
IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 1715 www.ijsart.com

Dynamic Memory Balancing For Resource
Management Using Virtual Clusters Machine

S R.Ranjitha1, R.Ramya,V.Prethivi2, Mr.G.Arul Selvan ME.,(Ph.D)3

1, 2Dept of Computer Science And Engineering
3Assistant Professor, Dept of Computer Science And Engineering

1, 2, 3,E.G.S.Pillay Engineering College,
Tamilnadu,India.

Abstract- Virtualization essentially enables multiple operating
systems and applications to run on one physical computer by
multiplexing hardware resources. A key motivation for
applying virtualization is to improve hardware resource
utilization while maintaining reasonable quality of service.
However, such a goal cannot be achieved without efficient
resource management. Though most physical resources, such
as processor cores and I/O devices, are shared among virtual
machines using time slicing and can be scheduled flexibly
based on priority, allocating an appropriate amount of main
memory to virtual machines is more challenging. Different
applications have different memory requirements. Even a
single application shows varied working set sizes during its
execution. An optimal memory management strategy under a
virtualized environment thus needs to dynamically adjust
memory allocation for each virtual machine, which further
requires a prediction model that forecasts its host physical
memory needs on the fly. This paper aim to optimize memory
control techniques using a balloon driver for server
consolidation.

Keywords- Balloon Driver, Sever Consolidation,
Virtualization, Resource Management

I. INTRODUCTION

 Recently, virtualization technologies, whose roots
can be traced back to the mainframe days, are drawing
renewed attention from a variety of application domains such
as data centers, web hosting, or even desktop computing, by
offering the benefits on security, power-saving, and resource-
efficiency[1].Virtual machines (VMs) run on top of the
hypervisor or the virtual machine monitor (VMM) 1, which
multiplexes the hardware resources. The VMM has the
ultimate control on all hardware resources while offering each
guest OS an illusion of a raw machine by virtualizing the
hardware. No matter if we use a virtualized system for security
or hardware multiplexing, we usually boot several virtual
machines on a single computer[5].Those machines eventually
share or compete for the hardware resources.

In a typical virtualized system, resources, like
processors and network interfaces, can be assigned to a virtual
machine when needed and given up when there is no
demand.The host memory allocation is mostly static–each
virtual machine is assigned a fixed amount of host memory in
the beginning[17]. Although Xen and VMware provide a
ballooning driver to dynamically adjust host memory
allocation, existing studies are insufficient to tell when to
reallocate and how much memory a virtual machine needs or
is willing to give up to maintain the performance of the
applications running on it This system proposes xen balloon
driver which dynamically monitors the memory usage of each
virtual machine, accurately predicts its memory needs,[2]and
periodically reallocates host memory to achieve high
performance.

In computing, virtual memory (also virtual storage) is
a memory management technique that provides an "idealized
abstraction of the storage resources that are actually available
on a given machine which "creates the illusion to users of a
very large (main) memory.

 The computer's operating system, using a
combination of hardware and software, maps memory
addresses used by a program, called virtual addresses, into
physical addresses in computer memory[6]. Main storage, as
seen by a process or task, appears as a contiguous address
space or collection of contiguous segments. The operating
system manages virtual address spaces and the assignment of
real memory to virtual memory[4]. Address translation
hardware in the CPU, often referred to as a memory
management unit or MMU, automatically translates virtual
addresses to physical addresses[9]. Software within the
operating system may extend these capabilities to provide a
virtual address space that can exceed the capacity of real
memory and thus reference more memory than is physically
present in the computer.

The primary benefits of virtual memory include
freeing applications from having to manage a shared memory
space, increased security due to memory isolation, and being

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 1716 www.ijsart.com

able to conceptually use more memory than might be
physically available, using the technique of paging[12].The
virtual memory functions manipulate pages of memory. The
functions use the size of a page on the current computer to
round off specified sizes and addresses.

