
IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2698 www.ijsart.com

Securing Data Under Key Exposure

Evangelin Sonia.S.V1, Infantine Ruth Monita.M25

1,Assistant Professor, Dept of Computer Science And Engineering
2Dept of Computer Science And Engineering

1, 2 Sri Shakthi Institute Of Engineering And Technology,Coimbatore

Abstract- Recent news reveal a powerful attacker which
breaks data confidentiality by acquiring cryptographic keys,
by means of coercion or backdoors in cryptographic software.
Once the encryption key is exposed, the only viable measure to
preserve data confidentiality is to limit the attacker’s access to
the ciphertext. This may be achieved, for example, by
spreading ciphertext blocks across servers in multiple
administrative domains—thus assuming that the adversary
cannot compromise all of them. Nevertheless, if data is
encrypted with existing schemes, an adversary equipped with
the encryption key, can still compromise a single server and
decrypt the ciphertext blocks stored therein. In this paper, we
study data confidentiality against an adversary which knows
the encryption key and has access to a large fraction of the
ciphertext blocks. To this end,we propose BASTION, a novel
and efficient scheme that guarantees data confidentiality even
if the encryption key is leaked and the adversary has access to
almost all ciphertext blocks. We analyze the security of
BASTION, and we evaluate its performance by means of a
prototype implementation. We also discuss practical insights
with respect to the integration of BASTION in commercial
dispersed storage systems. Our evaluation results suggest that
BASTION is well-suited for integration in existing systems
since it incurs less than 5% overhead compared to existing
semantically secure encryption modes.

Keywords- Key exposure, data confidentiality, dispersed
storage.

I. INTRODUCTION

 The world recently witnessed a massive surveillance
program aimed at breaking users’ privacy.

Perpetrators were not hindered by the various
security measures deployed within the targeted services [31].
For instance, although these services relied on encryption
mechanisms to guarantee data confidentiality, the necessary
keying material was acquired by means of backdoors, bribe, or
coercion.

If the encryption key is exposed, the only viable
means to guarantee confidentiality is to limit the adversary’s
access to the ciphertext, e.g., by spreading it across multiple

administrative domains, in the hope that the adversary cannot
compromise all of them. However, even if the data is
encrypted and dispersed across different administrative
domains, an adversary equipped with the appropriate keying
material can compromise a server in one domain and decrypt
cipher-text blocks stored therein.

In this paper, we study data confidentiality against an
adversary which knows the encryption key and has access to a
large fraction of the ciphertext blocks. The adversary can
acquire the key either by exploiting flaws or backdoors in the
key-generation software [31], or by compromising the devices
that store the keys (e.g., at the user-side or in the cloud). As far
as we are aware, this adversary invalidates the security of most
requires only one round of encryption which makes it well-
suited to be integrated in existing dispersed storage systems.
We evaluate the performance of Bastion in comparison with a
number of existing encryption schemes. Our results show that
Bastion only incurs a negligible performance deterioration
(less than 5%) when compared to symmetric encryption
schemes, and considerably improves the performance of
existing AON encryption schemes [12], [26]. We also discuss
practical insights with respect to the possible integration of
Bastion in commercial dispersed storage systems. Our
contributions in this paper can be summarized as follows:

 We propose Bastion, an efficient scheme which
ensures data confidentiality against an adversary that
knows the encryption key and has access to a large
fraction of the ciphertext blocks.

 We analyze the security of Bastion, and we show that

it prevents leakage of any plaintext block as long as
the adversary has access to the encryption key and to
all but two ciphertext blocks.

 We evaluate the performance of Bastion analytically

and empirically in comparison to a number of
existing encryption techniques. Our results show that
Bastion considerably improves (by more than 50%)
the performance of existing AON encryption
schemes, and only incurs a negligible overhead when
compared to existing semantically secure encryption
modes (e.g., the CTR encryption mode).

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2699 www.ijsart.com

 We discuss practical insights with respect to the

deployment of Bastion within existing storage
systems, such as the HYDRAstor grid storage system
[13], [23].

The remainder of the paper is organized as follows.

In Section 2, we define our notation and building blocks. In
Section 4, we describe our model and introduce our scheme,
Bastion. In Section 5, we analyze our scheme in comparison
with a number of existing encryption primitives. In Section 6,
we implement and evaluate the performance of Bastion in
realistic settings; we also discuss practical insights with
respect to the integration of Bastion within existing dispersed
storage systems. In Section 7, we overview related work in the
area, and we conclude the paper in Section 8.

II. PRELIMINARIES

We adapt the notation of [12] for our settings. We define a
block cipher as a map F : {0, 1}k × {0, 1}l → {0, 1}l, for
positive k and l. If Pl is the space of all (2l)! l-bits
permutations, then for any a ∈ {0, 1}k, we have
F (a, ·) ∈ Pl. We also write Fa(x) to denote F (a, x). We
model F as an ideal block cipher, i.e., a block cipher picked at
random from BC(k, l), where BC(k, l) is the space of all block
ciphers with parameters kand l. For a given block cipher F ∈
BC(k, l), we denote F −1 ∈ BC(k, l) as F −1(a, y) or as Fa

−1(y),
for
a ∈ {0, 1}k.

2.1 Encryption modes

An encryption mode based on a block cipher F/F −1
is given by a triplet of algorithms

Q = (K, E, D) where:
K The key generation algorithm is a probabilistic
algorithm which takes as input a security parameter k and
outputs a key
a ∈ {0, 1}k that specifies Fa and Fa

−1.

