On Pseudo-Small-Projective Modules And Quasi Pseudo Weakly Projetive Module

Sushma Jat¹, Vivek Patel²

Abstract- Pseudo-projectivity and small-pseudo-projectivity is a generalization of projectivity. In this paper the concept of small projectivity has been generalized to small pseudo projectivity and some results on small pseudo projective modules . Also some results on pseudo weakly projective modules have been obtained. Here the basic ring R is supposed to be ring with unity and all modules are supposed to be unitary left R-modules.

Keywords- small pseudo projective modules, weakly projective, projective cover.

I. INTRODUCTION

Throughout this paper all rings are associative rings with identity, and all modules are unitary right modules. Pseudo-injective and essential-pseudo-injective modules have been studied by many authors [2], [3], but here we study the properties of pseudo and small pseudo-projective modules.

Suppose that M is an R-module. A submodule A of M is said to be a small submodule of M if for any $B \subseteq M$, A + B = M implies B = M. Given two R-modules N and M, N is called M-projective if for every submodule A of M, any homomorphism $\alpha : N \rightarrow M/A$ can be lifted to a homomorphism $\beta : N \rightarrow M$. A module N is called projective if it is M-projective for every R-module M. On the other hand, N is called quasi-projective if N is N-projective.

It is well-known that an R-module N is projective if and only if it satisfies any of the following equivalent conditions:

i) For any R-module M and $B \subseteq M$ every R-homomorphism N \rightarrow M/B can be lifted to an R-homomorphism N \rightarrow M.

ii) For any R-module M, every R-epimorphism $M \to N$ splits. Moreover, we will denote projective cover of M by (P(M), α M) if, there is an epimorphism $\alpha_M : P(M) \to$ M with P(M) projective and ker(α_M) \ll P(M).

Theorem 1.1 Let M and N be two modules and $X = M \bigoplus N$. Then following conditions are equivalent:

(i) N is small-M-pseudo-projective;

(ii) for any submodule A of X such that N is a supplement of A and A+M =X, there exists a submodule N' \subseteq A such that N' \bigoplus M = X.

Proof

(i) \Rightarrow (ii) Assume that holds i) and A satisfies the assumptions of (ii) and also let

 $f: N \to M/(A \cap M)$. If $n \in N$ then there exists $m \in M$, $a \in A$ such that n = a + m. Define

 $f(n) = m + A \cap M$. If n1 = n2 in Nthen n1 = a1 + m1 and n2 = a2 + m2 for some a1, a2 in A and m1,m2 in M.Then a1 - a2 = m2 - m1 is in $A \cap M$. Thus f(n1) = f(n2). Clearly f is an

epimorphism. ker(f) = A \cap N _ N. As N is small M-pseudoprojective,f can be lifted to a homomorphism f_ : N \rightarrow M such that $\pi \circ f_{-} = f$, with $\pi : M \rightarrow M/(M \cap A)$. Define N' = {n f'(n)|n \in N} and let $x \in$ N', thenx = n - f'(n) for some $n \in$ N. We have $\pi \circ f'(n) = f(n)$ and n = a + m

for some a in A and m in M. Therefore $f'(n) + A \cap M = m + A \cap M$. Then f'(n) - m is in $A \cap M$ and f'(n) - n + a is in $A \cap M$. Thus $x \in A$. Then $N' \subseteq A$. It is clear that N' + M = X. Also $N' \cap M = 0$. Consequently $N' \bigoplus M = X$.(ii) \Rightarrow (i) Let $f : N \rightarrow M/B$ be an epimorphism with ker($f) \ll N$ and

 $\pi : M \to M/B$ is natural projection. Define $A = \{n + m | f(n) = -\pi(m)\}$. It is clear that X = N + A and $A \cap N = \ker(f) \leq N$ and X = A + M, then there exists a submodule $N' \subseteq A$ with $X = N' \oplus M$. Define $\alpha : N' \oplus M \to M$ with $\alpha(n_{-} + m) = m$ Then $\alpha|_N : N \to M$ is lifting homomorphism of f. Therefore N is M-pseudo-projective.

