
IJSART - Volume 4 Issue 3 – MARCH 2018                                                                                     ISSN [ONLINE]: 2395-1052 
 

Page | 592                                                                                                                                                                     www.ijsart.com 
 

Fraud and Malware Detection in Google Play USING 
Fair Play Technology 

 
Bade Ankamma Rao1,KadiyalaKrishnakanth2 

Department of MCA 
1 Assistant  Professor, St. Mary's Group of Institutions, Guntur, Andhra Pradesh, India 

2PG Students, St. Mary's Group of Institutions, Guntur, Andhra Pradesh, India 
 

Abstract-Fraudulent behaviors in Google’s Android app 
market fuel search rank abuse and malware proliferation. We 
present FairPlay, a novel system that uncovers both malware 
and search rank fraud apps, by picking out trails that 
fraudsters leave behind. To identify suspi-cious apps, 
FairPlay’s PCF algorithm correlates review activities and 
uniquely combines detected review rela-tions with linguistic 
and behavioral signals gleaned from longitudinal Google Play 
app data. We contribute a new longitudinal app dataset to the 
community, which consists of over 87K apps, 2.9M reviews, 
and 2.4M re-viewers, collected over half a year. FairPlay 
achieves over 95% accuracy in classifying gold standard 
datasets of malware, fraudulent and legitimate apps. We show 
that 75% of the identified malware apps engage in search 
rank fraud. FairPlay discovers hundreds of fraudulent apps 
that currently evade Google Bouncer’s detection technology, 
and reveals a new type of attack campaign, where users are 
harassed into writing positive reviews, and install and review 
other apps. 
 

I. INTRODUCTION 
 
The commercial success of Android app markets 

such as Google Play [1] has made them a lucrative medium for 
committing fraud and malice. Some fraudulent develop-ers 
deceptively boost the search ranks and popularity of their apps 
(e.g., through fake reviews and bogus instal-lation counts) [2], 
while malicious developers use app markets as a launch pad 
for their malware [3, 4, 5, 6]. 

 
Existing mobile malware detection solutions have 

limitations. For instance, while Google Play uses the Bouncer 
system [7] to remove malware, out of the 7, 756 Google Play 
apps we analyzed using VirusTotal [8], 12%(948) were 
flagged by at least one anti-virus tool and 2% (150) were 
identified as malware by at least 10 tools (see Figure 3a). 
Previous work has focused on dynamic analysis of app 
executables [9, 10, 11] as well as static analysis of code and 
permissions [12, 13, 14]. However, recent Android malware 
analysis revealed that malware evolves quickly to bypass anti-
virus tools [15]. 

 

 
 
Figure 1: FairPlay system architecture. The CoReG 

module identifies suspicious, time related co-review 
behaviors. The RF module uses linguistic tools to detect 
suspicious behaviors reported by genuine reviews. The IRR 
module uses behavioral information to detect suspicious apps. 
The JH module identifies permission ramps to pinpoint 
possible Jekyll-Hyde app transitions. 

 
In this paper, we seek to identify both malware and 

search rank fraud targets in Google Play. This combination is 
not arbitrary: we posit that malicious developers resort to 
search rank fraud to boost the impact of their malware. 

 
Unlike existing solutions, we build this work on our 

observation that fraudulent and malicious behav-iors leave 
behind telltale signs on app markets. We un-cover these 
nefarious acts by picking out such trails. For instance, the high 
cost of setting up valid Google Play accounts forces fraudsters 
to reuse their accounts across review writing jobs, making 
them likely to re-view more apps in common than regular 
users. Re-source constraints can compel fraudsters to post 
reviews within short time intervals. Legitimate users a�ected 
by malware may report unpleasant experiences in their 
reviews. Ramps in the number of “dangerous” permis-sions 
requested by apps may indicate benign to malware (Jekyll-
Hyde) transitions. 

 
Contributions and Results. We propose FairPlay, a 

system that leverages the above observations to e�-



IJSART - Volume 4 Issue 3 – MARCH 2018                                                                                     ISSN [ONLINE]: 2395-1052 
 

Page | 593                                                                                                                                                                     www.ijsart.com 
 

cientlydetect Google Play fraud and malware (see Fig-ure 1). 
Our major contributions are: 

 
 A unified relational, linguistic and behavioral approach. 

We formulate the notion of co-review graphs to model 
reviewing relations between users. We develop PCF, an 
e�cient algorithm to identify temporally constrained, co-
review pseudo cliques — formed by reviewers with 
substantially overlapping co-reviewing activities across 
short time windows. We use linguistic and behavioral 
information to (i) detect genuine reviews from which we 
then (ii) extract user-identified fraud and malware 
indicators. In addition, we detect apps with (i) permission 
request ramps, (ii) “unbalanced” review, rating and install 
counts, and (iii) suspicious review spikes. We generate 28 
features, and use them to train supervised learning 
algorithms [§ 4]. 

 
 Novel longitudinal and gold standard datasets. We 

contributed a longitudinal dataset of 87, 223 freshly 
posted Google Play apps (along with their 2.9M reviews, 
from 2.3M reviewers) collected between October 2014 
and May 2015. We have leveraged search rank fraud 
expert contacts in Freelancer [16], anti-virus tools and 
manual verifications to collect gold standard datasets of 
hundreds of fraudulent, malware and benign apps. We 
will publish these datasets alongside this work [§ 3]. 