The VirtualAlloc function performs one of the following
operations:

 Reserves one or more free pages.
 Commits one or more reserved pages.
 Reserves and commits one or more free pages.

 You can specify the starting address of the pages

to be reserved or committed, or you can allow the system to
determine the address. The function rounds the specified
address to the appropriate page boundary. Reserved pages are
not accessible, but committed pages can be allocated with
PAGE_READWRITE, PAGE_READONLY, or
PAGE_NOACCESS access[14]. When pages are committed,
memory charges are allocated from the overall size of RAM
and paging files on disk, but each page is initialized and
loaded into physical memory only at the first attempt to read
from or write to that page[7].You can use normal pointer
references to access memory committed by the Virtual Alloc
function.

II. LITERATURE SURVEY

2.1 ENFORCING PERFORMANCE ISOLATION
ACROSS VIRTUAL MACHINES IN XEN

Virtual machines (VMs) have recently emerged as
the basis for allocating resources in enterprise settings and
hosting centers. One benefit of VMs in these environments is
the ability to multiplex several operating systems on hardware
based on dynamically changing system
characteristics[9].However, such multiplexing must often be
done while observing per-VM performance guarantees or
service level agreements. Thus, one important requirement in
this environment is effective performance isolation among
VMs. In this paper, we address performance isolation across
virtual machines in Xen[1].For instance, while Xen can
allocate fixed shares of CPU among competing VMs, it does
not currently account for work done on behalf of individual
VMs in device drivers. Thus, the behavior of one VM can
negatively impact resources available to other VMs even if
appropriate per-VM resource limits are in place.

In this paper, we present the design and evaluation of
a set of primitives implemented in Xen to address this issue.
First, XenMon accurately measures per-VM resource

consumption, including work done on behalf of a particular
VM in Xen's driver domains[1]. Next, our SEDF-DC
scheduler accounts for aggregate VM resource consumption in
allocating CPU. Finally, ShareGuard limits the total amount of
resources consumed in privileged and driver domains based on
administrator-specified limits. Our performance evaluation
indicates that our mechanisms effectively enforce performance
isolation for a variety of workloads and configurations.

2.2 ADAPTIVE CONTROL OF VIRTUALIZED
RESOURCES IN UTILITY COMPUTING
ENVIRONMENT

Data centers are often under-utilized due to over-
provisioning as well as time-varying resource demands of
typical enterprise applications. One approach to increase
resource utilization is to consolidate applications in a shared
infrastructure using virtualization. Meeting application-level
quality of service (QoS) goals becomes a challenge in a
consolidated environment as application resource needs
differ[5]. Furthermore, for multi-tier applications, the amount
of resources needed to achieve their QoS goals might be
different at each tier and may also depend on availability of
resources in other tiers. In this paper, we develop an adaptive
resource control system that dynamically adjusts the resource
shares to individual tiers in order to meet application-level
QoS goals while achieving high resource utilization in the data
center[13]. Our control system is developed using classical
control theory, and we used a black-box system modeling
approach to overcome the absence of first principle models for
complex enterprise applications and systems. To evaluate our
controllers, we built a testbed simulating a virtual data center
using Xen virtual machines. We experimented with two multi-
tier applications in this virtual data center: a twotier
implementation of RUBiS, an online auction site, and a two-
tier Java implementation of TPC-W[10].Our results indicate
that the proposed control system is able to maintain high
resource utilization and meets QoS goals in spite of varying
resource demands from the applications.