Theorem.1.2 If N be a small-M-pseudo projective module and B be adirect summand of M, then N is small-B-pseudo projective module.

proof. Let $X' = N \bigoplus B$ and $X = N \bigoplus M$. Assume that $A \subseteq X'$ such that N is supplement of A inX' and $X = N \bigoplus B$. Then we have N is supplement of Ain X andA + B = X. By Proposition (3.1) there exists a submodule $N_{_} \subseteq A$ such that $N_{_} \bigoplus M = X$. Then $N_{_} \bigoplus B = X_{_}$. Again by Proposition if N is M-pseudoprojective then any epimorphism $f : M \rightarrow N$ splits.N is small-B-pseudo projective.

Theorem1.3 Let M be a small pseudo projective module and $\varphi: M \rightarrow N$ be a small epimorphism then there exists an epi-

endomorphism h in End(M) such that $Ker\phi = Ker(\phi \circ h)$ is stable under h.

Proof : The small epimorphism $\phi : M \to N$ induces an isomorphism. ϕ^* :M / Ker $\phi \rightarrow N$ Let $f: M \rightarrow M/\text{Ker}\phi$ be the natural map. By small pseudo projectivity of M $\exists h \in End(M)$ such that ϕ^* of $=\phi \circ h$. Since $\phi(M) = N = \phi * of(M) = \phi o h(M)$; for any $m \in M$, $\varphi(m) = \varphi \circ h(m)$ \Rightarrow m-h (m) \in Ker $\phi \Rightarrow$ m \in Imh + Ker ϕ \Rightarrow M \subseteq Imh + Ker $\phi \Rightarrow$ M = Imh + Ker $\phi \Rightarrow$ M= Imh, \Rightarrow h is onto. Now, $x \in \text{Ker} \phi \Rightarrow x \in \text{Ker} f \Rightarrow f(x) = 0$ $\Rightarrow \phi * of (x) = 0 \Rightarrow \phi oh (x) = 0$ \Rightarrow x \in Ker ϕ o h \Rightarrow Ker $\phi \subseteq$ Ker ϕ o h Let $y \in Ker\phi$ oh $\Rightarrow \phi \circ h(y) = 0 \Rightarrow \phi * \circ f(y) = 0$ \Rightarrow f (y) \in Ker $\phi^* \Rightarrow$ f (y) = o as ϕ^* is one -one \Rightarrow y \in Ker f = Ker ϕ \Rightarrow Ker ϕ o h \subseteq Ker ϕ and therefore Ker $\phi = \text{Ker}\phi$ oh Now let, t \in Ker ϕ then ϕ (t) = 0 = ϕ o h (t) $\Rightarrow \phi$ {t - h (t)} = 0 \Rightarrow t – h(t) \in Ker ϕ \Rightarrow h(t) \in Ker ϕ \Rightarrow h(Ker ϕ) \subseteq Ker ϕ . Hence Ker ϕ is invariant under epi-endomorphism of M.

Theorem1.4 Let M be a small pseudo projective module and $K \subseteq M$ be a small submodule of M then M/K is small pseudo projective if K is stable under endomorphisms of M.

Proof: Let $v : M \rightarrow M/K$ be the natural map, $f : M/K \rightarrow A$ be an epimorphism and g: $M/K \rightarrow A$ be a small epimorphism, where A is any R- module. Then by small pseudo projectivity of M there exist $\varphi \in End(M)$ such that f o $v = go v o \varphi$.

Define

$$\psi: \frac{M}{K} \to \frac{M}{K}$$
as $\psi(x + K) = \varphi(x) + K$

Then ψ is well defined and

 $\psi \circ v = v \circ \phi \Rightarrow g \circ \psi \circ v = g \circ v \circ \phi$ $\Rightarrow g \circ \psi \circ v = f \circ v \Rightarrow g \circ \psi = f$, since v is onto $\Rightarrow M/K$ is small pseudo projective.

II. QUASI PSEUDO WEAKLY PROJECTIVE

We say that M is quasi pseudo Projective If M has a projective cover $\pi: P(M) \to M$ and every homomorphism $\Psi: P(M) \to N$ can be factored through M via some epimorphism. Equivalently, a module M is weakly projective if it has a projective cover $\pi: P(M) \to M$ and given any homomorphism $\Psi: P(M) \to N$ there exists $X \subseteq \ker$ $\frac{P(M)}{X} \cong M$.

$$\Psi_{\text{such that}}$$

Theorem2.12 Let M and N are two R-modules and assume M has a projective cover $\pi : P \longrightarrow M$. Then the following statements are equivalent :

- 1. M is quasi pseudo weakly projective.
- 2. For every sub module $K \subset N$, M is quasi pseudo weakly projective.
- 3. For every sub module $K \subset N$, M is quasi

pseudo weakly $\overline{\mathbf{K}}$ -projective.