E The encryption algorithm is a probabilistic algorithm
which takes as input a message

x ∈ {0, 1}∗, and uses Fa and Fa

−1 as oracles to output ciphertext
y.

D The decryption algorithm is a deterministic algorithm
which takes as input a ciphertext y, and uses Fa and Fa

−1 as
oracles to output plaintext x ∈ {0, 1}∗, or ⊥ if y is invalid.

For correctness, we require that for any key a ←
K(1k), for any message x ∈ {0, 1}∗, and for any y ←
E

FA ,F −1 (x), we have x ← D
FA ,F −1 (y). A A

Security is defined through the following chosen-plaintext
attack (CPA) game adapted for block ciphers:

 In the ind experiment, the adversary has unrestricted
oracle access to EFA ,FA−1 during the “find” stage. At this
point, A outputs two messages of equal length x0, x1, and
some state information that are passed as input when the
adversary is initialized for the “guess” stage (e.g., state can
contain the two messages x0, x1). During the “guess” stage, the
adversary is given the ciphertext of one message out of x0, x1
and must guess which message was actually encrypted. The
advantage of the adversary in the ind experiment is:

Advind(A) = |Pr[Expind(A, 0) = 1]−Pr[Expind(A, 1) = 1]|

DEFINITION 1. An encryption mode Q = (K, E, D) is ind
secure if for any probabilistic polynomial time (p.p.t.)
adversary A, we have Advind(A) ≤ ǫ, where
ǫ is a negligible function in the security parameter.

REMARK 1. The ind experiment allows the adversary to see
the entire (challenge) ciphertext. In a scenario where
ciphertext blocks are dispersed across a number of storage
servers, this means that the ind-adversary can compromise all
storage servers and fetch the data stored therein.

REMARK 2. In the ind experiment (and in other expe iments
used in this paper), we adopt the Shannon Model of a block
cipher that, in practice, instantiates an independent random
permutation for every different key. This model has been used
in previous related work [3], [12], [17] to disregard the
algebraic or cryptanalysis specific to block ciphers and treat
them as a black-box transformation.

2.2 All or Nothing Transforms

An All or Nothing Transform (AONT) is an
efficiently computable transform that maps sequences of input
blocks to sequences of output blocks with the following
properties: (i) given all output blocks, the transform can be

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2700 www.ijsart.com

efficiently inverted, and (ii) given all but one of the output
blocks, it is infeasible to compute any of the original input
blocks. The formal syntax of an AONT is given by a pair of
p.p.t. algorithms Q = (E, D) where:

E The encoding algorithm is a probabilistic algorithm
which takes as input a message x ∈
{0, 1}∗, and outputs a pseudo-ciphertext y.

D The decoding algorithm is a deterministic algorithm
which takes as input a pseudo-

ciphertext y, and outputs either a message x ∈ {0, 1}∗ or ⊥ to
indicate that the input pseudo-ciphertext is invalid.

For correctness, we require that for all x ∈ {0, 1}∗, and for all
y ← E(x), we have x ← D(y).

The literature comprises a number of security
definitions for AONT (e.g., [8], [12], [26]). In this paper, we
rely on the definition of [12] which uses the aont experiment
below. This definition specifies a block length l such that the
pseudo-ciphertext y can be written as

y = y[1] . . . y[n], where |y[i]| = l and n ≥ 1.

On input j, the oracle Yb returns yb[j] and accepts up
to (n − 1) queries. The aont experiment models an adversary
which must distinguish between the encoding of a message of
its choice and a random string (of the same length), while the
adversary is allowed access to all but one encoded blocks. The
advantage of A in the aont experiment is given by:

Advaont(A) = |Pr[Expaont(A, 0) = 1]− Pr[Expaont(A, 1) = 1]|

DEFINITION 2. An All-or-Nothing Transform Q = (E, D)
is aont secure if for any p.p.t. adversary A, we have Advaont(A)
≤ ǫ, where ǫ is a negligible function in
the security parameter.

Known AONTs

Rivest [26] suggested the package transform which
lever-ages a block cipher F/F −1 and maps m block strings to
n = m + 1 block strings. The first n − 1 output blocks

are computed by XORing the i-th plaintext block with FK (i),
where K is a random key. The n-th output block is computed
XORing K with the encryption of each of the previous output
blocks, using a key K0 that is publicly known. That is, given
x[1] . . . x[m], the package transform outputs y[1] . . . y[n],
with n = m + 1, where:
y[i] = x[i] ⊕ FK (i), 1 ≤ i ≤ n − 1,

n−1
M
y[n] = KFK0 (y[i] ⊕ i).

i=1

REMARK 3. Although most proposed AONTs are based on
block ciphers [12], [26], an AONT is not an encryption
scheme, because there is no secret-key information associated
with the transform. Given all the output blocks of the AONT,
the input can be recovered without knowledge of any secret.

III. SYSTEM AND SECURITY MODEL

In this section, we start by detailing the system and

security models that we consider in the paper. We then argue
that existing security definitions do not capture well the
assumption of key exposure, and propose a new security
definition that captures this notion.

