
IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 1165 www.ijsart.com

Fine-Grained Two-Factor Access Control For web-
Based Cloud Computing Services Using OTP

R.V.Pandian1, K.Narayana2, B.Srinivasulu3

1Dept of CSE
2Head of the Department, Dept of CSE

3Assistant professor, Dept of CSE
1,2,3Seshachala Institute of Technology,Puttur.

Abstract- In this paper, we introduce a new fine-grained two-
factor authentication (2FA) access control system for web-
based cloud computing services. Specifically, in our proposed
2FA access control system, an attribute-based access control
mechanism is implemented with the necessity of both user
secret key and a lightweight security device. As a user cannot
access the system if s/he does not hold both, the mechanism
can enhance the security of the system, especially in those
scenarios where many users share the same computer for web-
based cloud services. In addition, attribute-based control in
the system also enables the cloud server to restrict the access
to those users with the same set of attributes while preserving
user privacy, i.e., the cloud server only knows that the user
fulfills the required predicate, but has no idea on the exact
identity of the user. Finally, we also carry out a simulation to
demonstrate the practicability of our proposed 2FA system.

Keywords- Fine-grained, Two-Factor, Access Control, Web
Services

I. INTRODUCTION

 Cloud computing is a virtual host computer system
that enables enterprises to buy, lease, sell, or distribute
software and other digital resources over the internet as an on-
demand service. It no longer depends on a server or a number
of machines that physically exist, as it is a virtual system.
There are many applications of cloud computing, such as data
sharing, data storage, big data management, medical
information system etc. End users access cloud-based
applications through a web browser, thin client or mobile app
while the business software and user’s data are stored on
servers at a remote location. The benefits of web-based cloud
computing services are huge, which include the ease of
accessibility, reduced costs and capital expenditures, increased
operational efficiencies, scalability, flexibility and immediate
time to market.Though the new paradigm of cloud computing
pro-vides great advantages, there are meanwhile also con-
cerns about security and privacy especially for web-based
cloud services. As sensitive data may be stored in the cloud
for sharing purpose or convenient access; and eligible users

may also access the cloud system for various applications and
services, user authentication has become a critical component
for any cloud system. A user is required to login before using
the cloud services or accessing the sensitive data stored in the
cloud. There are two problems for the traditional
account/password-based system. First, the traditional
account/password-based authentication is not privacy-
preserving. How-ever, it is well acknowledged that privacy is
an essential feature that must be considered in cloud
computing sys-tems. Second, it is common to share a
computer among different people. It maybe easy for hackers to
install some spyware to learn the login password from the
web-browser. A recently proposed access control model called
attribute-based access control is a good candidate to tackle the
first problem. It not only provides anonymous authentication
but also further defines access control policies based on
different attributes of the requester, environment, or the data
object. In an attribute-based access control system1, each user
has a user secret key issued by the authority. In practice, the
user secret key is stored inside the personal computer. When
we consider the above mentioned second problem on web-
based services, it is common that computers may be shared by
many users especially in some large enterprises or
organizations. For example, let us consider the following two
scenarios:

In a hospital, computers are shared by different staff.
Dr. Alice uses the computer in room A when she is on duty in
the daytime, while Dr. Bob uses the same computer in the
same room when he is on duty at night. In a university,
computers in the undergraduate lab are usually shared by
different students. In these cases, user secret keys could be
easily stolen or used by an unauthorized party. Even though
the computer may be locked by a password, it can still be
possibly guessed or stolen by undetected malwares.

A more secure way is to use two-factor
authentication (2FA). 2FA is very common among web-based
e-banking services. In addition to a username/password, the
user is also required to have a device to display a one-time
password. Some systems may require the user to have a

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 1166 www.ijsart.com

mobile phone while the one-time password will be sent to the
mobile phone through SMS during the login process. By using
2FA, users will have more confidence to use shared computers
to login for web-based e-banking services. For the same
reason, it will be better to have a 2FA system for users in the
web-based cloud services in order to increase the security
level in the system.