 
 High Accuracy. FairPlay achieves over 97% ac-curacy in 

classifying fraudulent and benign apps, and over 95% 
accuracy in classifying malware and benign apps. 
FairPlay significantly outperforms the malware indicators 
of Sarma et al. [12]. Furthermore, we show that malware 
often engages in search rank fraud as well: When trained 
on fraudulent and benign apps, FairPlay flagged as 
fraudulent more than 75% of the gold stan-dard malware 
apps [§ 5.3]. 

 
 Real-world Impact: Uncover Fraud & Attacks. FairPlay 

discovers hundreds of fraudulent apps that cur-rently 
evade Google Bouncer’s detection technology. We show 
that these apps are indeed suspicious: the review-ers of 
93.3% of them form at least 1 pseudo clique and 55% of 
these apps have at least 33% of their reviewers involved 
in a pseudo clique. In addition, FairPlayen-abled us to 
discover a novel, coercive campaign attack type, where 
app users are harassed into writing a pos-itive review for 
the app, and install and review other apps [§ 5.4 & § 5.5]. 

 
II. BACKGROUND, RELATED WORK, AND OUR 

DIFFERENCES 

System model. We focus on the Android app mar-ket 
ecosystem of Google Play. The participants, con-sisting of 
users and developers, have Google accounts. Developers 
create and upload apps, that consist of ex-ecutables (i.e., 
“apks”), a set of required permissions, and a description. The 
app market publishes this in-formation, along with the app’s 
received reviews (1-5 stars rating & text), ratings (1-5 stars, no 
text), ag-gregate rating (over both reviews and ratings), install 
count range (predefined buckets, e.g., 50-100, 100-500), size, 
version number, price, time of last update, and a list of 
“similar” apps. 

 
Adversarial model. We consider not only malicious 

developers, who upload malware, but also rational fraudulent 
developers. Fraudulent developers attempt to tamper with the 
search rank of their apps. While Google keeps secret the 
criteria used to rank apps, the reviews, ratings and install 
counts are known to play a fundamental part (see e.g., [17]. 
Fraudulent developers often rely on crowdsourcing sites [16, 
18, 19] to hire teams of workers to commit fraud collectively. 

 
To review or rate an app, a user needs to have a 

Google account, register a mobile device with that account, 
and install the app on the device. This process complicates the 
job of fraudsters, who are thus more likely to reuse accounts 
across review writing jobs. 

 
2.1 Research in Android Malware Detection. Burguera et al. 
[9] used crowdsourcing to collect system call traces from real 
users, then used a “partitional” clustering algorithm to classify 
benign and malicious apps. Shabtai et al. [10] extracted 
features from moni-tored apps (e.g., CPU consumption, 
packets sent, run-ning processes) and used machine learning to 
identify malicious apps. Grace et al. [11] used static analysis 
to e�ciently identify high and medium risk apps. 

 
Previous work has also used app permissions to 

pinpoint malware [12, 13, 14]. Sarma et al. [12] use risk 
signals extracted from app permissions, e.g., rare critical 
permissions (RCP) and rare pairs of critical permissions 
(RPCP), to train SVM and inform users of the risks vs. 
benefits tradeo�s of apps. In § 5.3 we use Sarma et al. [12]’s 
solution as a baseline, and show that FairPlay significantly 
improves on its performance. 

 
Peng et al. [13] propose a score to measure the risk of 

apps, based on probabilistic generative models such as Naive 
Bayes. Yerima et al. [14] also use features extracted from app 
permissions, API calls and commands extracted from the app 
executables. 

 



IJSART - Volume 4 Issue 3 – MARCH 2018                                                                                     ISSN [ONLINE]: 2395-1052 
 

Page | 594                                                                                                                                                                     www.ijsart.com 
 

Instead of analyzing app executables, FairPlayem-
ploys a unified relational, linguistic and behavioral ap-
proachbased on longitudinal app data. FairPlay’s use of app 
permissions di�ers from existing work through its focus on 
the temporal dimension, e.g., changes in the number of 
requested permissions, in particular the “dangerous” ones. We 
observe that FairPlay identifies and exploits a new relationship 
between malware and search rank fraud. 

 
2.2 Research on Graph Based Opinion Spam Detection. Graph 
based approaches have been pro-posed to tackle opinion spam 
[20, 21]. Ye and Akoglu [20] quantify the chance of a product 
to be a spam campaign target, then cluster spammers on a 2-
hop subgraph induced by the products with the highest chance 
values. Akoglu et al. [21] frame the fraud de-tection as a 
signed network classification problem and classify users and 
products, that form a bipartite net-work, using a propagation-
based algorithm. 

 
FairPlay’s relational approach di�ers as it identifies 

apps reviewed in a contiguous time interval, by groups of 
users with a history of reviewing apps in common. FairPlay 
combines the results of this approach with be-havioral and 
linguistic clues, extracted from longitudi-nal app data, to 
detect both search rank fraud and mal-ware apps. We 
emphasize that search rank fraud goes beyond opinion spam, 
as it implies fabricating not only reviews, but also user app 
install events and ratings. 

 
III. THE DATA 

 
We have collected longitudinal data from 87K+ 

newly released apps over more than 6 months, and identified 
gold standard app market behaviors. In the following, we 
briefly describe the tools we developed, then detail the data 
collection e�ort and the resulting datasets. 