3.1 System Model

We consider a multi-cloud storage system which can
leverage a number of commodity cloud providers (e.g.,
Amazon, Google) with the goal of distributing trust across
different administrative domains. This “cloud of clouds”
model is receiving increasing attention nowadays [4], [6], [32]
with cloud storage providers such as EMC, IBM, and
Microsoft, offering products for multi-cloud systems [15],
[16], [29].

In particular, we consider a system of s storage
servers S1, . . . , Ss, and a collection of users. We assume that
each server appropriately authenticates users. For simplicity
and without loss of generality, we focus on the read/write
storage abstraction of [21] which exports two operations.

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2701 www.ijsart.com

Fig. 1. Our attacker model. We assume an adversary which
can acquire all the cryptographic secret material, and can

compromise a large fraction (up to all but one) of the storage
servers.

3.2 Adversarial Model

We assume a computationally-bounded adversary A
which can acquire the long-term cryptographic keys used to
encrypt the data. The adversary may do so either (i) by
leveraging flaws or backdoors in the key-generation software
[31], or (ii) by compromising the device that stores the keys
(in the cloud or at the user). Since ciphertext blocks are
distributed across servers hosted within different domains, we
assume that the adversary cannot compromise all storage
servers (cf. Figure 1). In particular, we assume that the
adversary can com-promise all but one of the servers and we
model this adversary by giving it access to all but λ ciphertext
blocks.

Note that if the adversary also learns the user’s
credentials to log into the storage servers and downloads all
the ciphertext blocks, then no cryptographic mechanism can
preserve data confidentiality. We stress that compromising the
encryption key does not necessarily imply the compromise of
the user’s credentials. For example, encryption can occur on a
specific-purpose device [10], and the key can be leaked, e.g.,
by the manufacturer; in this scenario, the user’s credentials to
access the cloud servers are clearly not compromised.

3.3 (n − λ)-CAKE Security

Existing security notions for encryption modes
capture data confidentiality against an adversary which does
not have the encryption key. That is, if the key is leaked, the
confidentiality of data is broken.

In this paper we study an adversary that has access to
the encryption key but does not have the entire ciphertext. We
therefore propose a new security definition that models our
scenario.

As introduced above, we allow the adversary to

access an encryption/decryption oracle and to “see” all but λ
ciphertext blocks. Since confidentiality with λ = 0 is clearly
not achievable1, we instead seek an encryption mode where λ
= 1. However, having the flexibility of setting λ ≥ 1 allows the
design of more efficient schemes while keeping a high degree
of security in practical deployments.

We call our security notion (n−λ) Ciphertext Access
under Key Exposure, or (n − λ)CAKE. Similar to [12], (n −
λ)CAKE specifies a block length l such that a ciphertext y can
be written as y = y[1] . . . y[n] where |y[i]| = l and n > 1.

The adversary has unrestricted access to EFA ,FA−1 in
both the “find” and “guess” stages. On input j, the oracle Yb
returns yb[j] and accepts up to n − λ queries. On the one hand,
unrestricted oracle access to EFA ,FA−1 captures the
adversary’s knowledge of the secret key. On the other hand,
the oracle Yb models the fact that the adversary has access to
all but λ ciphertext blocks. This is the case when, for example,
each server stores λ ciphertext blocks and the adversary cannot
compromise all servers. The advantage of the adversary is
defined as:

Adv(n−λ)CAKE(A) = P r[Exp(n−λ)CAKE(A, 1) = 1]−

P r[Exp(n−λ)CAKE(A, 0) = 1]

DEFINITION 3. An encryption mode Q = (K, E, D) is

(n − λ)CAKE secure if for any p.p.t. adversary A, we have
Adv(n−λ)CAKE(A) ≤ ǫ, where ǫ is a negligible
function in the security parameter.

Definition 3 resembles Definition 2 but has two
fundamental differences. First, (n − λ)CAKE refers to a keyed
scheme and gives the adversary unrestricted access to the
encryption/decryption oracles. Second, (n − λ)CAKE relaxes
the notion of all-or-nothing and parameterizes the number of
ciphertext blocks that are not given to the adversary. As we
will show in Section 4.2, this relaxation allows us to design

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2702 www.ijsart.com

encryption modes that are considerably more efficient than
existing modes which offer a comparable level of security.
1. Any party with access to all the ciphertext blocks and
the encryption key can recover the plaintext. the (n − λ)CAKE-
adversary has the encryption key but can compromise up to s
− 1 storage servers. Therefore, we seek an encryption mode
with the following properties:

1) must be ind secure against an adversary which does
not know the encryption key but has access to all ciphertext
blocks (cf. Definition 1), by compromising all storage servers.

2) must be (n − λ)CAKE secure against an adversary
which knows the encryption key but has access to n − λ
ciphertext blocks

REMARK 4. Property 2 ensures data confidentiality against
the attacker model outlined in Section 3.2. Nevertheless, we
must also account for weaker adversaries that do not know the
encryption key but can access the entire ciphertext —hence,
ind security. Note that if the adversary which has access to the
encryption key, can also access all the ciphertext blocks, then
no cryptographic mechanism can preserve data confidentiality.

IV. BASTION: SECURITY AGAINST
KEY EXPOSURE

In this section, we present our scheme, dubbed Bastion, which
ensures that plaintext data cannot be recovered as long as the
adversary has access to all but two ciphertext blocks—even
when the encryption key is exposed. We then analyze the
security of Bastion with respect to Definition 1 and Definition
3.

