Separation Axioms Via M_I^* -Closed Set

P.Mariappan¹, J.Antony Rex Rodrigo²

²Associate Professor,PG and Research Dept of Mathematics ^{1, 2} V.O.Chidambaram College, Thoothukudi, Tamilnadu, India

Abstract- In this paper we have introduced the concept of separation axioms via M_{I}^{*} -closed set and studied some of their characterizations and properties. Also introduced the concept of $M_{I}^{*}R_{0}$ -space and $M_{I}^{*}R_{1}$ -space and studied their properties.

Keywords. $M_I^*T_0$ -space, $M_I^*T_1$ -space, $M_I^*T_2$ -space, $M_I^*R_0$ -space, $M_I^*R_1$ -space.

I. INTRODUCTION

The concept of ideals in topological spaces is treated in the classic text by Kuratowski [8] and Vaidyanathaswamy [9]. Jankovic and Hamlett[7] investigated further properties of an ideal spaces. An Ideal lon a topological space is a nonempty collection of subsets of X which satisfies the following properties: (i) $A \in I$ and $B \subset A$ implies $B \in I$ (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space(or an ideal space) is a topological space (X, τ) with an ideal I on X and is denoted by $(X,\tau,I).$ For а subset $A \subset X, A^*(\tau, I) = \{x \in X : A \cap U \notin I \text{ for every } U \in \tau(x)\}$ is called the local function of A with respect to I and τ [8].We simply write A* in case there is no chance for confusion.A Kuratowski closure operator $cl^*(\cdot)$ for a topology $\tau^*(I,\tau)$ called the *-topology, finer than r is defined by $cl^*(A) = A \cup A^*[9].$

Caldas and Jafari [3] introduced and studied b_{T_0}, b_{T_1} and b_{T_2} via *b*-open sets after that Ekici [5] introduced the notion of b_{R_0} and b_{R_1} spaces. In this article, we introduce new types of separation axioms via M_1^* -closed sets and investigate some of their properties.

II. PRELIMINARIES

Definition.2.1 [6]. A subset A of a topological space (X, τ) is called a semi-preopen set(= β -open set) if $A \subset cl(int(cl(A)))$ and a semi-preclosed set (= β -closed set) if $int(cl(int(A)) \subset A)$.

Definition.2.2 [2]. A subset A of an ideal topological space (X, τ, I) is called an M_I^{\bullet} closed if $spel(A) \subseteq U$ whenever

 $A \subseteq U \text{ and } U \text{ is } I_{\omega}\text{-open in } (X_t\tau, I). \text{ The class of all } M_I^* \text{closed}$ sets in (X, τ, I) is denoted by $M_I^* - C(X)$. That is, $M_I^* - C(X) = \{A \subseteq X: A \text{ is } M_I^* \text{closed in } (X_t\tau, I)\}.$

Definition.2.3[1]. A subset A of an ideal topological space (X, τ, I) is called an $I_{\omega}(or I_{\hat{g}})$ -closed set if $A^* \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .

Definition.2.4.[4] A topological space (X, τ) is said to be

(i) $\alpha - T_0$ if for each pair of distinct points in *X*, there is an α -closed set containing one of the points but not the other.

(ii) $\alpha - T_1$ if for each pair of distinct points x and y of X, there exists α -open sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V$.

(iii) $\alpha - T_z$ if for each pair of distinct points x and y of X, there exists disjoint α -open sets U and V containing x and y respectively.

Definition.2.5.[4] A topological space (X, τ) is said to be

(i) $\alpha - R_0$ if for each α -open set G in X and $x \in G$ such that $\alpha cl(\{x\}) \subseteq G$.

(ii) $\alpha - R_1$ if for $x, y \in X$ with $\alpha cl(\{x\}) \neq \alpha cl(\{y\})$, there exist disjoint α -open sets U and V such that $\alpha cl(\{x\}) \subseteq U$ and $\alpha cl(\{y\}) \subseteq V$.

III. $M_i^*T_i$ -SPACES, (i = 0, 1, 2)

Definition.3.1. An ideal topological space (X, τ, I) is said to be

(i) $M_I^* T_0$ if for each pair of distinct points x.y in X, there exist a M_I^* -open set U of X such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.

(ii) $M_I^* T_1$ if for each pair of distinct points x, y in X, there exist two M_I^* -open sets U and V such that $x \in U$ but $y \notin U$ and $x \notin V$ but $y \in V$.

(iii) $M_I^*T_2$ if for each pair of distinct points x, y in X, there exist two disjoint M_I^* -open sets U and V of X containing x and y respectively.