 
Data collection tools. We have developed the Google 

Play Crawler (GPCrawler) tool, to automati-cally collect data 
published by Google Play for apps, users and reviews. Google 
Play shows only 20 apps on a user page by default. GPCrawler 
overcomes this lim-itation by using a Firefox add-on and a 
Python script. The add-on interacts with Google Play to 
extend the user page with a “scroll down” button and enable 
the script to automatically navigate and collect all the in-
formation from the user page. 

 
We have also developed the Google Play App Down-

loader (GPad), a Java tool to automatically download apks of 
free apps on a PC, using the open-source An-droid Market 
API [22]. GPad scans each app apk using VirusTotal [8], an 
online malware detector provider, to find out the number of 

anti-malware tools (out of 57: AVG, McAfee, Symantec, 
Kaspersky, Malwarebytes, F-Secure, etc.) that identify the 
apkas suspicious. We used 4 servers (PowerEdge R620, Intel 
Xeon E-26XX v2 CPUs) to collect our datasets, which we 
describe next. 

 
3.1 Longitudinal App Data. In order to detect app attribute 
changes that occur early in the lifetime of apps, we used the 
“New Releases” link to identify apps with a short history on 
Google Play. We approximate the first upload date of an app 
using the day of its first review. We have started collecting 
new releases in July2014 and by October 2014 we had a set of 
87, 223 apps, whose first upload time was under 40 days prior 
to our first collection time, when they had at most 100 
reviews. 

 
We have collected longitudinal data from these 87, 

223 apps between October 24, 2014 and May 5, 2015. 
Specifically, for each app we captured “snapshots” of its 
Google Play metadata, twice a week. An app snapshot consists 
of values for all its time varying variables, e.g., the reviews, 
the rating and install counts, and the set of requested 
permissions (see § 2 for the complete list). For each of the 2, 
850, 705 reviews we have collected from the 87, 223 apps, we 
recorded the reviewer’s name and id (2, 380, 708 unique ids), 
date of review, review title, text, and rating. 

 
3.2 Gold Standard Data. 

 
Malware apps. We used GPad (see § 3) to collect the 

apks of 7, 756 randomly selected apps from the longitu-dinal 
set (see § 3.1). Figure 3a shows the distribution of flags raised 
by VirusTotal, for the 7, 756 apks. None of these apps had 
been filtered by Bouncer [7]! From the 523 apps that were 
flagged by at least 3 tools, we selected those that had at least 
10 reviews, to form our “malware app” dataset, for a total of 
212 apps. 

 
Fraudulent apps. We used contacts established among 

Freelancer [16]’s search rank fraud community, to obtain the 
identities of 15 Google Play accounts that were used to write 
fraudulent reviews. We call these “seed fraud accounts”. 
These accounts were used to re-view 201 unique apps. We call 
these, the “seed fraud apps”, and we use them to evaluate 
FairPlay. 

 
Fraudulent reviews. We have collected all the 53, 625 

reviews received by the 201 seed fraud apps. The 15 seed 
fraud accounts were responsible for 1, 969 of these reviews. 
We used the 53, 625 reviews to identify 188 accounts, such 
that each account was used to review at least 10 of the 201 
seed fraud apps (for a total of 6, 488 reviews). We call these, 



IJSART - Volume 4 Issue 3 – MARCH 2018                                                                                     ISSN [ONLINE]: 2395-1052 
 

Page | 595                                                                                                                                                                     www.ijsart.com 
 

guilt by association (GbA) accounts. To reduce feature 
duplication, we have used the 1, 969 fraudulent reviews 
written by the 15 seed accounts and the 6, 488 fraudulent 
reviews written by the 188 GbA accounts for the 201 seed 
fraud apps, to extract a balanced set of fraudulent reviews. 
Specifically, from this set of 8, 457 (= 1, 969+6, 488) reviews, 
we have collected 2 reviews from each of the 203 (= 188 + 15) 
suspicious user accounts. Thus, the gold standard dataset of 
fraudulent reviews consists of 406 reviews. 

 
Benign apps. We have selected 925 candidate apps 

from the longitudinal app set, that have been developed by 
Google designated “top developers”. We have used GPad to 
filter out those flagged by VirusTotal. We have manually 
investigated 601 of the remaining apps, and selected a set of 
200 apps that (i) have more than 

 
Notation Definition 

   

COREG MODULE   

nCliques number of pseudo cliques with ρ ≥ θ 
stats(ρ) clique density: max, median, SD 
stats(cliqueSize) pseudo cliques size: max, median, SD 
inCliqueSize % of nodes involved in pseudo cliques 

   

RF MODULE   

malW % of reviews with malware indicators 
f raudW ,goodW % of reviews with fraud/benign words 
F RI fraud review impact on app rating 

   

IRR MODULE   

stats(spikes) days with spikes & spike amplitude 
I1/Rt1, I2/Rt2 install to rating ratios 
I1/Rt1, I2/Rt2 install to review ratios 

   

JH MODULE   

permCt, dangerCt # of dangerous and total permissions 
rampCt # of dangerous permission ramps 
dangerRamp # of dangerous permissions added 

   

 
Table 1: FairPlay’s most important features, 

organized by their extracting module. 
 
10 reviews and (ii) were developed by reputable 

media outlets (e.g., NBC, PBS) or have an associated business 
model (e.g., fitness trackers). 