1.1 Our Contribution

In this paper, we propose a fine-grained two-factor
access control protocol for web-based cloud computing
services, using a lightweight security device. The device has
the following properties: (1) it can compute some lightweight
algorithms, e.g. hashing and exponentiation; and (2) it is
tamper resistant, i.e., it is assumed that no one can break into it
to get the secret information stored inside.

With this device, our protocol provides a 2FA secu-
rity. First the user secret key (which is usually stored inside
the computer) is required. In addition, the secu-rity device
should be also connected to the computer (e.g. through USB)
in order to authenticate the user for accessing the cloud. The
user can be granted access only if he has both items.
Furthermore, the user cannot use his secret key with another
device belonging to others for the access.

Our protocol supports fine-grained attribute-based ac-
cess which provides a great flexibility for the system to set
different access policies according to different scenarios. At
the same time, the privacy of the user is also preserved. The
cloud system only knows that the user possesses some
required attribute, but not the real identity of the user.

To show the practicality of our system, we simulate
the prototype of the protocol.

In the next section, we will review some related works
that are related to our concept.

II. RELATED WORKS

We review some related works including attribute-
based cryptosystems and access control with security device in
this section.

2.1 Attribute-Based Cryptosystem

Attribute-based encryption (ABE) is the corner-stone
of attribute-based cryptosystem. ABE enables fine-grained
access control over encrypted data using access policies and
associates attributes with private keys and ciphertexts. Within

this context, ciphertext-policy ABE (CP-ABE) allows a
scalable way of data encryption such that the encryptor defines
the access policy that the decryptor (and his/her attributes set)
needs to satisfy to decrypt the ciphertext. Thus, different users
are allowed to decrypt different pieces of data with respect to
the pre-defined policy. This can eliminate the trust on the
storage server to prevent unauthorised data access.

Besides dealing with authenticated access on en-
crypted data in cloud storage service ABE can also be used for
access control to cloud computing service, in a similar way as
an encryption scheme can be used for authentication purpose:
The cloud server may encrypt a random mes-sage using the
access policy and ask the user to decrypt. If the user can
successfully decrypt the ciphertext (which means the user’s
attributes set satisfies the prescribed policy), then it is allowed
to access the cloud computing service.

In addition to ABE, another cryptographic primitive
in attribute-based cryptosystem is attribute-based signa-ture
(ABS). An ABS scheme enables a user to sign a message with
fine-grained control over identifying information. Specifically,
in an ABS scheme, users obtain their attribute private keys
from an attribute authority. Then they can later sign messages
for any predicate satisfied by their attributes. A verifier will be
convinced of the fact that the signer’s attributes satisfy the
signing predicate if the signature is valid. At the same time,
the identity of signer remains hidden. Thus it can achieve
anonymous attribute-based access control efficiently.
Recently, Yuen et al. proposed an attribute-based access
control mechanism which can be regarded as the interactive
form of ABS.

2.2 Access Control with Security Device

2.2.1 Security Mediated Cryptosystem

Mediated cryptography was first introduced in as a
method to allow immediate revocation of public keys. The
basic idea of mediated cryptography is to use an on-line
mediator for every transaction. This on-line me-diator is
referred to a SEM (SEcurity Mediator) since it provides a
control of security capabilities. If the SEM does not cooperate
then no transactions with the public key are possible any
longer.

The notion of SEM cryptography was further
modified as security mediated certificateless (SMC)
cryptography [14], [46]. In a SMC system, a user has a secret
key, public key and an identity. In the signing or decryption
algo-rithm, it requires the secret key and the SEM together. In
the signature verification or encryption algorithm, it requires

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 1167 www.ijsart.com

the user public key and the corresponding identity. Since the
SEM is controlled by an authority which is used to handle user
revocation, the authority refuses to provide any cooperation
for any revoked user.Thus revoked users cannot generate
signature or decrypt ciphertext.