4.1 Overview

 Bastion departs from existing AON encryption
schemes. Current schemes require a pre-processing round of
block cipher encryption for the AONT, fol-lowed by another
round of block cipher encryption (cf. Figure 2 (a)).
Differently, Bastion first encrypts the data with one round of
block cipher encryption, and then applies an efficient linear
post-processing to the ciphertext (cf. Figure 2 (b)). By doing
so, Bastion relaxes the notion of all-or-nothing encryption at
the benefit of increased performance (see Figure 2).

 More specifically, the first round of Bastion
consists of CTR mode encryption with a randomly chosen key
K, i.e., y′ = Enc(K, x). The output ciphertext y ′ is then fed to a
linear transform which is inspired by the scheme of [28].
Namely, our transform basically computes y = y′ · A where A
is a square matrix such that: (i) all diagonal elements are set to

0, and (ii) the remaining off-diagonal elements are set to 1. As
we shown later, such a matrix is invertible and has the nice
property that A−1 = A. Moreover, y = y′ · A ensures that each
input block yj

′ will depend on all output blocks yi except from
yj . This transformation—combined with the fact that the
original input blocks have high entropy result in an ind-secure
and (n − 2)CAKE secure encryption mode. In the following
section, we show how to efficiently compute y′ · A by means
of bitwise XOR operations.

4.2 Bastion: Protocol Specification

 On input a security parameter k, the key generation
algorithm of Bastion outputs a key K ∈ {0, 1}k for the
underlying block-cipher. Bastion leverages block cipher
encryption in the CTR mode, which on input a plaintext
bitstream x, divides it in blocks x[1], . . . , x[m], where m is
odd2 such that each block has size l.3 The set of input blocks is
encrypted under key K, resulting in ciphertext y′ = y′[1], . . . ,
y′[m + 1], where y′[m + 1] is an initialization vector which is
randomly chosen from
{0, 1}l.

 Next, Bastion applies a linear transform to y′ as
follows. Let n = m + 1 and assume A to be an n- by-n matrix
where element ai,j = 0l if i = j or = 1l, otherwise.4 Bastion
computes y = y′ · A,
ai,j

 where additions and multiplications are
implemented by means of XOR and AND operations,
respectively.
That is, y[i] ∈ y is computed as y[i] = Lj=n(y′[j]∧aj,i),
j=1
for i = 1 . . . , n.

 Given key K, inverting Bastion entails computing
y′ = y · A−1 and decrypting y′ using K. Notice that matrix A is
invertible and A = A−1. The pseudocode of the encryption and
decryption algorithms of Bastion are shown in Algorithms 1
and 2, respectively. Both algorithms use F to denote a generic
block cipher (e.g., AES).

 In our implementation, we efficiently compute the
linear transform using 2n XOR operations as follows:

t = y′[1] ⊕ y′[2] ⊕ · · ⊕ y′[n], y[i] = t ⊕ y′[i],
1 ≤ i≤ n.

4.3 Correctness Analysis

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2703 www.ijsart.com

 We show that for every x ∈ {0, 1}lm where m is
odd, and for every K ∈ {0, 1}l

Fig. 2. (a) Current AON encryption schemes require a pre-
processing round of block cipher encryption for the AONT,

followed by another round of block cipher encryption. (b) On
the other hand, BASTION first encrypts the data with one round
of block cipher encryption, and then applies an efficient linear

post-processing to the ciphertext

 Therefore, we are only left to show that the linear
transformation computed in lines 7-14 of Algorithm 1 is
correctly reverted in lines 2-8 of Algorithm 2

Recall that t can be computed as follows:

t = M y[i]
 i=1..n

=
M

(y′[i] ⊕ t)

 i=1..n

y′[i]
!!

=

M
y′[i] ⊕

M

 i=1..n

 i=1..n

=

y′[j]

 i=1..n j ..n,j i

 M =1M
6
=

= M y′[i]
 i=1..n

Notice that the last step holds because n is even
and therefore each y′[j] is XORed for an odd number
of times.

REMARK 5. We point out that Bastion is not restricted
to the CTR encryption mode and can be instanti
ated with other ind-secure block cipher

To interface with our cloud storage model described
in Section 3.1, we assume that each user encrypts the

data using Bastion before invoking the WRITE() routine.
More specifically, let Enc(K, ·), Dec(K, ·) denote the
encryption and decryption routines of Bastion, respectively.

4.4 Security Analysis

In this section, we show that Bastion is mathemind secure and
(n − 2)CAKE secure.

LEMMA 1. Bastion is ind secure.

Proof 1 : Bastion uses an ind secure encryption mode to encrypt
a message, and then applies a linear transform on the ciphertext
blocks. It is straight-forward to conclude that Bastion is ind
secure. In other words, a polynomial-time algorithm A that has
non-negligible advantage in breaking the ind security of Bastion
can be used as a black-box by another polynomial-time
algorithm B to break the ind security of the underlying
encryption mode. In particular, B forwards A’s queries to its
oracle and applies the linear transformation of Algorithm 1 lines
7-14 to the received ciphertext before forward-ing it to A. The
same strategy is used when A outputs two messages at the end
of the find stage: the two messages are forwarded to B’s oracle;
upon receiving the challenge ciphertext, B applies the linear
transformation and forwards it to A. When A replies with its
guess b′, B outputs the same guess. It is easy to see that if A has
non-negligible advantage in guessing correctly which message

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2704 www.ijsart.com

was encrypted, so does B. Furthermore, the running time of B is
the one of A plus the time to apply the linear transformation to
A’s queries.