 
Genuine reviews. We have manually collected a gold 

standard set of 315 genuine reviews, as follows. First, we have 
collected the reviews written for apps installed on the Android 
smartphones of the authors. We then used Google’s text and 
reverse image search tools to identify and filter those that 
plagiarized other reviews or were written from accounts with 
generic photos. We have then manually selected reviews that 

mirror the authors’ experience, have at least 150 characters, 
and are informative (e.g., provide information about bugs, 
crash scenario, version update impact, recent changes). 
 

IV. FAIRPLAY: PROPOSED SOLUTION 
 

4.1 FairPlay Overview. FairPlay organizes the analysis of 
longitudinal app data into the following 4 modules, illustrated 
in Figure 1. The Co-Review Graph (CoReG) module identifies 
apps reviewed in a con-tiguous time window by groups of 
users with signifi-cantly overlapping review histories. The 
Review Feed-back (RF) module exploits feedback left by 
genuine re-viewers, while the Inter Review Relation (IRR) 
module leverages relations between reviews, ratings and 
install counts. The Jekyll-Hyde (JH) module monitors app 
permissions, with a focus on dangerous ones, to identify apps 
that convert from benign to malware. Each mod-ule produces 
several features that are used to train an app classifier. 
FairPlay also uses general features such as the app’s average 
rating, total number of reviews, 

 
Figure 2: Example pseudo cliques and PCF output. 

Nodes are users and edge weights denote the number of apps 
reviewed in common by the end users. Review timestamps 
have a 1-day granularity. (a) The entire co-review graph, 
detected as pseudo clique by PCF whenθ is 6. When θ is 7, 
PCF detects the subgraphs of (b) the first two days and (c) the 
last two days. 

 
ratings and installs, for a total of 28 features. Table 1 

summarizes the most important features. In the follow-ing, we 
detail each module and the features it extracts. 

 
4.2 The Co-Review Graph (CoReG) Module. Let the co-
review graph of an app, see Figure 2, be a graph where nodes 
correspond to users who reviewed the app, and undirected 
edges have a weight that indicates the number of apps 
reviewed in common by the edge’s endpoint users. We seek to 
identify cliques in the co-review graph. Figure 5a shows the 
co-review clique of one of the seed fraud apps (see § 3.2). 

 
To address the problem’s NP-hardness, we exploit 

two observations. First, fraudsters hired to review an app are 
likely to post those reviews within relatively short time 
intervals (e.g., days). Second, perfect cliques are not 
necessary. Instead, we relax this requirement to identify 



IJSART - Volume 4 Issue 3 – MARCH 2018                                                                                     ISSN [ONLINE]: 2395-1052 
 

Page | 596                                                                                                                                                                     www.ijsart.com 
 

“pseudo cliques”, or groups of highly but not necessarily 
completely connected nodes. Specifically, we use the 
weighted density definition of Uno [23]: given aco-review 
graph, its weighted density 

 
 ρ = E∈E W(E) , 
 (N

2)  
 
where E denotes the graph’s edges and n its number 

of nodes (reviews). We are interested then in subgraphs of the 
co-review graph whose weighted density exceeds a threshold 
value θ. 

 
We present the Pseudo Clique Finder (PCF) algo-

rithm (see Algorithm 1), that takes as input the set of the 
reviews of an app, organized by days, and a thresh-old value θ. 
PCF outputs a set of identified pseudo cliques with ρ ≥ θ, that 
were formed during contiguous time frames. In Section 5.3 we 
discuss the choice of θ. 

 
For each day when the app has received a review 

(line 1), PCF finds the day’s most promising pseudo clique 
(lines 3 and 12−22): start with each review, then greedily add 
other reviews to a candidate pseudo clique; keep the pseudo 
clique (of the day) with the highest density. With that “work-
in-progress” pseudo clique, move on to the next day (line 5): 
greedily add other reviews while the weighted density of the 
new pseudo 

 
Algorithm 1 PCF algorithm pseudo-code.   
Input: days, an array of daily reviews, and θ, 

the weighted threshold density  
Output: allCliques, set of all detected pseudo cliques 
1. for d :=0 d <days.size(); d++  
2. Graph PC := new Graph();  
3. bestNearClique(PC, days[d]);  
4. c := 1; n := PC.size();  
5. for nd := d+1; d <days.size() & c = 1; d++  
6. bestNearClique(PC, days[nd]);  
7. c := (PC.size() > n); endfor  
8. if (PC.size() > 2)  
9. allCliques := allCliques.add(PC); fi endfor  
10. return  
11. function bestNearClique(Graph PC, Set revs)  
12. if (PC.size() = 0)  
13. for root := 0; root <revs.size(); root++  
14. Graph candClique := new Graph ();  
15. candClique.addNode (root.getUser());  
16. do candNode := getMaxDensityGain(revs);  
17. if (density(candClique∪ {candNode}) ≥ θ))  
18. candClique.addNode(candNode); fi  
19. while (candNode != null);  
20. if (candClique.density() >maxRho)  
21. maxRho := candClique.density();  
22. PC := candClique; fi endfor  
23. else if (PC.size() > 0)  
24. do candNode := getMaxDensityGain(revs);  

25. if (density(candClique∪candNode) ≥ θ))  
26. PC.addNode(candNode); fi  
27. while (candNode != null);  
28. return 

 
clique equals or exceeds θ (lines 6 and 23 − 27). 

When no new nodes have been added to the work-in-progress 
pseudo clique (line 8), we add the pseudo clique to the output 
(line 9), then move to the next day (line 1). The greedy choice 
(getMaxDensityGain, not depicted in Algorithm 1) picks the 
review not yet in the work-in-progress pseudo clique, whose 
writer has written the most apps in common with reviewers 
already in the pseudo clique. Figure 2 illustrates the output of 
PCF for several θ values. 