2.3 IMPROVING THE QOS OF WEB
APPLICATIONS ACROSS MULTIPLE VIRTUAL
MACHINES IN CLOUD COMPUTING
ENVIRONMENT

Cloud computing is a hot topic in both industrial and
academic areas. Virtualization employed on large data centers
forms the basis of cloud computing, which includes CPU, I/O
and memory virtualization.[4]Time-sharing of CPU cycles for
multiple virtual machines (VMs) has been the main bottleneck
of system-level virtualization. How to schedule CPU cycles
for multi-VMs to improve the QoS of web applications need

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 1717 www.ijsart.com

further study. This paper first proposes a CPU management
architecture for multi-VMs. Then, we convert the CPU
scheduling problem into an integer programming problem.
Importantly, we put forward a CPU scheduling algorithm
based on utility optimization theory (UOCRS) to increase the
global utility[15].Experiments show that our scheme improves
the performance of Web applications remarkably.

2.4 MULTIPLE VIRTUAL MACHINES RESOURCE
SCHEDULING FOR CLOUD COMPUTING

Cloud computing emerges as a new computing
paradigm concerned by both academia and
industry[12].Resource management of multiple virtual
machines is the core of Infrastructure as a Service. Focusing
on the CPU resources, the purpose of this paper is to increase
the QoS of web service by properly scheduling the CPU
resource across the virtual machines. We formulate the CPU
scheduling of multiple virtual machines into an integer
programming problem[3].Then, a global regulation algorithm
based on utility optimization theory is proposed. Experimental
result s show that the regulation system of CPUs can
significantly improve the performance of Web
applications[11].

2.5LVMM: A LIGHTWEIGHT VIRTUAL MACHINE
MEMORY MANAGEMENT ARCHITECTURE FOR
VIRTUAL COMPUTING ENVIRONMENT

Virtualization technology recently becomes a hot
research topic again in both industry and academics. Some
physical hardware such as processors and I/O devices are
shared among virtual machines using time slicing, but the
memory resource management is relatively
complicated[1].Lightweight memory management architecture
for multiple virtual machines is proposed, and it includes a
mixture of self-adjustment and global-adjustment policies,
both of which collaborate with each other to improve the
memory efficiency. Experimental results show that our
memory management method is effective, and significantly
increase the performance of overall system about 20-30%.

III. ARCHITECTURE DIAGRAM

Memory management is the process of controlling
and coordinating computer memory, assigning portions called
blocks to various running programs to optimize overall system
performance. Memory management resides in hardware, in the
OS (operating system), and in programs and applications.

In hardware, memory management involves
components that physically store data, such as RAM (random

access memory) chips, memorycaches, and flash-based SSDs
(solid-state drives)[8].In the OS, memory management
involves theallocation (and constant reallocation) of specific
memory blocks to individual programs as user demands
change. At the application level, memory management ensures
the availability of adequate memory for the objects and data
structures of each running program at all times. Application
memory management combines two related tasks, known as
allocation and recycling[3].

When the program requests a block of memory, a
part of the memory manager called the allocator assigns that
block to the program.

FIGURE 3.1 Architecture diagram

When a program no longer needs the data in

previously allocated memory blocks, those blocks become
available for reassignment. This task can be done manually
(by the programmer) or automatically (by the memory
manager).

IV. WORK FLOW

This workflow has levels of DFD design diagrams:

The level-0 has client request for storage to
hypervisor,it has a virtual machines, with that help of virtual
clusters to allocate memory for the requested devices.

FIGURE 4.1Design Diagram-DFD Level-0

 The level-1 constitute of resources and its storage
capacity for client who are request for memory it can be

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 1718 www.ijsart.com

automatically allocated for by our created virtual
machines.The client who are not have a sufficient storage to
store our files ,in that time it allocate space and dynamically
give resources to the particular requested systems.

FIGURE 4.2Design Diagram-DFD Level-1

 The level-2 contains hypervisor because it has
features for automatic allocation of memory and run virtual
machines efficiently.so here we can use hypervisor hypervisor
to allocate resources for accessing files and storing datas.