LEMMA 2: Given any n − 2 blocks of y[1] . . . y[n] as output
by Bastion, it is infeasible to compute any y′[i], for 1 ≤ i ≤ n.

Proof 2: Let y = y[1], . . . , y[n] ← E(K,
x=x[1] . . . x[m]). Note that given any (n − 1) blocks of y, the
adversary can compute one block of y′.

particular, y′[i] = j=n y[j], for any 1 ≤ i ≤ n.

 Definition 3. However, if only (n − 2) blocks of y
are given, then each of the n blocks of y′ can take on any
possible values in {0, 1}l, depending on the two unknown
blocks of y. Recall that each block y′[i] is dependent on (n − 1)
blocks of y and it is pseudo-random as output by the CTR
encryption mode. Therefore, given any (n − 2) blocks of y, then
y′[i] could take any of the 2l possibilities, for 1 ≤ i ≤ n.

LEMMA 3: Bastion is (n − 2)CAKE secure.

Proof 3: The security proof of Bastion resembles the standard
security proof of the CTR encryption mode and relies on the
existence of pseudo-random permutations. In particular, given a
polynomial-type algorithm A which has non-negligible
advantage in the (n − λ)CAKE experiment with λ = 2, we can
construct a polynomial-time algorithm B which has non-
negligible advantage in distinguishing between a true random
permutation and a pseudo-random permutation.

 B has access to oracle O and uses it to answer the
encryption and decryption queries issued by A. In particular,
A’s queries are answered as follows:

• Decryption query for y[1] . . . y[n]

1) Compute t = y[1] ⊕ . . . ⊕ y[n]
2) Compute y′[i] = y[i] ⊕ t, for 1 ≤ i ≤ n
3) Compute x[i] = y′[i] ⊕ O(y′[n] + i), for 1 ≤ i ≤ n − 1

4) Return x[1] . . . x[n − 1]

 Encryption query for x[1] . . . x[n − 1]

1) Pick random y′[n] ∈ {0, 1}l

2) Compute y′[i] = x[i] ⊕ O(y′[n] + i), for 1 ≤
i ≤ n − 1
3) Compute t = y′[1] ⊕ . . . ⊕ y′[n]
4) Compute y[i] = y′[i] ⊕ t, for 1 ≤ i ≤ n
5) Return y[1] . . . y[n]

 When A outputs two messages x1[1] . . . x1[n−1] and
x2[1] . . . x2[n − 1], B picks b ∈ {0, 1} at random and does the
following:

1) Pick random yb

′[n] ∈ {0, 1}l
2) Compute yb

′[i] = xb[i]⊕O(yb
′[n], i), for 1 ≤ i ≤ n−1

3) Compute t = yb
′[1] ⊕ . . . ⊕ yb

′[n]
4) Compute yb[i] = yb

′[i] ⊕ t, for 1 ≤ i ≤ n

 At this point, A selects (n − 2) indexes i1, . . . in−2 and
B returns the corresponding yb[i1], . . . , yb[in−2].

TABLE 1 Comparison between BASTION and existing
constructs. We assume a plaintext of m = n − 1 blocks. Since all
schemes are symmetric, we only show the computation
overhead for the encryption/encoding routine in the column
“Computation” (“b.c.” is the number of block cipher operations;
“XOR” is the number of XOR operations.

V. COMPARISON TO EXISTING SCHEMES

In what follows, we briefly overview several
encryption modes and argue about their security (according to
Definitions 1 and 3) and performance when compared to
Bastion.

CPA-encryption modes

Traditional CPA-encryption modes, such as the CTR
mode, provide ind security but are only 1CAKE secure. That
is, an adversary equipped with the encryption key must only
fetch two ciphertext blocks to break data confidentiality.6

CPA-encryption and secret-sharing

Another option is to rely on the combination of CPA
secure encryption modes and secret-sharing.

If the file f is encrypted and then shared with an n-
out-of-n secret-sharing scheme (denoted as “encrypt-then-
secret-share” in the following), then the construction is clearly
(n − 1)CAKE secure and is also ind secure. However, secret-
sharing the ciphertext comes at considerable storage costs; for
example, each share would be as large as the file f using a
perfect secret sharing scheme—which makes it impractical for
storing large files.

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2705 www.ijsart.com

Secret-sharing the encryption key and dispersing its
shares across the storage servers alongside the cipher-text is
not secure against an ind-adversary. Indeed, if the adversary
can access all the storage servers and down-load all ciphertext
blocks, the adversary may as well download all key shares and
compute the encryption key.

AON encryption

Recall that an AONT is not an encryption scheme
and does not require the decryptor to have any secret key. That
is, an AONT is not secure against an ind-adversary which can
access all the ciphertext blocks. One alter-native is to combine
the use of AONT with standard encryption. Rivest [26]
suggests to pre-process a mes-sage with an AONT and then
encrypt its output with an encryption mode. This paradigm is
referred to in the literature as AON encryption and provides
(n−1)CAKE security. Existing AON encryption schemes
require at least two rounds of block cipher encryption with
two different keys [12], [26]. At least one round is required for
the actual AONT that embeds the first encryption key in the
pseudo-ciphertext (cf. Section 2). An additional round uses
another encryption key that is kept secret to guarantee CPA-
security. However, two encryption rounds constitute a
considerable overhead when encrypting and decrypting large
files. In Appendix A, we describe possible ways of modifying
the AONTs of [26] and [12] to achieve ind security and (n −
1)CAKE security without adding another round of block
cipher encryption, and we discuss their shortcomings.