Example.3.2.(i)

Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and

 $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}.$ Then M_I^* -open sets of an ideal space are $\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}.$ Clearly (X, τ, I) is $M_I^* T_0, M_I^* T_1$ and $M_I^* T_2$.

(ii)Let $X = \{a, b, c\}, \tau \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $I = \{\emptyset, \{a\}\}$. Then M_I^* -open sets of X are $\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Clearly (X, τ, I) is not a $M_I^*T_1$ -space and also (X, τ, I) is not a $M_I^*T_2$ -space.

Proposition.3.3 Every $\alpha - T_i$ -space is $M_I^* T_i$ -space, i = 0, 1, 2 but not conversely.

Proof. The proof is follows from the fact that every α -open set is M_I^* -open.

Example3.4.(i) Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then M_I^* -open sets of X are $\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}$ and α -open sets of X are $\emptyset, X, \{a\}, \{b\}, \{a, b\}$. Clearly (X, τ, I) is $M_I^* T_1$ and $M_I^* T_2$ but not $\alpha - T_1$ and $\alpha - T_2$.

(ii) Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $I = \{\emptyset, \{a\}\}$. Then M_I "-open sets of X are power sets of X and α -open sets of X are $\emptyset, X, \{a\}, \{b, c\}\}$. Clearly (X, τ, I) is $M_I^* T_0$ but not $\alpha - T_0$.

Theorem.3.5. An ideal topological space (X, τ, I) is $M_I^* T_0$ if and only if for each pair of distinct points $x, yof X, M_I^* cl({x}) \neq M_I^* cl({y})$.

Proof. Necessity: Let (X, τ, I) be a $M_I^* T_0$ -space and x, y be any two distinct points of X. There exists a M_I^* -open set U containing x ory, say x but noty. Then $X \setminus U$ is a M_I^* -closed set which does not contain x but contains y. Since $M_I^* cl(\{y\})$ is the smallest M_I^* -closed set containing $M_I^* cl(\{y\}) \subseteq X \setminus U$ and therefore $x \notin M_I^* cl(\{y\})$. Consequently $M_I^* cl(\{x\} \neq M_I^* cl(\{y\})$.

 $z \in M_I^* cl(\{y\}, a \text{ contradiction.Thus } x \notin M_I^* cl(\{y\}, a \text{ contradiction.Thus } x \notin M_I^* cl(\{y\}, a M_I^* - a M_I^* - a M_I^* - a M_I^* cl(\{y\}, a M_I^* cl(\{y\}, a M_I^* cl(\{y\}, a M_I^* cl(\{y\}, a M_I^* - a M_$

Theorem.3.6. An ideal topological space (X, τ, I) is a $M_I^* T_{1^-}$ space if and only if the singleton sets are M_I^* -closed sets.

Proof. Let (X, τ, I) be $M_I^*T_1$ and x be any point of X. Suppose $y \in X \setminus \{x\}$, then $x \neq y$ and so there exists a M_I^* -open set U such that $y \in U$ but $x \notin U$. Consequently $y \in U \subseteq X \setminus \{x\}$, that is $X \setminus \{x\} = \bigcup \{U: y \in X \setminus \{x\}\}$ which is M_I^* -open.

Conversely, suppose $\{p\}$ is M_I^* -closed for every $p \in X$.Let $x, y \in X$ with $x \neq y$.Now $x \neq y$ implies $y \in X \setminus \{x\}$.Hence $X \setminus \{x\}$ is a M_I^* -open set contains y but not x.Similarly $X \setminus \{y\}$ is a M_I^* -open set contains x but not y.Accordingly (X, τ, I) is a $M_I^* T_1$ -space.

Theorem.3.7.The following statements are equivalent for an ideal topological space (X, τ, I) :

(i) (X,τ,I)isM_I*T₂.
(ii) Let x ∈ X.For each y ≠ x, there exist a M_I*-open set U containing x such that y ∉ M_I*cl(U).

(iii) For each $x \in X$, $\bigcap \{M_l \ ^* cl(U) : U \in M_l \ ^* - O(X) \text{ and } x \in U = \{x\}.$

Proof.(*i*) \Rightarrow (*ii*).Since (X, τ, I) is $M_I^* T_2$, then for each $y \neq x$, there exist two disjoint M_I^* -open sets U and V such that $x \in U$ and $y \in V$ respectively. If $F = X \setminus V$, then F is a M_I^* -closed set such that $U \subseteq F$ which implies $M_I^* cl(U) \subseteq M_I^* cl(F) = F$.Since $y \notin F, y \notin M_I^* cl(U)$.