 
If d is the number of days over which A has received 

reviews and r is the maximum number of reviews received in a 
day, PCF’s complexity is O(dr2 (r + d)).CoReG features. 
CoReG extracts the following features from the output of PCF 
(see Table 1) (i) the number of cliques whose density equals or 
exceeds θ, 

 
(ii) the maximum, median and standard deviation of the 
densities of identified pseudo cliques, (iii) the maximum, 
median and standard deviation of the node count of identified 
pseudo cliques, normalized by n (the app’s review count), and 
(iv) the total number of nodes of the co-review graph that 
belong to at least one pseudoclique, normalized by n. 

 
4.3 Reviewer Feedback (RF) Module. Reviews written by 
genuine users of malware and fraudulent apps may describe 
negative experiences. The RF module exploits this observation 
through a two step approach: 

 
(i) detect and filter out fraudulent reviews, then (ii) 
identify malware and fraud indicative feedback from the 
remaining reviews. 

 
Step RF.1: Fraudulent review filter. We posit that users that 
have higher expertise on apps they review, have written fewer 
reviews for apps developed by the same developer, have 
reviewed more paid apps, are more likely to be genuine. We 
exploit this conjecture to use supervised learning algorithms 
trained on the following features, defined for a review R 
written by user U for an app A: 

 
• Reviewer based features. The expertise of U for app 

 
A, defined as the number of reviews U wrote for apps 

that are “similar” to A, as listed by Google Play (see § 2). The 
bias of U towards A: the number of reviews written by U for 
other apps developed by A’s developer. In addition, we extract 
the total money paid by U on apps it has reviewed, the number 



IJSART - Volume 4 Issue 3 – MARCH 2018                                                                                     ISSN [ONLINE]: 2395-1052 
 

Page | 597                                                                                                                                                                     www.ijsart.com 
 

of apps that U has liked, and the number of Google+ followers 
of U . 

 
• Text based features. We used the NLTK library [24] and the 
Naive Bayes classifier, trained on two datasets: 

 
(i) 1, 041 sentences extracted from randomly selected 

 
350 positive and 410 negative Google Play reviews, 

and (ii) 10, 663 sentences extracted from 700 positive and 700 
negative IMDB movie reviews [25]. 10-fold cross validation 
of the Naive Bayes classifier over these datasets reveals a 
FNR of 16.1% and FPR of 19.65%. We used the trained Naive 
Bayes classifier to determine the statements of R that encode 
positive and negative sentiments. We then extracted the 
following features: 

 
(i) the percentage of statements in R that encode positive 
and negative sentiments respectively, and (ii) the rating of R 
and its percentile among the reviews written by U . 

 
Step RF.2: Reviewer feedback extraction. We conjecture that 
(i) since no app is perfect, a “balanced” review that contains 
both app positive and negative sentiments is more likely to be 
genuine, and (ii) there should exist a relation between the 
review’s dominating sentiment and its rating. Thus, after 
filtering out fraud-ulent reviews, we extract feedback from the 
remain-ing reviews. For this, we have used NLTK to extract 5, 
106 verbs, 7, 260 nouns and 13, 128 adjectives from the 97, 
071 reviews we collected from the 613 gold stan-dard apps 
(see § 3.2). We used these words to manually identify lists of 
words indicative of malware, fraudulent and benign behaviors. 
Our malware indicator word list 

 

 
Figure 3: (a) Apks detected as suspicious (y axis) by 

multiple anti-virus tools (x axis), through VirusTotal [8], from 
a set of 7, 756 downloaded apks. (b) Distribution of the 
number of “dangerous” permissions requested by malware, 
fraudulent and benign apps. (c) Dangerous permission ramp 
during version updates for a sample app 
“com.battery.plusfree”. Originally the app requested no 
dangerous permissions. 

 
contains 31 words (e.g., risk, hack, corrupt, spam, 

mal-ware, fake, fraud, blacklist, ads). The fraud indicator word 

list contains 112 words (e.g., cheat, hideous, com-plain, 
wasted, crash) and the benign indicator word list contains 105 
words. 

 
RF features. We extract 3 features (see Table 1), 

denoting the percentage of genuine reviews that con-tain 
malware, fraud, and benign indicator words respec-tively. We 
also extract the impact of detected fraudulent reviews on the 
overall rating of the app: the absolute di�erence between the 
app’s average rating and its av-erage rating when ignoring all 
the fraudulent reviews. 
 
4.4 Inter-Review Relation (IRR) Module. This module 
leverages temporal relations between reviews, as well as 
relations between the review, rating and install counts of apps, 
to identify suspicious behaviors. 

 
Temporal relations. We detect outliers in the number 

of daily reviews received by an app. We identify days with 
spikes of positive reviews as those whose number of positive 
reviews exceeds the upper outer fence of the box-and-whisker 
plot built over the app’s numbers of daily positive reviews. 

 
Reviews, ratings and install counts. We used the 

Pearson’s χ2 test to investigate relationships between the 
install and rating counts of the 87K new apps, at the end of the 
collection interval. We grouped the rating count in buckets of 
the same size as Google Play’s install count buckets. Figure 4 
shows the mosaic plot of the relationships between rating and 
install counts. p=0.0008924, thus we conclude dependence 
between the rating and install counts. We leverage this result 
to conjecture that adversaries that post fraudulent ratings and 
reviews, or create fake app install events, may break a natural 
balance between their counts. 