FIGURE 4.3 Design Diagram-DFD Level-2

V. CONCLUSION

Our system aims to optimize the running times of

applications in consolidated environments by balancing the
memory resources of Xen VMs.We evaluate our optimized
solution to memory allocation using real workloads that run
across VMs.Our system significantly improves the
performances of memory-intensive with multiple virtual
machines.This system can be useful for a company or
multinational institutes those who want a large resources for
huge applications We have to implement this paper with the
help of cloud storage acknowledgement, but we were
implement as only for a simulation without update in a cloud
sever for a simple appliances.

REFERENCES

[1] C.A.WaldspurgerandE.W.William, “Lottery scheduling:

Flexible proportional-share resource management,” in

Proc. 1st USENIX Conf. Oper. Syst. Des.
Implementation, 1994.

[2] CarlnA.Waldspurger.“MemoryResource ManagementinV
MwareESX server”.Proceeding of the fifth Symposiumon
Operating System design and Implementation,
Boston,Dec2002.

[3] The Da CapoB enchmark Suite.(2012).
[Online].Available:http://www.dacapobench.org/

[4] The Phoronix Test Suite. (2012).[Online]. Available:
http://www. phoronix-test-suite.com/

[5] Strobl,Marius(2013).Virtualizationfor Reliable Embedded
Systems. Munich: GRIN PublishingGmbH.pp. 5–
6.ISBN 978-3-656-49071-5. Retrieved 2015-03-07

[6] J. Sugerman, G. Venkitachalam, and B.-H.
Lim,“VirtualizingI/Odevicesonvmware workstation’s
hosted virtual machine monitor,” in Proc. USENIX Annu.
Tech. Conf., General Track, 2001, pp. 1–14.

[7] D. Gupta, S. Lee, M.Vrable,S.Savage, A. C. Snoeren, G.
Varghese, G. M. Voelker, and A. Vahdat, “Difference
engine: Harnessing memory redundancy in virtual
machines,”Commun. ACM, vol. 53, no. 10, pp. 85–93,
2010.

[8] Schopp,D.Hansen,M.Kravetz,H. Takahashi, T. Iwamoto,
Y. Goto, H. Kamezawa, M.Tolentino and
B.Picco,“Hotplug memory redux,” in Proc.Linux Symp.,
2005, p. 151.

[9] T.-I. Salomie, G.Alonso,T.Roscoe and K.
Elphinstone,“Application level ballooning for efficient
server consolidation,” in Proc.8th ACM Eur. Conf.
Comput. Syst., 2013, pp. 337–350.

[10] C.Clark,K. Fraser, S.Hand,J. G. Hansen, E. Jul, C.
Limpach, I. Pratt, and A. Warfield, “Live migration of
virtual machines,” in Proc.2nd Conf.Symp.Netw.
Syst.Des.Implementation-Volume 2, 2005, pp. 273–286.

[11] W.Zhang,H.He,G.Chen,andJ.Sun, “Multiple virtual
machines resource scheduling for cloud computing,”
Appl. Math. Inf. Sci., vol. 7, no. 5, pp. 2089–2096, 2013.

[12] D. Magenheimer, “Memory overcommit... without the
commitment,” Xen Summit, pp. 1–3, 2008.

[13] Xen, the powerful opensource industry standard for
virtualization.(2013). [Online]. Available:
http://www.xenproject.org/

[14] VMware virtualization software for desktops, servers &
virtual machines for public and private cloud solutions.
(2013). [Online]. Available: http:// www.vmware.com.

[15] KVM. Kernel Based Virtual Machine. (2013). [Online].
Available: http://www.linux-kvm.org/page/Main_Page.

[16] W.Zhang,T.Cheng,H.He and A M.K. Cheng, “LVMM: A
lightweight virtual machine memory management
architecture for virtual computing environment,” in Proc.
Int. Conf. Uncertainty Reasoning Knowl. Eng., 2011, vol.
1, pp. 235–238.

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 1719 www.ijsart.com

[17] Amazon Elastic Computing Cloud (EC2).
(2013)[Online].Available:http://aws.amazon.com/ec2.