Note that SMC is different from our concept. The
main purpose of SMC is to solve the revocation prob-lem.
Thus the SME is controlled by the authority. In other words,
the authority needs to be online for every signature signing
and ciphertext decryption. The user is not anonymous in SMC.
While in our system, the security device is controlled by the
user. Anonymity is also preserved.

2.2.2 Key-Insulated Cryptosystem

The paradigm of key-insulated cryptography was
intro-duced in. The general idea of key-insulated security was
to store long-term keys in a physically-secure but
computationally-limited device. Short-term secret keys are
kept by users on a powerful but insecure device where
cryptographic computations take place. Short term secrets are
then refreshed at discrete time periods via interaction between
the user and the base while the public key remains unchanged
throughout the lifetime of the system. At the beginning of each
time period, the user obtains a partial secret key from the
device. By combining this partial secret key with the secret
key for the previous period, the user renews the secret key for
the current time period.

Different from our concept, key-insulated cryptosys-
tem requires all users to update their keys in every time
period. The key update process requires the security device.
Once the key has been updated, the signing or decryption
algorithm does not require the device anymore within the
same time period. While our concept does require the security
device every time the user tries to access the system.
Furthermore, there is no key updating required in our system.

III. PRELIMINARIES

In this section, we introduce the notations deployed
in our scheme.

3.1 Pairings

Let G and GT be cyclic groups of prime order p. A
map e^ : G G ! GT is bilinear if for any generators g 2 G and a;
b 2 Zp, e^(ga; g b) = e^(g; g)ab. Let G be a pairing generation
algorithm which takes as input a security parameter 1 and
outputs (p; G; G; GT ; e^) G(1). The generators of the groups

may also be given. All group operations as well as the bilinear
map e^ are efficiently computable.

3.2 Monotone Span Program

Our access control mechanism depends on expressing
the attribute predicate as a monotonespan program. Let : f0;
1gn ! f0; 1g be a monotone boolean function. A monotone
span program for over a field F is an ` m matrix M with
entries in F, along with a labeling function : [1; `] ! [1; n] that
associates each row of M with an input variable of , that, for
every (x1; : : : ; xn) 2 f0; 1gn, satisfies the following:

(x1; : : : ; xn) = 1 ()9~v 2 F1 ` : ~vM = [1; 0; 0; : : : ; 0] and (8i :
x (i) = 0) vi = 0):

In other words, (x1; : : : ; xn) = 1 if and only if the
rows of M indexed by fijx (i) = 1g span the vector [1; 0; 0; : : :
; 0]. We call ` the length and m the width of the span program,
and ` + m the size of the span program. Every monotone
boolean function can be represented by some monotone span
program, and a large class does have compact monotone span
programs. Given a monotone boolean function , one can use
the method given in to obtain the matrix M.

3.3 BBS+ Signatures

We briefly review a signature scheme called BBS+. It
belongs to a class of signature schemes, commonly known as
CL-signatures. CL-signatures are useful in certifying
credentials since their structures allows (1) a signer to create a
signature on committed values; and (2) a signer holder to
prove to any third party that he/ she is in possession of a
signature from the signer in zero knowledge. BBS+ is
proposed by Au et al, which is based on the schemes of
Camenisch and Lysyanskaya and of Boneh et al. It is also
referred to as credential signatures as it is normally used to
certify a set of credentials.

IV. OVERVIEW

4.1 Intuition

A naive thinking to achieve our goal is to use a
normal ABS and simply split the user secret key into two
parts. One part is kept by the user (stored in the computer)
while another part is initialized into the security device.
Special care must be taken in the process since normal ABS
does not guarantee that the leakage of part of the secret key
does not affect the security of the scheme

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 1168 www.ijsart.com

Fig. 1: Overview idea of our system

while in two 2FA, the attacker could have

compromised one of the factors. Besides, the splitting should
be done in such a way that most of the computation load
should be with the user’s computer since the security device is
not supposed to be powerful.