Clearly, these solutions are either not satisfactory in
terms of security or incur a large overhead when compared to
Bastion and may not be suitable to store large files in a multi-
cloud storage system.

5.1 Performance Comparison

Table 1 compares the performance of Bastion with
the encryption schemes considered so far, in terms of
computation, storage, and security.

Given a plaintext of m blocks, the CTR encryption
mode outputs n = m + 1 ciphertext blocks, computed with (n −
1) block cipher operations and (n − 1) XOR operations. The
CTR encryption mode is ind secure but only 1CAKE secure.

Rivest AONT outputs a pseudo-ciphertext of n =m+ 1 blocks
using 2(n − 1) block cipher operations and 3(n−1) XOR
operations. Desai AONT outputs the same number of blocks
but requires only (n − 1) block cipher operations and 2(n − 1)
XOR operations. Both Rivest AONT and Desai AONT are,
however, not ind secure since the encryption key used to

compute the AONT output is embedded in the output itself.
Encrypting the output of Rivest AONT or Desai AONT with a
standard encryption mode (both [12] and [26] use the ECB
encryption mode), requires additional n block
cipheroperations, and yields an AON encryption that is ind
secure7 and (n − 1)CAKE secure. Encrypt-then-secret-share
(cf. Section 4.4) is ind secure and (n − 1)CAKE secure. It
requires (n − 1) block cipher operations and n XOR operations
if additive secret sharing is used. How-ever secret-sharing
encryption results in a prohibitively large storage overhead of
n2 blocks.

Bastion also outputs n = m + 1 ciphertext blocks. It

achieves ind security and (n − 2)CAKE security with

only (n − 1) block cipher operations and (3n − 1) XOR
operations.8

We conclude that Bastion achieves a solid tradeoff

between the computational overhead of existing AON
encryption modes and the exponential storage overhead of
secret-sharing techniques, while offering a comparable level
of security. In Section 6, we confirm the superior performance
of Bastion by means of implementation.

VI. IMPLEMENTATION AND EVALUATION

In this section, we describe and evaluate a prototype
implementation modeling a read-write storage system based
on Bastion. We also discuss insights with respect to the
integration of Bastion within existing dispersed storage
systems.

6.1 Implementation Setup

Our prototype, implemented in C++, emulates the
read-write storage model of Section 3.1. We instantiate
Bastion with the CTR encryption mode (cf. Figure 1) using
both AES128 and Rijndael256, implemented using the
libmcrypt.so. 4.4.7 library. Since this library does not natively
support the CTR encryption mode, we use it for the generation
of the CTR keystream, which is later XORed with the
plaintext.

We compare Bastion with the AON encryption
schemes of Rivest [26] and Desai [12]. For baseline
comparison, we include in our evaluation the CTR encryption
mode and the AONTs due to Rivest [26] andDesai [12], which
are used in existing dispersed storage systems, e.g., Cleversafe
[25]. We do not evaluate the performance of secret-sharing the
data because of its prohibitively large storage overhead
(squared in the number of input blocks). We evaluate our

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2706 www.ijsart.com

implementations on an Intel(R) Xeon(R) CPU E5-2470
running at 2.30GHz. Note that the processor clock frequency
might have been higher during the evaluation due to the
TurboBoost technology of the CPU. In our evaluation, we
abstract away the effects of network delays and congestion,
and we only assess the processing performance of the
encryption for the considered schemes. This is a reasonable
assumption since all schemes are length-preserving (plus an
additional block of l bits), and are therefore likely to exhibit
the same network performance. Moreover, we only measure
the performance incurred during encryption/encoding, since
all schemes are symmetric, and therefore the
decryption/decoding performance is comparable to that of the
encryption/encoding process.

We measure the peak throughput and the latency
exhibited by our implementations w.r.t. various file/block
sizes. For each data point, we report the average of 30 runs.
Due to their small widths, we do not show the corresponding
95% confidence intervals.

6.2 Evaluation Results

Our evaluation results are reported in Figure 3 and
Figure 4. Both figures show that Bastion considerably
improves (by more than 50%) the performance of existing (n −
1)CAKE encryption schemes and only in-curs a negligible
overhead when compared to existing semantically secure
encryption modes (e.g., the CTR encryption mode) that are
only 1CAKE secure.

In Figure 3, we show the peak throughput achieved

by the CTR encryption mode, Bastion, Desai AONT/AON,
and Rivest AONT/AON schemes. The peak throughput
achieved by Bastion reaches almost 72 MB/s and is only 1%
lower than the one exhibited by the CTR encryption mode.
When compared with existing (n − 1)CAKE secure schemes,
such as Desai AON encryption and Rivest AON encryption,
our results show that the peak throughput of Bastion is almost
twice as large as that of Desai AON encryption, and more than
three times larger than the peak throughput of Rivest AON
encryption.

We also evaluate the performance of Bastion, with

respect to different block sizes of the underlying block cipher.
Our results show that—irrespective of the block size—Bastion
only incurs a negligible performance deterioration in peak
throughput when compared to the CTR encryption mode.
Figures 4(a) and 4(b) show the latency (in ms) incurred by the
encryption/encoding routines for different file sizes. The
latency of Bastion is comparable to that of the CTR encryption
mode—for both AES128 and Rijandael256—and results in a

considerable improvement over existing AON encryption
schemes (more than 50% gain in latency).