 
IRR features. We extract temporal features (see Table 

1): the number of days with detected spikes and 

 
      

Figure 4: Mosaic plot of install vs. rating count 
relations of the 87K apps. Larger rectangles signify that more 
apps have the corresponding rating and install count range; 



IJSART - Volume 4 Issue 3 – MARCH 2018                                                                                     ISSN [ONLINE]: 2395-1052 
 

Page | 598                                                                                                                                                                     www.ijsart.com 
 

dotted lines mean no apps in a certain install/rating category. 
The standardized residuals identify the cells that contribute the 
most to the χ2 test. The most significant rating:install ratio is 
1:100.the maximum amplitude of a spike. We also extract (i) 
the ratio of installs to ratings as two features, I1/Rt1 and 
I2/Rt2 and (ii) the ratio of installs to reviews, as I1/Rv1 and 
I2/Rv2. (I1, I2] denotes the install count interval of an app, 
(Rt1, Rt2] its rating interval and (Rv1, Rv2] its (genuine) 
review interval. 

 
4.5 Jekyll-Hyde App Detection (JH) Module. Android’s API 
level 22 labels 47 permissions as “dan-gerous”. Figure 3b 
compares the distributions of the number of dangerous 
permissions requested by the gold standard malware, 
fraudulent and benign apps. The most popular dangerous 
permissions among these apps are “modify or delete the 
contents of the USB storage”, “read phone status and 
identity”, “find accounts on the device”, and “access precise 
location”. Most benign apps request at most 5 such 
permissions; some malware and fraudulent apps request more 
than 10. 

 

 
Upon manual inspection of several apps, we identi-

fied a new type of malicious intent possibly perpetrated by 
deceptive app developers: apps that seek to attract users with 
minimal permissions, but later request dan-gerous 
permissions. The user may be unwilling to unin-stall the app 
“just” to reject a few new permissions. We call these Jekyll-
Hyde apps. Figure 3c shows the dan-gerous permissions added 
during di�erent version up-dates of one gold standard 
malware app. 

 
JH features. We extract the following features (see 

Table 1), (i) the total number of permissions requested by the 
app, (ii) its number of dangerous permissions, 

 
(iii) the app’s number of dangerous permission ramps, 
and (iv) its total number of dangerous permissions added over 
all the ramps. 

 
V. EVALUATION 

 

5.1 Experiment Setup. We have implemented FairPlay using 
Python to extract data from parsed pages and compute the 
features, and the R tool to clas-sify reviews and apps. We have 
set the threshold density value θ to 3, to detect even the 
smaller pseudo cliques. 

 
We have used the Weka data mining suite [26] to 

perform the experiments, with default settings. We 
experimented with multiple supervised learning al-gorithms. 
Due to space constraints, we report re-sults for the best 
performers: MultiLayer Perceptron (MLP) [27], Decision 
Trees (DT) (C4.5) and Random Forest (RF) [28], using 10-
fold cross-validation [29]. We use the term “positive” to 
denote a fraudulent review, fraudulent or malware app; FPR 
means false positive rate. Similarly, “negative” denotes a 
genuine review or benign app; FNR means false negative rate. 

 
5.2 Review Classification. To evaluate the accu-racy of 
FairPlay’s fraudulent review detection compo-nent (RF 
module), we used the gold standard datasets of fraudulent and 
genuine reviews of § 3.2. We used GPCrawler to collect the 
data of the writers of these re-views, including the 203 
reviewers of the 406 fraudulent reviews (21, 972 reviews for 
2, 284 apps) and the 315 re-viewers of the genuine reviews (9, 
468 reviews for 7, 116 apps). Table 2 shows the results of the 
10-fold cross val- 

 

 
 

 
idation of algorithms classifying reviews as genuine 

or fraudulent. To minimize wrongful accusations, we seek to 
minimize the FPR [30]. MLP simultaneously achieves the 
highest accuracy of 96.26% and the lowest FPR of 1.47% (at 



IJSART - Volume 4 Issue 3 – MARCH 2018                                                                                     ISSN [ONLINE]: 2395-1052 
 

Page | 599                                                                                                                                                                     www.ijsart.com 
 

6.67% FNR). Thus, in the following experi-ments, we use 
MLP to filter out fraudulent reviews in the RF.1 step. 

 
5.3 App Classification 

 
To evaluate FairPlay, we have collected all the 97, 

071 reviews of the 613 gold standard malware, fraudulent and 
benign apps, written by 75, 949 users, as well as the 890, 139 
apps rated or played by these users. 

 
Fraud Detection Accuracy. Table 3 shows 10-fold 

cross validation results of FairPlay on the gold standard 
fraudulent and benign apps (see § 3.2). All classifiers achieve 
accuracies of around 97%. Random Forest is the best, having 
the highest accuracy of 97.74% and the lowest FPR of 1.01%. 

 
Figure 5a shows the co-review subgraph for one of 

the seed fraud apps identified by FairPlay’s PCF. We observe 
that the app’s reviewers form a tightly con-nected clique, with 
any two reviewers having reviewed at least 115 and at most 
164 apps in common. 