 $(\mathfrak{U}) \Rightarrow (\mathfrak{U}). \text{If } y \neq x, \text{then there exist a } M_{J}^{*} \text{-open set } U \text{ such that} \qquad x \in U \qquad \text{and}$

 $y \notin M_l^* cl(U)$. Therefore,

 $y \notin \bigcup \{M_{l}^{*}cl(U): U \in M_{l}^{*} - O(X) \text{ and } x \in U\}$. Therefore $\bigcap \{M_{l}^{*}cl(U): U \in M_{l}^{*} - O(X) \text{ and } x \in U = \{x\}$. This proves (*iii*).

 $\begin{array}{ll} (iii) \Rightarrow (i). \text{Let} & x, y \in X & \text{and} x \neq y. \text{Then} \\ y \notin \{x\} = \bigcap \{M_l^* cl(U) : U \in M_l^* - O(X) \text{ and } x \in U. \text{This} \\ \text{implies that there exist a } M_l^* \text{-open set } U \text{ containing } x \text{ such} \\ \text{that} & y \notin M_l^* cl(U). \text{Let} V = X \setminus M_l^* cl(U), \text{then } V \text{ is } M_l^* \text{-open} \\ \text{and} & y \in V. \text{Now} \\ U \cap V = U \cap (X \setminus M_l^* cl(U) \subseteq U \cap X \setminus U = \emptyset. \text{Therefore,} \\ (X_l \tau_l) \text{ is } M_l^* T_l. \end{array}$

Proposition.3.8. The following statements are true for an ideal topological space $(X_t \tau_t I)$.

(i) Every M_l^{*}T₁-space is M_l^{*}T₀ but not conversely.
(ii) Every M_l^{*}T₂-space is M_l^{*}T₁ but not conversely.

Proof. The proof is straight forward from definitions.

Example 3.9 Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$ and $I = \{\emptyset, \{b\}\}$. Then M_I^* -open sets of X are $\emptyset, X, \{a\}, \{a, b\}, \{a, c\}$. Here (X, τ, I) is $M_I^* T_0$ but not $M_I^* T_1$.

Definition.3.10. A subset *A* of an ideal topological space (X, τ, I) is called M_I^* -difference set (briefly. M_I^* -D set) if there exist $U, V \in M_I^* - O(X)$ such that $U \neq X$ and $A = U \setminus V$.

It is true that every M_l^* -open set U different from X is a M_l^* -D set if A = U and $V = \emptyset$, we can observe the following.

Remark.3.11. Every proper M_I^* -open set is a M_I^* -D set but not conversely.

Example.3.12. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then M_I^* -open sets of X are $\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}$. Consider the set $U = \{\alpha, c\} \neq X, V = \{\alpha, b\}$, are M_I^* -open sets in X and $A = U \setminus V = \{c\}$ which is a M_I^* -D set but not a M_I^* -open set

Definition.3.13. An ideal space (X, τ, I) is said to be M_I^* -symmetric, if for $x, y \in X, x \in M_I^* cl(\{y\})$ implies $y \in M_I^* cl(\{x\})$.

Proposition.3.14. The following statements are equivalent for an ideal space (X, τ, I) :

(i) (X,τ,I) is a M_I*-symmetric space.
(ii) {x}isM_I*-closed for each x ∈ X.

Proof.(*i*) \Rightarrow (*ii*).Assume that $\{x\} \subseteq U \in M_I^* - \mathcal{O}(X), but M_I^* cl(\{x\}) \subseteq U.$ Then $M_l^* cl(\{x\}) \cap (X \setminus U) \neq \emptyset$.Now,we take $y \in M_I^* cl(\{x\}) \cap (X \setminus U)$, then hypothesis by $x \in M_l^* cl(\{y\}) \subseteq (X \setminus U)$ and $x \notin U$, which is а contradiction. Therefore, $\{x\}$ is M_1^* -closed for each $x \in X$. (ii) ⇒ (i)Assume that $x \in M_l^* cl(\{y\}), but y \notin M_l^* cl(\{x\}). Then \{y\} \subseteq X \setminus M_l^* cl(\{x\})$ and hence $M_l^* cl(\{y\}) \subseteq X \setminus M_l^* cl(\{x\})$. Therefore, $x \in X \setminus M_1^* cl(\{x\})$, which is a contradiction and hence $y \in M_l^* cl(\{x\})$.

