage with an AONT and then 
encrypt its output with an encryption mode. This paradigm is 
referred to in the literature as AON encryption and provides 
(n−1)CAKE security. Existing AON encryption schemes 
require at least two rounds of block cipher encryption with 
two different keys [12], [26]. At least one round is required for 
the actual AONT that embeds the first encryption key in the 
pseudo-ciphertext (cf. Section 2). An additional round uses 
another encryption key that is kept secret to guarantee CPA-
security. However, two encryption rounds constitute a 
considerable overhead when encrypting and decrypting large 
files. In Appendix A, we describe possible ways of modifying 
the AONTs of [26] and [12] to achieve ind security and (n − 
1)CAKE security without adding another round of block 
cipher encryption, and we discuss their shortcomings. 
 

Clearly, these solutions are either not satisfactory in 
terms of security or incur a large overhead when compared to 
Bastion and may not be suitable to store large files in a multi-
cloud storage system. 
 
5.1 Performance Comparison 
 

Table 1 compares the performance of Bastion with 
the encryption schemes considered so far, in terms of 
computation, storage, and security. 
 

Given a plaintext of m blocks, the CTR encryption 
mode outputs n = m + 1 ciphertext blocks, computed with (n − 
1) block cipher operations and (n − 1) XOR operations. The 
CTR encryption mode is ind secure but only 1CAKE secure. 
 
Rivest AONT outputs a pseudo-ciphertext of n =m+ 1 blocks 
using 2(n − 1) block cipher operations and 3(n−1) XOR 
operations. Desai AONT outputs the same number of blocks 
but requires only (n − 1) block cipher operations and 2(n − 1) 
XOR operations. Both Rivest AONT and Desai AONT are, 
however, not ind secure since the encryption key used to 

compute the AONT output is embedded in the output itself. 
Encrypting the output of Rivest AONT or Desai AONT with a 
standard encryption mode (both [12] and [26] use the ECB 
encryption mode), requires additional n block 
cipheroperations, and yields an AON encryption that is ind 
secure7 and (n − 1)CAKE secure. Encrypt-then-secret-share 
(cf. Section 4.4) is ind secure and (n − 1)CAKE secure. It 
requires (n − 1) block cipher operations and n XOR operations 
if additive secret sharing is used. How-ever secret-sharing 
encryption results in a prohibitively large storage overhead of 
n2 blocks. 

 
Bastion also outputs n = m + 1 ciphertext blocks. It 

achieves ind security and (n − 2)CAKE security with 
 
only (n − 1) block cipher operations and (3n − 1) XOR 
operations.8 

 
We conclude that Bastion achieves a solid tradeoff 

between the computational overhead of existing AON 
encryption modes and the exponential storage overhead of 
secret-sharing techniques, while offering a comparable level 
of security. In Section 6, we confirm the superior performance 
of Bastion by means of implementation. 
 

VI. IMPLEMENTATION AND EVALUATION 
 

In this section, we describe and evaluate a prototype 
implementation modeling a read-write storage system based 
on Bastion. We also discuss insights with respect to the 
integration of Bastion within existing dispersed storage 
systems. 
 
6.1 Implementation Setup 
 

Our prototype, implemented in C++, emulates the 
read-write storage model of Section 3.1. We instantiate 
Bastion with the CTR encryption mode (cf. Figure 1) using 
both AES128 and Rijndael256, implemented using the 
libmcrypt.so. 4.4.7 library. Since this library does not natively 
support the CTR encryption mode, we use it for the generation 
of the CTR keystream, which is later XORed with the 
plaintext. 
 

We compare Bastion with the AON encryption 
schemes of Rivest [26] and Desai [12]. For baseline 
comparison, we include in our evaluation the CTR encryption 
mode and the AONTs due to Rivest [26] andDesai [12], which 
are used in existing dispersed storage systems, e.g., Cleversafe 
[25]. We do not evaluate the performance of secret-sharing the 
data because of its prohibitively large storage overhead 
(squared in the number of input blocks). We evaluate our 
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implementations on an Intel(R) Xeon(R) CPU E5-2470 
running at 2.30GHz. Note that the processor clock frequency 
might have been higher during the evaluation due to the 
TurboBoost technology of the CPU. In our evaluation, we 
abstract away the effects of network delays and congestion, 
and we only assess the processing performance of the 
encryption for the considered schemes. This is a reasonable 
assumption since all schemes are length-preserving (plus an 
additional block of l bits), and are therefore likely to exhibit 
the same network performance. Moreover, we only measure 
the performance incurred during encryption/encoding, since 
all schemes are symmetric, and therefore the 
decryption/decoding performance is comparable to that of the 
encryption/encoding process. 
 

We measure the peak throughput and the latency 
exhibited by our implementations w.r.t. various file/block 
sizes. For each data point, we report the average of 30 runs. 
Due to their small widths, we do not show the corresponding 
95% confidence intervals. 
 
6.2 Evaluation Results 
 

Our evaluation results are reported in Figure 3 and 
Figure 4. Both figures show that Bastion considerably 
improves (by more than 50%) the performance of existing (n − 
1)CAKE encryption schemes and only in-curs a negligible 
overhead when compared to existing semantically secure 
encryption modes (e.g., the CTR encryption mode) that are 
only 1CAKE secure. 

 
In Figure 3, we show the peak throughput achieved 

by the CTR encryption mode, Bastion, Desai AONT/AON, 
and Rivest AONT/AON schemes. The peak throughput 
achieved by Bastion reaches almost 72 MB/s and is only 1% 
lower than the one exhibited by the CTR encryption mode. 
When compared with existing (n − 1)CAKE secure schemes, 
such as Desai AON encryption and Rivest AON encryption, 
our results show that the peak throughput of Bastion is almost 
twice as large as that of Desai AON encryption, and more than 
three times larger than the peak throughput of Rivest AON 
encryption. 