 
Malware Detection Accuracy. We have used Sarma 

et al. [12]’s solution as a baseline to evaluate the ability of 
FairPlay to accurately detect malware. We computed Sarma et 
al. [12]’s RCP and RPCP indicators (see § 2.1) using the 
longitudinal app dataset. We used the SVM based variant of 
Sarma et al. [12], which performs best. Table 3 shows 10-
cross validation results over the malware and benign gold 
standard sets. FairPlay significantly outperforms Sarma et al. 
[12]’s 

 

 
 
Figure 5: (a) Clique flagged by PCF for “Tiempo - 

Clima gratis”, one of the 201 seed fraud apps (see § 3.2), 
involving 37 reviewers (names hidden for privacy); edge 
weights proportional to numbers of apps reviewed in common 
(ranging from 115 to 164 apps). (b & c) Statistics over the 372 
fraudulent apps out of 1, 600 investigated: 
 
(b) Distribution of per app number of discovered pseudo 
cliques. 93.3% of the 372 apps have at least 1 pseudo clique of 
θ ≥ 3 (c) Distribution of percentage of app reviewers (nodes) 
that belong to the largest pseudo clique and to any clique. 8% 
of the 372 apps have more than 90% of their reviewers 

involved in a clique!solution, with an accuracy that 
consistently exceeds 95%. Random Forest has the smallest 
FPR of 1.51% and the highest accuracy of 96.11%. This is 
surprising: most FairPlay features are meant to identify search 
rank fraud, yet they also accurately identify malware. 

Is Malware Involved in Fraud? We conjectured that 
the above result is due in part to malware apps being involved 
in search rank fraud. To verify this, we have trained FairPlay 
on the gold standard benign and fraudulent app datasets, then 
we have tested it on the gold standard malware dataset. MLP 
is the most conservative algorithm, discovering 60.85% of 
malware as fraud participants. Random Forest discovers 
72.15%, and Decision Tree flags 75.94% of the malware as 
fraudulent. This result confirms our conjecture and shows that 
search rank fraud detection can be an important addition to 
mobile malware detection e�orts. 

 
5.4 FairPlay on the Field. We have also evaluated FairPlay on 
non “gold standard” apps. For this, we have collected a set of 
apps, as follows. First, we selected 8 app categories: Arcade, 
Entertainment, Photography, Simulation, Racing, Sports, 
Lifestyle, Casual. We have selected the 6, 300 apps from the 
longitudinal dataset of the 87K apps, that belong to one of 
these 8 categories, and that have more than 10 reviews. From 
these 6, 300 apps, we randomly selected 200 apps per 
category, for a total of 1, 600 apps. We have then collected the 
data of all their 50, 643 reviewers (not unique) including the 
ids of all the 166, 407 apps they reviewed. 

 
We trained FairPlay with Random Forest (best 

performing on previous experiments) on all the gold standard 
benign and fraudulent apps. We have then run FairPlay on the 
1, 600 apps, and identified 372 apps (23%) as fraudulent. The 
Racing and Arcade categorieshave the highest fraud densities: 
34% and 36% of their apps were flagged as fraudulent. 

 
Intuition. During the 10-fold cross validation of 

FairPlay for the gold standard fraudulent and benign sets, the 
top most impactful features for the Decision Tree classifier 
were (i) the percentage of nodes that belong to the largest 
pseudo clique, (ii) the percentage of nodes that belong to at 
least one pseudo clique, (iii) the percentage of reviews that 
contain fraud indicator words, and (iv) the number of pseudo 
clique with θ ≥ 3. 

 
We use these features to o�er an intuition for the 

surprisingly high fraud percentage (23% of 1, 600 apps). 
Figure 5b shows that 93.3% of the 372 apps have at least 1 
pseudo clique of θ ≥ 3, nearly 71% have at least 3 pseudo 
cliques, and a single app can have up to 23 pseudo cliques. 
Figure 5c shows that the pseudo cliques are large and 
encompass many of the reviews of the apps: 55% of the 372 



IJSART - Volume 4 Issue 3 – MARCH 2018                                                                                     ISSN [ONLINE]: 2395-1052 
 

Page | 600                                                                                                                                                                     www.ijsart.com 
 

apps have at least 33% of their reviewers involved in a pseudo 
clique, while nearly 51% of the apps have a single pseudo 
clique containing 33% of their reviewers. While not plotted 
here due to space constraints, we note that around 75% of the 
372 fraudulent apps have at least 20 fraud indicator words in 
their reviews. 

 
5.5 Coercive Campaign Apps. Upon close inspec-tion of apps 
flagged as fraudulent by FairPlay, we iden-tified apps 
perpetrating a new attack type. The apps, which we call 
coercive campaign apps, harass the user to either (i) write a 
positive review for the app, or (ii) install and write a positive 
review for other apps (of-ten of the same developer). In return, 
the app rewards the user by, e.g., removing ads, providing 
more features, unlocking the next game level, boosting the 
user’s game level or awarding game points. 

 
We found evidence of coercive campaign apps from 

users complaining through reviews, e.g., “I only rated it 
because i didn’t want it to pop up while i am playing”, or 
“Could not even play one level before i had to rate it [...] they 
actually are telling me to rate the app 5 stars”. 

 
We leveraged this evidence to identify more coercive 

campaign apps from the longitudinal app set. Specifi-cally, we 
have first manually selected a list of potential keywords 
indicating coercive apps (e.g., “rate”, “down-load”, “ads”). 
We then searched all the 2, 850, 705 re-views of the 87K apps 
and found around 82K reviews that contain at least one of 
these keywords. Due to time constraints, we then randomly 
selected 3, 000 re-views from this set, that are not flagged as 
fraudulent by FairPlay’s RF module. Upon manual inspection, 
we identified 118 reviews that report coercive apps, and 48 
apps that have received at least 2 such reviews. We leave a 
more thorough investigation of this phenomenon for future 
work. 