VII. RELATED WORK

To the best of our knowledge, this is the first work

that addresses the problem of securing data stored in multi-
cloud storage systems when the cryptographic material is
exposed. In the following, we survey relevant related work in
the areas of deniable encryption, information dispersal, all-or-
nothing transformations, secret-sharing techniques, and
leakage-resilient cryptography.

Deniable Encryption

Our work shares similarities with the notion of
“shared-key deniable encryption” [9], [14], [18]. An
encryption scheme is “deniable” if—when coerced to reveal
the encryption key—the legitimate owner reveals “fake keys”
thus forcing the ciphertext to “look like” the encryption of a
plaintext different from the original one—hence keeping the
original plaintext private. Deniable encryption therefore aims
to deceive an adversary which does not know the “original”
encryption key but, e.g., can only acquire “fake” keys. Our
security definition models an adversary that has access to the
real keying material.

Information Dispersal

Information dispersal based on erasure codes [30] has
been proven as an effective tool to provide reliability in a
number of cloud-based storage systems [1], [2], [20], [33].
Erasure codes enable users to distribute their data on a number
of servers and recover it despite some servers failures.

Ramp schemes [7] constitute a trade-off between the
security guarantees of secret sharing and the efficiency of
information dispersal algorithms. A ramp scheme achieves
higher “code rates” than secret sharing and features two
thresholds t1, t2. At least t2 shares are required to reconstruct
the secret and less than t1 shares provide no information about
the secret; a number of shares between t1 and t2 leak “some”
information.

All or Nothing Transformations

All-or-nothing transformations (AONTs) were first
introduced in [26] and later studied in [8], [12]. The majority
of AONTs leverage a secret key that is em-bedded in the
output blocks. Once all output blocks are available, the key
can be recovered and single blocks can be inverted. AONT,
therefore, is not an encryption scheme and does not require the

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2707 www.ijsart.com

decryptor to have any key material. Resch et al. [25] combine
AONT and information dispersal to provide both fault-
tolerance and data secrecy, in the context of distributed
storage systems. In [25], however, an adversary which knows
the encryption key can decrypt data stored on single servers.

Secret Sharing

Secret sharing schemes [5] allow a dealer to
distribute a secret among a number of shareholders, such that
only authorized subsets of shareholders can reconstruct the
secret. In threshold secret sharing schemes [11], [27], the
dealer defines a threshold t and each set of shareholders of
cardinality equal to or greater than t is authorized to
reconstruct the secret. Secret sharing guarantees security
against a non-authorized subset of shareholders; however, they
incur a high computation/storage cost, which makes them
impractical for sharing large files. Rabin [24] proposed an
information dispersal algorithm with smaller overhead than
the one of [27], however the proposal in [24] does not provide
any security guarantees when a small number of shares (less
than the reconstruction threshold) are available. Krawczyk

[19] proposed to combine both Shamir’s [27] and Ra-bin’s
[24] approaches; in [19] a file is first encrypted using AES and
then dispersed using the scheme in [24], while the encryption
key is shared using the scheme in [27]. In Krawczyk’s
scheme, individual ciphertext blocks encrypted with AES can
be decrypted once the key is exposed.

Leakage-resilient Cryptography

Leakage-resilient cryptography aims at designing
cryptographic primitives that can resist an adversary which
learns partial information about the secret state of a sys-tem,
e.g., through side-channels [22]. Different models allow to
reason about the “leaks” of real implementations of
cryptographic primitives [22]. All of these models, however,
limit in some way the knowledge of the secret state of a
system by the adversary. In contrast, the adversary is given all
the secret material in our model.

VIII. CONCLUSION

In this paper, we addressed the problem of securing
data outsourced to the cloud against an adversary which has
access to the encryption key. For that purpose, we introduced
a novel security definition that captures data confidentiality
against the new adversary.

We then proposed Bastion, a scheme which ensures

the confidentiality of encrypted data even when the adversary

has the encryption key, and all but two cipher-text blocks.
Bastion is most suitable for settings where the ciphertext
blocks are stored in multi-cloud storage systems. In these
settings, the adversary would need to acquire the encryption
key, and to compromise all servers, in order to recover any
single block of plaintext.

We analyzed the security of Bastion and evaluated its

performance in realistic settings. Bastion consider-ably
improves (by more than 50%) the performance of existing
primitives which offer comparable security under key
exposure, and only incurs a negligible overhead (less than 5%)
when compared to existing semantically secure encryption
modes (e.g., the CTR encryption mode). Finally, we showed
how Bastion can be practically integrated within existing
dispersed storage systems.

REFERENCES

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.

Re-iter, and J. J. Wylie, “Fault-Scalable Byzantine Fault-
Tolerant Services,” in ACM Symposium on Operating
Systems Principles (SOSP), 2005, pp. 59–74.

[2] M. K. Aguilera, R. Janakiraman, and L. Xu, “Using
Erasure Codes Efficiently for Storage in a Distributed
System,” inInternational Conference on Dependable
Systems and Networks (DSN), 2005, pp. 336–345.