We specifically design our system in another manner.
We do not split the secret key into two parts. Instead, we
introduce some additional unique information stored in the
security device. The authentication process requires this piece
of information together with the user secret key. It is
guaranteed that missing either part cannot let the
authentication pass. There is also a linking relation-ship
between the user’s device and the secret key so that the user
cannot use another user’s device for the authentication. The
communication overhead is minimal and the computation
required in the device is just some lightweight algorithms such
as hashing or exponentia-tion over group GT 2. All the heavy
computations such as pairing are done on the computer.
4.2 Entities

Our system consists of the following entities:

Trustee: It is responsible for generating all system parameters
and initialise the security device.
Attribute-issuing Authority: It is responsible to gen-erate user
secret key for each user according to their attributes.

User: It is the player that makes authentication with the cloud
server. Each user has a secret key issued by the attribute-
issuing authority and a security device initialized by the
trustee.

Cloud Service Provider: It provides services to anonymous
authorised users. It interacts with the user during the
authentication process.

4.3 Assumptions

The focus of this paper is on preventing private infor-
mation leakage at the phase of access authentication. Thus we
make some assumptions on system setup and communication
channels. We assume each user com-municates with the cloud
service provider through an anonymous channel [37], [26] or
uses IP-hiding technol-ogy. We also assume that trustee
generates the security parameters according to the algorithm
prescribed. Other potential attacks, such as IP hijacking,
distributed denial-of-service attack, man-in-the-middle attack,
etc., are out of the scope of this paper.

4.4 Threat Model

In this paper, we consider the following threats:

1) Authentication: The adversary tries to access the
system beyond its privileges. For example, a user
with attributes fStudent; Physicsg may try to access
the system with policy “Staff” AND “Physics”. To do
so, he may collude with other users.

2) Access without Security Device: The adversary tries
to access the system (within its privileges) without
the security device, or using another se-curity device
belonging to others.

3) Access without Secret Key: The adversary tries to

access the system (within its privileges) without any
secret key. It can have its own security device.

4) Privacy: The adversary acts as the role of the cloud

server and tries to find out the identity of the user it is
interacting with.

V. OUR PROPOSED SYSTEM

5.1 Specification of the Security Device

We assume the security device employed in our
system satisfies the following requirements.

1) Tamper-resistance. The content stored inside the se-curity

device is not accessible nor

modifiable once it is initialized. In addition, it will always
follow the algorithm specification.

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 1169 www.ijsart.com

Capability. It is capable of evaluation of a hash function. In
addition, it can generate random num-bers and compute
exponentiations of a cyclic group defined over a finite field

5.2 Construction

Let A be the desired universe of attributes. For
simplicity, we assume A = [1; n] for some natural number n.
We will use a vector ~x 2 f0; 1gn to represent the user’s
attribute set. Let ~x = (x1; : : : ; xn) 2 f0; 1gn. If the user is in
possession of attribute i, xi = 1. Otherwise, xi = 0.

5.2.1 System Setup

The system setup process consists of two parts. The
first part TSetup is run by a trustee to generate public pa-
rameters. The second part ASetup is run by the attribute-
issuing authority to generate its master secret key and public
key.

TSetup: Let be a security parameter. The trustee

runs G(1) (described in Section 3.1) to generate
param = (G; GT ; p; e^) and randomly picks generators g; g;^
h; h0; h1; : : : ; hn 2 G. It also picks a collision re-sistant hash
function H : f0; 1g ! Zp. Further, let tpk = e^(g; h0)tsk for a
randomly generated tsk 2R Zp.
It publishes TPK = (param; g; g;^ h; h0; h1; : : : ; hn; H; tpk).

ASetup: The attribute-issuing authority randomly picks

2 Zp and computes w = h . It publishes APK = (w) and sets
ASK = ().

5.2.2 User Key Generation

The user key generation process consists of three
parts. First, the user generates his secret and public key in
USetup. Then the security device is initialized by the trustee in
Device Initialization. Finally the attribute-issuing authority
generates the user attribute secret key according to the user’s
attribute in AttrGen.

USetup: The user randomly picks y 2 Zp. It publishes UPK =
Y = hy

0 and sets USK = y.