 
VI. CONCLUSIONS 

 
We have introduced FairPlay, a system to detect both 

fraudulent and malware Google Play apps. Our experi-ments 
on a newly contributed longitudinal app dataset, have shown 
that a high percentage of malware is in-volved in search rank 
fraud; both are accurately iden-tified by FairPlay. In addition, 
we showed FairPlay’s ability to discover hundreds of apps that 
evade Google Play’s detection technology, including a new 
type of coercive fraud attack. 

 
REFERENCES 

 
[1] Google Play. https://play.google.com/. 

[2] Ezra Siegel. Fake Reviews in Google Play and Apple App 
Store. Appentive, 2014. 

[3] Zach Miners. Report: Malware-infected Android apps 
spike in the Google Play store. PCWorld, 2014. 

[4] Stephanie Mlot. Top Android App a Scam, Pulled From 
Google Play. PCMag, 2014. 

[5] Daniel Roberts. How to spot fake apps on the Google 
Play store. Fortune, 2015. 

[6] Andy Greenberg. Malware Apps Spoof Android Mar-ket 
To Infect Phones. Forbes Security, 2014. 

[7] Jon Oberheide and Charlie Miller. Dissecting the Android 
Bouncer. SummerCon2012, New York, 2012. 

[8] VirusTotal - Free Online Virus, Malware and URL 
Scanner. https://www.virustotal.com/, Last ac-cessed on 
May 2015. 

[9] Iker Burguera, UrkoZurutuza, and SiminNadjm-Tehrani. 
Crowdroid: Behavior-Based Malware De-tection System 
for Android. In Proceedings of ACM SPSM, pages 15–
26. ACM, 2011. 

[10] Asaf Shabtai, Uri Kanonov, Yuval Elovici, 
ChananGlezer, and Yael Weiss. Andromaly: a Behavioral 
Malware Detection Framework for Android 
Devices.Intelligent Information Systems, 38(1):161–190, 
2012. 

[11] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, 
and Xuxian Jiang. Riskranker: Scalable and Accurate 
Zero-day Android Malware Detection. InProceedings of 
ACM MobiSys, 2012. 

[12] Bhaskar PratimSarma, Ninghui Li, Chris Gates, Rahul 
Potharaju, Cristina Nita-Rotaru, and Ian Molloy. An-droid 
Permissions: a Perspective Combining Risks and 
Benefits. In Proceedings of ACM SACMAT, 2012. 

[13] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan 
Qi, Rahul Potharaju, Cristina Nita-Rotaru, and Ian 
Molloy. Using Probabilistic Generative Models for 
Ranking Risks of Android Apps. In Proceedings of ACM 
CCS, 2012. 

[14] S.Y. Yerima, S. Sezer, and I. Muttik. Android Malware 
Detection Using Parallel Machine Learning Classifiers. In 
Proceedings of NGMAST, Sept 2014. 

[15] Yajin Zhou and Xuxian Jiang. Dissecting Android 
Malware: Characterization and Evolution. In Proceed-ings 
of the IEEE S&P, pages 95–109. IEEE, 2012. 

[16] Freelancer. http://www.freelancer.com. 
[17] Google I/O 2013 - Getting Discovered on Google Play. 

www.youtube.com/watch?v=5Od2SuL2igA, 2013. 
[18] Fiverr. https://www.fiverr.com/. 
[19] BestAppPromotion. www.bestreviewapp.com/. 
[20] Junting Ye and Leman Akoglu. Discovering opinion 

spammer groups by network footprints. In Machine 
Learning and Knowledge Discovery in Databases, pages 
267–282. Springer, 2015. 



IJSART - Volume 4 Issue 3 – MARCH 2018                                                                                     ISSN [ONLINE]: 2395-1052 
 

Page | 601                                                                                                                                                                     www.ijsart.com 
 

[21] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. 
Opinion Fraud Detection in Online Reviews by Net-work 
E�ects. In Proceedings of ICWSM, 2013. 

[22] Android Market API. https://code.google.com/p/ android-
market-api/, 2011. 

[23] Takeaki Uno. An e�cient algorithm for enumerating 
pseudo cliques. In Proceedings of ISAAC, 2007. 

[24] Steven Bird, Ewan Klein, and Edward Loper. Natural 
Language Processing with Python. O’Reilly, 2009. 

[25] Bo Pang, Lillian Lee, and ShivakumarVaithyanathan. 
Thumbs Up? Sentiment Classification Using Machine 
Learning Techniques. In Proceedings of EMNLP, 2002. 

[26] Weka. http://www.cs.waikato.ac.nz/ml/weka/. 
[27] S. I. Gallant. Perceptron-based learning algorithms. Trans. 

Neur. Netw., 1(2):179–191, June 1990. 
[28] Leo Breiman. Random Forests. Machine Learning, 45:5–

32, 2001. 
[29] Ron Kohavi. A Study of Cross-Validation and Boot-strap 

for Accuracy Estimation and Model Selection. 
InProceedings of IJCAI, 1995. 

[30] D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and 
C. Faloutsos. Polonium: Tera-scale graph mining and 
inference for malware detection. In Proceedings of the 
SIAM SDM, 2011. 