[3] W. Aiello, M. Bellare, G. D. Crescenzo, and R.
Venkatesan, “Security amplification by composition: The
case of doubly-iterated, ideal ciphers,” in Advances in
Cryptology (CRYPTO), 1998, pp. 390–407.

[4] C. Basescu, C. Cachin, I. Eyal, R. Haas, and M. Vukolic,
“Ro-bust Data Sharing with Key-value Stores,” in ACM
SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), 2011, pp. 221–222.

[5] A. Beimel, “Secret-sharing schemes: A survey,” in
Interna-tional Workshop on Coding and Cryptology
(IWCC), 2011, pp. 11–46.

[6] A. Bessani, M. Correia, B. Quaresma, F. André, and P.
Sousa, “DepSky: Dependable and Secure Storage in a
Cloud-of-clouds,” in Sixth Conference on Computer
Systems (EuroSys), 2011, pp. 31–46.

[7] G. R. Blakley and C. Meadows, “Security of ramp
schemes,” in Advances in Cryptology (CRYPTO), 1984,
pp. 242–268.

[8] V. Boyko, “On the Security Properties of OAEP as an
All-or-nothing Transform,” in Advances in Cryptology
(CRYPTO), 1999, pp. 503–518.

[9] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky,
“Deniable Encryption,” in Proceedings of CRYPTO,
1997.

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2708 www.ijsart.com

[10] Cavalry, “Encryption Engine Dongle,” http://www.
cavalrystorage.com/en2010.aspx/.

[11] C. Charnes, J. Pieprzyk, and R. Safavi-Naini,
“Conditionally secure secret sharing schemes with
disenrollment capability,” in ACM Conference on
Computer and Communications Security (CCS), 1994,
pp. 89–95.

[12] A. Desai, “The security of all-or-nothing encryption:
Protect-ing against exhaustive key search,” in Advances
in Cryptology (CRYPTO), 2000, pp. 359–375.

[13] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kil-
ian, P. Strzelczak, J. Szczepkowski, C. Ungureanu, andM.
 Welnicki, “HYDRAstor: a Scalable Secondary
Storage,” in USENIX Conference on File and Storage
Technologies (FAST), 2009, pp. 197–210.

[14] M. Dürmuth and D. M. Freeman, “Deniable encryption
with negligible detection probability: An interactive
construction,” in EUROCRYPT, 2011, pp. 610–626.

[15] EMC, “Transform to a Hybrid Cloud,” http://www.emc.
com/campaign/global/hybridcloud/index.htm.

[16] IBM, “IBM Hybrid Cloud Solution,” http://www-01.ibm.
com/software/tivoli/products/hybrid-cloud/.

[17] J. Kilian and P. Rogaway, “How to protect DES against
exhaustive key search,” in Advances in Cryptology
(CRYPTO), 1996, pp. 252–267.

[18] M. Klonowski, P. Kubiak, and M. Kutylowski, “Practical
De-niable Encryption,” in Theory and Practice of
Computer Science (SOFSEM), 2008, pp. 599–609.

[19] H. Krawczyk, “Secret Sharing Made Short,” in Advances
in Cryptology (CRYPTO), 1993, pp. 136–146.

[20] J. Kubiatowicz, D. Bindel, Y. Chen, S. E. Czerwinski, P.
R. Eaton, D. Geels, R. Gummadi, S. C. Rhea, H.
Weatherspoon,W. Weimer, C. Wells, and B. Y. Zhao,
“OceanStore: An Archi-tecture for Global-Scale
Persistent Storage,” in International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2000, pp. 190–201.

[21] L. Lamport, “On interprocess communication,” 1985.
[22] S. Micali and L. Reyzin, “Physically observable

cryptography (extended abstract),” in Theory of
Cryptography Conference (TCC), 2004, pp. 278–296.

[23] NEC Corp., “HYDRAstor Grid Storage,” http://www.
hydrastor.com.

[24] M. O. Rabin, “Efficient dispersal of information for
security, load balancing, and fault tolerance,” J. ACM,
vol. 36, no. 2, pp. 335–348, 1989.

[25] J. K. Resch and J. S. Plank, “AONT-RS: Blending
Security and Performance in Dispersed Storage Systems,”
in USENIX Conference on File and Storage Technologies
(FAST), 2011, pp. 191–202.

[26] R. L. Rivest, “All-or-Nothing Encryption and the Package
Transform,” in International Workshop on Fast Software
Encryp-tion (FSE), 1997, pp. 210–218.

[27] A. Shamir, “How to Share a Secret?” in Communications
of the ACM, 1979, pp. 612–613.

[28] D. R. Stinson, “Something About All or Nothing (Trans-
forms),” in Designs, Codes and Cryptography, 2001, pp.
133– 138.

[29] StorSimple, “Cloud Storage,”
http://www.storsimple.com/.

[30] J. H. van Lint, Introduction to Coding Theory. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 1982.

[31] Wikipedia, “Edward Snowden,” http://en.wikipedia.org/
wiki/Edward_Snowden#Disclosure.

[32] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and
H. V. Madhyastha, “SPANStore: Cost-effective Geo-
replicated Stor-age Spanning Multiple Cloud Services,” in
ACM Symposium on Operating Systems Principles
(SOSP), 2013, pp. 292–308.

[33] H. Xia and A. A. Chien, “RobuSTore: a Distributed Stor-
age Architecture with Robust and High Performance,”
inACM/IEEE Conference on High Performance
Networking and Computing (SC), 2007, p. 44.