 
We also evaluate the performance of Bastion, with 

respect to different block sizes of the underlying block cipher. 
Our results show that—irrespective of the block size—Bastion 
only incurs a negligible performance deterioration in peak 
throughput when compared to the CTR encryption mode. 
Figures 4(a) and 4(b) show the latency (in ms) incurred by the 
encryption/encoding routines for different file sizes. The 
latency of Bastion is comparable to that of the CTR encryption 
mode—for both AES128 and Rijandael256—and results in a 

considerable improvement over existing AON encryption 
schemes (more than 50% gain in latency). 

 
VII. RELATED WORK 

 
To the best of our knowledge, this is the first work 

that addresses the problem of securing data stored in multi-
cloud storage systems when the cryptographic material is 
exposed. In the following, we survey relevant related work in 
the areas of deniable encryption, information dispersal, all-or-
nothing transformations, secret-sharing techniques, and 
leakage-resilient cryptography. 
 
Deniable Encryption 
 

Our work shares similarities with the notion of 
“shared-key deniable encryption” [9], [14], [18]. An 
encryption scheme is “deniable” if—when coerced to reveal 
the encryption key—the legitimate owner reveals “fake keys” 
thus forcing the ciphertext to “look like” the encryption of a 
plaintext different from the original one—hence keeping the 
original plaintext private. Deniable encryption therefore aims 
to deceive an adversary which does not know the “original” 
encryption key but, e.g., can only acquire “fake” keys. Our 
security definition models an adversary that has access to the 
real keying material. 
 
Information Dispersal 
 

Information dispersal based on erasure codes [30] has 
been proven as an effective tool to provide reliability in a 
number of cloud-based storage systems [1], [2], [20], [33]. 
Erasure codes enable users to distribute their data on a number 
of servers and recover it despite some servers failures. 
 

Ramp schemes [7] constitute a trade-off between the 
security guarantees of secret sharing and the efficiency of 
information dispersal algorithms. A ramp scheme achieves 
higher “code rates” than secret sharing and features two 
thresholds t1, t2. At least t2 shares are required to reconstruct 
the secret and less than t1 shares provide no information about 
the secret; a number of shares between t1 and t2 leak “some” 
information. 
 
All or Nothing Transformations 
 

All-or-nothing transformations (AONTs) were first 
introduced in [26] and later studied in [8], [12]. The majority 
of AONTs leverage a secret key that is em-bedded in the 
output blocks. Once all output blocks are available, the key 
can be recovered and single blocks can be inverted. AONT, 
therefore, is not an encryption scheme and does not require the 
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decryptor to have any key material. Resch et al. [25] combine 
AONT and information dispersal to provide both fault-
tolerance and data secrecy, in the context of distributed 
storage systems. In [25], however, an adversary which knows 
the encryption key can decrypt data stored on single servers. 
 
Secret Sharing 
 

Secret sharing schemes [5] allow a dealer to 
distribute a secret among a number of shareholders, such that 
only authorized subsets of shareholders can reconstruct the 
secret. In threshold secret sharing schemes [11], [27], the 
dealer defines a threshold t and each set of shareholders of 
cardinality equal to or greater than t is authorized to 
reconstruct the secret. Secret sharing guarantees security 
against a non-authorized subset of shareholders; however, they 
incur a high computation/storage cost, which makes them 
impractical for sharing large files. Rabin [24] proposed an 
information dispersal algorithm with smaller overhead than 
the one of [27], however the proposal in [24] does not provide 
any security guarantees when a small number of shares (less 
than the reconstruction threshold) are available. Krawczyk 
 
[19] proposed to combine both Shamir’s [27] and Ra-bin’s 
[24] approaches; in [19] a file is first encrypted using AES and 
then dispersed using the scheme in [24], while the encryption 
key is shared using the scheme in [27]. In Krawczyk’s 
scheme, individual ciphertext blocks encrypted with AES can 
be decrypted once the key is exposed. 
 
Leakage-resilient Cryptography 
 

Leakage-resilient cryptography aims at designing 
cryptographic primitives that can resist an adversary which 
learns partial information about the secret state of a sys-tem, 
e.g., through side-channels [22]. Different models allow to 
reason about the “leaks” of real implementations of 
cryptographic primitives [22]. All of these models, however, 
limit in some way the knowledge of the secret state of a 
system by the adversary. In contrast, the adversary is given all 
the secret material in our model. 
 

VIII. CONCLUSION 
 

In this paper, we addressed the problem of securing 
data outsourced to the cloud against an adversary which has 
access to the encryption key. For that purpose, we introduced 
a novel security definition that captures data confidentiality 
against the new adversary. 

 
We then proposed Bastion, a scheme which ensures 

the confidentiality of encrypted data even when the adversary 

has the encryption key, and all but two cipher-text blocks. 
Bastion is most suitable for settings where the ciphertext 
blocks are stored in multi-cloud storage systems. In these 
settings, the adversary would need to acquire the encryption 
key, and to compromise all servers, in order to recover any 
single block of plaintext. 

 
We analyzed the security of Bastion and evaluated its 

performance in realistic settings. Bastion consider-ably 
improves (by more than 50%) the performance of existing 
primitives which offer comparable security under key 
exposure, and only incurs a negligible overhead (less than 5%) 
when compared to existing semantically secure encryption 
modes (e.g., the CTR encryption mode). Finally, we showed 
how Bastion can be practically integrated within existing 
dispersed storage systems. 
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