Device Initialization: The trustee initializes the security device
for user (whose public key is UPK) with values
TY = e^(g; Y), TG = e^(g; h0) and tsk.
AttrGen: The key generation algorithm takes as input TPK;
APK; UPK = Y and an attribute set A

represented as a by a vector (x1; : : : ; xn) 2 f0; 1gn.

The user runs a zero-knowledge proof of knowledge
protocol PK0 with the attribute-issuing authority to prove the
knowledge of his partial secret key y:

PK0fy : Y = hy

0g:

This proof of knowledge of discrete logarithm is
straight-forward and is shown in the next subsection. If the
proof is correct, the attribute-issuing authority chooses random
e; s 2 Zp and uses his secret key ASK to create the user
attribute secret key skA;Y := (A; e; s) as
A = (hY hx1 hxn g^s) 1
+e
1 n

5.2.3 Access Authentication

The access authentication process is an interactive
pro-tocol between the user and the cloud service provider. It
requires the user to have his partial secret key, attribute secret
key3 and the security device.
Auth: The interactive authentication protocol takes as input
TPK, APK and a claim-predicate . The user has some
additional inputs including an attribute secret key skA;Y for
attribute A, USK = y and the security device. Assume (A) = 1.
Parse skA;Y as (A; e; s; ~x).

1) The authentication server picks at random a chal-lenge R 2
Zp and sends R to the user.

1
2) The user computes C = e^(g; h0) y+R and submits (C; y; R)

to his/her security device.
3) The security device validates C(y+R) = TG and

TGy = TY.
4) Upon successful validation, the security device

picks a random r 2R Zp, computes cR =
H(TGrjjRjjC) and zR = r cRtsk. It returns (cR; zR) to the user.

5) The user converts to its corresponding monotone
span program M = (Mi;j) 2 (Zp)` m, with row labeling :
[1; `] ! A. Also compute the vector ~v = (v1; : : : ; v`)
2 Z`

p that corresponds to the satisfying assignment A.
That is ~vM = (1; 0; : : : ; 0). Note that if x (i) = 0
(i.e., the user does not possess the attribute (i)), vi
must be 0).

6) For i = 1 to `, the user randomly picks ai; ti 2R Zp and

computes Ci = gvi hti , Di = gx (i) hai . The user also
computes bi = ti aivi.

P`

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 1170 www.ijsart.com

7) For j = 1 to m, the user computes fj = i=1 tiMi;j. Then
the user sends (C, cR, zR, C1, : : :, C`, D1, : : :,
D`) to the authentication server.

They then engage in the following zero-knowledge

5.3 Proof of Knowledge

We briefly introduce the proof of knowledge as
defined in [5]. Intuitively, a two-party protocol constitutes a
system for proofs of knowledge if one party (called the
verifier) is convinced that the other party (called the prover)
indeed knows some “knowledge”.

If R is a binary relation, we let R(x) = fy : (x; y) 2 Rg
and the language LR = fx : 9y such that (x; y) 2 Rg. If (x; y) 2
R, we call y the witness of x.

A proof of knowledge is a two-party protocol with
the following properties:

Completeness: If (x; y) 2 R, the honest prover who knows
witness y for x succeeds in

1) convincing the honest verifier of his knowledge.

Soundness: If (x; y) 2= R, no cheating prover can convince
the honest verifier that (x; y) 2 R, except with some small
probability. It can be captured by the existence of a knowledge
extractor E to extract the witness y: given

1) oracle access to a cheating prover P , the probability
that E outputs y must be at least as high as the
success probability of P in convincing the verifier.