Proof :

(i) (1) Implies (2) and (3) Assume M is pseudo weakly N-projective and let K is a sub-module of N and $\psi : P \longrightarrow K$ is a homomorphism. Then $\psi = i_{\pi}$. ψ : P \longrightarrow N may be expressed as a composition $\psi = g\sigma$ for some homomorphism g : $M \longrightarrow N$ and epimorphism $\sigma : P \longrightarrow M$. Since σ is onto, the range of σ equals the range of g and so it is contained in K. Thus we may define $g: M \longrightarrow K$ via $\psi(m) = g(m)$ and then $\psi = g\sigma$, proving that M is pseudo weakly K-projective as claimed. Assume once again that M is pseudo weakly projective and let $f: P \longrightarrow N/K$ is a homomorphism. Since P is projective, there exists a map $\overline{f}: P \longrightarrow N$ such that $f = \pi_x \cdot \bar{f}$. The weakly N-projective of M yields an epimorphism $\sigma: P \longrightarrow M$ and a homomorphism h: M $\longrightarrow N$ such that $\overline{f} = h.\sigma$. Let $\pi_x.h=f_1$ then $f_1\sigma = \pi_k.h.\sigma = \pi f = f_1$, proving that M is indeed pseudo weakly $\frac{1}{K}$ projective.

(ii) (2) or (3) implies (1) is trivially.

Remarks:

Let M and N are two R-modules and assume M has a projective cover $\pi : P \longrightarrow M$. Then M is quasi pseudo weakly N-projective if and only if for every sub-module K \subset N and for every epimorphism $\psi : P \longrightarrow K$ there exist epimorphism $\sigma : P \longrightarrow M$ and $g : M \longrightarrow N$ such that $\psi =$ g. σ .

Theorem:2.2

Let M and N are two R-modules and assume M has a projective cover $\pi : P \longrightarrow M$. Then M is quasi pseudo weakly N-projective iff for every map $\psi : P \longrightarrow N$ there exist a sub

$$\frac{P}{X} \cong M.$$
module X \subset Ker ψ such that $\frac{P}{X}$

Proof :Necessary condition :

Let $\psi : P \longrightarrow N$ is a homomorphism. Assume M is quasi pseudo weakly N-projective and let the homomorphism $g : M \longrightarrow N$ and the epimorphism $\sigma : P \longrightarrow M$ be as in the definition of weakly relative projectivity. Since $\psi = g.\sigma$, Ker

$$\frac{P}{ar\sigma} \cong M$$

 $\sigma \subset \text{Ker } \psi$. Also $Ker\sigma$ Thus the implication is proven by choosing $X = \text{Ker } \sigma$.

Conversely :

If
$$X \subset P$$
 satisfies the condition in the statement of the

$$\frac{P}{V} \cong M$$

theorem, then the isomorphism Λ , composed with the natural projection $\pi_k : P \longrightarrow P/X$ is an epimorphism $\sigma : P$ $\longrightarrow M$ satisfying that Ker $\sigma = X \subset$ Ker ψ . It follows that the map $g : M \longrightarrow N$ given by $g(m) = \psi(\rho)$ whenever $\sigma(\rho) = M$ is well defined and satisfies $\psi = g.\sigma$

REFERENCES

- A.K. Tiwary and B.M. Pandeya Pseudo Projective and Pseudo InjectiveModules, Indian J. of pure appl. Math., Vol. 9, No. 9(1978), pp. 941-949.
- [2] A.K. Tiwary, P.C. Bharadwaj and B.M. Pandeya, Quotients of PseudoProjective Modules, Bulletin of the Inst. of Math., Academia Sinica, Vol.10, No.4, December (1982), 357-367.
- [3] K.N. Chaubey: Small Projective Modules, Ph.D. Thesis, Banaras Hindu
 University, India (1984)

University, India (1984).

- [4] Dinguuo Wang and Jinqui Li: Characterization of rings using weakly projective module. Vietnam journal of mathematics.vol.25.(1998)
- [5] Quasi weakly projective and quasi weakly injective module: M.R. Aloney S. Jat. Ultra scientist journal of physical sciences.(2011)
- [6] A.K.Tiwary and B.M.Pandeya: Pseudo projective and pseudo injective modules. B.H.U. Vol.9 No.9(1978)