For a zero-knowledge proof of knowledge, it has the

extra property of Zero-knowledge: no cheating verifier learns
anything other than (x; y) 2 R. It is formalized by showing that
every cheating verifier has some simulator that can produce a
transcript that is indistinguishable with an interaction between
the honest prover and the cheating (or honest) verifier.
5.3.1 Implementation of Protocol PK0

PK0fy : Y = hy

0g:

Suppose Alice wants to prove the knowledge of y to
Bob. Alice picks a random number r 2 Zp and sends the
commitment R = hr

0 to Bob. Bob returns a random challenge c
2 Zp. Alice computes the response z = r+cy. Bob verifies that
hz

0 = R Y c. Details of the protocol can be found in Chapter 3
of [9]. For completeness, we briefly outline how PK0 provides
soundess and zero-knowledgeness here. (Soundness) Suppose

the simulator is given a discrete logarithm instance (h0; Y), it
uses Y as the public key. Given a transcript (R; c; z), it
rewinds to obtain another transcript (R; c0; z0). Since both of
them are valid, it means that
hz0Y c = hz0

0
Y c0

:

Hence the simulator can obtain z
c z

c0
0 as the solution

of logh0 Y . (Zero-knowledge) Given the public key h0; Y , the
simulator can randomly picks c; z 2 Zp and computes R = hz

0Y
c. The transcript (R; c; z) has the same distri-bution as those
coming from Alice and Bob.

5.3.2 Implementation of Protocol PK1

Before discussing PK1, it is useful to describe the

goal of PK1. The set fCig`
i=1 is the commitment of the vector

~v such that ~vM = (1; 0; : : : ; 0). In other words, the goal of
PK1 is to ensure the authenticating user is in possession of a
set of attributes that satisfies the monotone boolean function.
The first challenge is to ensure the user can only set vi to be
non-zero if he is in possession of attribute (i). This is done by
having his attributes certified with the BBS+ signature. More
formally, the user attribute key (A; e; s) is a BBS+ signature
on the tuple (y; x1; : : : ; xn). To ensure vi 6= 0 if and only if x
(i) = 1, PK1 requires the user to demonstrate several
relationships. First of all, the user has to commit the relevant
xi, which results in Di. Next, the user proves that both Ci and
Di are correctly computed as in Di = gx (i) hai and Ci = gvi hti :
The final relation Ci = Di

vi hbi is crucial, as it ensures that vi
equals xivi. That is, if xi is 0, vi must be zero. Finally, the
relation

e^(A; whe) = e^(hhy

0hx
1
1 : : : hx

n
n g^s; h)

ensures the set of xi together with the user secret key

y has been signed (the corresponding signature is (A; e; s)),
which means the set of attributes used is properly cer-tified.
We shall elaborate how this could be conducted based on the
signature verification protocol of BBS+.

The final two relations mean that ~vM evaluates to

(1; 0; : : : ; 0).

Now we are ready to describe the implementation of
PK1. The prover first randomly generates k1; k2 2R Zp,
computes A1 = gk1 hk2 , A2 = Ahk1 , 1 = k1e, 2 = k2e, and
conducts the following proof.
5.5 Efficiency Analysis

We analyze the efficiency of our protocol in two
parts. In the first part, we identify the major operations for the

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 1171 www.ijsart.com

authentication protocol in Table 4. The symbols P , E1, ET
represent the time cost (in ms) of a pairing operation, an
exponentiation in group G and group GT respectively. The
symbol Zp, G, GT represents the size of an element (in bits) in
Zp, G and GT respectively.

We consider three different platforms, namely, a
com-puter, a smart phone and a smart card.

For the time cost on a smartcard, we use the bench-mark result
from [40]. The configuration of our platforms are as follows.

We use Miracl library version 5.2. The base field is a prime
field Fq, where q is a 512-bit prime whose value is:

8BA2A5229BD9C57CFC8ACEC76DFDBF 3E

3E1952C6B3193ECF 5C571FB502FC5DF 4

10F 9267E9F 2A605BB0F 76F 52A79E8043

BF 4AF 0EF 2E9FA78B0F 1E2CDFC4E8549B

The elliptic curve is defined by the equation y2 = x3 +
1 mod q. The group G (as well as GT) is of order
p=8000000000000000000000000000000000020001, where p
is a 160-bit prime. The pairing is Tate pairing. Table 4 listed
the number of operations and communication for an
authentication transaction. Recall that n is the size of the

attribute universe, ` and m are the length and width of the span
program representing the access policy.

5.5.1 Simulation

Assume the total number of attributes in the system is 100. In
other words, the attribute universe A = f1; : : : ; 100g. In the
following we estimate the efficiency of our system using
policy of the following format:

0 1
a b
_ ^
@ (attri;j)A ;

i=1 j=1

where attri;j maybe re-used in different clauses. In gen-eral,
this kind of policy can be represented by a

span program of length ` = a b and width m = a (b 1)+1.

TABLE 4: Authentication Complexity

The following graphs shows the bandwidth
requirement, computational cost at server and user of our
system for policy of various size.

Fig. 2 shows the time cost of the server to
authenticate a single user. For a relatively simple policy, say,
consist-ing of 2 clauses with 2 attributes per clause for a total
of 4 attributes, the time is less than 0.3 seconds. For a policy
of 10 clauses with 10 attributes per clause, the time is around 3
seconds. While the asymptotic complexity at the user is
similar to that of the server, the time cost for a user is about
five times slower due to the use of a less powerful computing
device (a smartphone). One should note that the security
device is not the bottleneck as it only accounts for a constant
time cost of 0.6 seconds. Please refer to Fig. 3 for the time
complexity at the user side. The total authentication time for a
policy with 100 attributes, arranged as 10 clauses with 10

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 1172 www.ijsart.com

attributes each, is about 18 seconds. The communication cost
of our protocol is depicted in Fig. 4. In particular, for a policy
of 100 attributes, the total bandwidth requirement is around 45
KB, which is acceptable for today’s network. One could
conclude that our protocol is plausible for very simple policy
and is still not practical yet for policy of medium size.

Having said that, we would like to remark that the
protocol might be optimised. Two possible approaches could
be adopted. Firstly, notice that many of the expo-nentiations
are of the form gxhy for some fixed bases g and h. This kind of
operation is known as multi-base exponentiation and can be
computed at about the cost of 110% of a single base
exponentiation. It is also worth noting that for fixed base,
there are a number of pre-processing techniques available. It is
quite likely to reduce the time by half.

VI. CONCLUSION

 In this paper, we have presented a new 2FA

(including both user secret key and a lightweight security
device)

Fig. 3: Running time of the Auth protocol (User side) (s)

Fig. 4: Communication cost of the Auth protocol (KB)

Communication cost of the Auth protocol (KB)
access control system for web-based cloud computing
services. Based on the attribute-based access control

mechanism, the proposed 2FA access control system has been
identified to not only enable the cloud server to restrict the
access to those users with the same set of attributes but also
preserve user privacy. Detailed secu-rity analysis shows that
the proposed 2FA access con-trol system achieves the desired
security requirements. Through performance evaluation, we
demonstrated that the construction is “feasible”. We leave as
future work to further improve the efficiency while keeping all
nice features of the system.

REFERENCES

[1] M. H. Au and A. Kapadia. PERM: practical reputation-

based blacklisting without TTPS. In T. Yu, G. Danezis,
and V. D. Gligor, editors, the ACM Conference on
Computer and Communications Security, CCS’12,
Raleigh, NC, USA, October 16-18, 2012, pages 929– 940.
ACM, 2012.

[2] M. H. Au, A. Kapadia, and W. Susilo. Blacr: Ttp-free
blacklistable anonymous credentials with reputation. In
NDSS. The Internet Society, 2012.

[3] M. H. Au, W. Susilo, and Y. Mu. Constant-Size Dynamic
k-TAA. In SCN, volume 4116 of Lecture Notes in
Computer Science, pages 111–125. Springer, 2006.

[4] J. Baek, Q. H. Vu, J. K. Liu, X. Huang, and Y. Xiang. A
secure cloud computing based framework for big data
information man-agement of smart grid. IEEE T. Cloud
Computing, 3(2):233–244, 2015.

[5] M. Bellare and O. Goldreich. On defining proofs of
knowledge. In CRYPTO, volume 740 of Lecture Notes in
Computer Science, pages 390–420. Springer, 1992.