Corollary.3.15. If an ideal space (X, τ, I) is a $M_I^*T_1$ -space, then it is M_I^* -symmetric.

Proof. In a $M_I^*T_1$ -space, by Theorem 3.6, every singleton set is M_I^* -closed. Also by Proposition 3.14, (X, τ, I) is M_I^* -symmetric.

Corollary.3.16. In an ideal space $(X_t \tau_t I)$ is M_I^* -symmetric and $M_I^* T_0$, then $(X_t \tau_t I)$ is $M_I^* T_1$.

Proof. Let $x \neq y$ and as (X, τ, I) is $M_I^* T_0$, we may assume that $x \in U \subseteq X \setminus \{y\}$ for some $U \in M_I^* - O(X)$. Then

 $x \notin M_l^* cl(\{y\})$ and hence $y \notin M_l^* cl(\{x\})$. Then there exist a M_l^* -open set V such that $y \in V \subseteq X \setminus \{x\}$ and thus (X, τ, I) is $M_l^* T_l$.

Definition.3.17. Let (X, τ, I) be an ideal space and $A \subseteq X$. Then the M_I^* -kernal of A denoted by $M_I^* - \ker(A)$ and is defined to be the set $M_I^* - \ker(A) = \bigcap \{U \in M_I^* - O(X) : A \subseteq U\}.$

Example.3.18. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$ and $I = \{\emptyset, \{b\}\}$. Then M_I^* -open sets of X are $\emptyset, X, \{a\}, \{a, b\}, \{a, c\}$. Here $M_I^* - \ker(\{a\}) = \{a\}, M_I^* - \ker(\{b\}) = \{a, b\},$ $M_I^* - \ker(\{c\}) = \{a, c\}, M_I^* - \ker(\{a, b\}) = \{a, b\},$ $M_I^* - \ker(\{a, c\}) = \{a, c\}, M_I^* - \ker(\{b, c\}) = X.$

Theorem.3.19. Let (X, τ, I) be an ideal space and $x \in X$. Then $y \in M_I^* - \ker \{x\}$ if and only if $x \in M_I^* cl(\{y\})$.

Proof.Necesity: Suppose that $y \notin M_I^* - \ker \{x\}$. Then there exist a M_I^* -open set V containing x such that $y \notin V$. Therefore, we have $x \notin M_I^* cl(\{y\})$.

Sufficiency: Assume that $x \notin M_l^* cl(\{y\})$. Then there exist a M_l^* -open set U containing x such that $y \notin U$. By definition of M_l^* -kernel, $y \notin M_l^* - \ker \{x\}$.

Proposition.3.20. Let (X, τ, I) be an ideal space and A be a subset of X. Then $M_I^* - \ker(A) = \{x \in X: M_I^* cl(\{x\}) \cap A \neq \emptyset\}.$

 $x \in M_l^* - \ker(A)$ Proof.Let and suppose that $M_1^* cl(\{x\}) \cap A = \emptyset$. Then $X \setminus M_1^* cl(\{x\})$ is a M_1^* -open set containing A such that $x \notin X \setminus M_I^* cl(\{x\})$. This is $x \in M_{I}^{*} - \ker(A)$. Consequently, if impossible, since $M_l^* cl({x}) \cap A \neq \emptyset$. We claim $x \in M_l^* - ker(A)$. Suppose that $x \notin M_{I}^{*} - \ker(A)$. Then there exist a M_{I}^{*} -open set V $x \notin V$. containing Α such that Now, let $y \in M_l^* cl(\{x\}) \cap A$. Then $y \in M_l^* cl(\{x\})$ and $y \in A$. If $y \in M_1^* cl(\{x\})$ implies there exist a M_1^* -open set V containing y such that $V \cap \{x\} \neq \emptyset$. Hence $x \in V$. By this contradiction, $x \in M_{I}^{*} - \ker(A)$ and the claim is proved.

Proposition.3.21. The following properties hold for the subsets A, B of an ideal space (X, τ, I) .

(i) $A \subseteq M_{I}^{*} - \ker(A)$. (ii) $A \subseteq B \Rightarrow M_{I}^{*} - \ker(A) \subseteq M_{I}^{*} - \ker(B)$. (iii) If A is M_{I}^{*} -open in (X, τ, I) , then $A = M_{I}^{*} - \ker(A)$. (iv) $M_{I}^{*} - \ker(M_{I}^{*} - \ker(A)) = M_{I}^{*} - \ker(A)$

www.ijsart.com

Proof.(i) Suppose that A is any subset of X. If $x \notin M_I^* - \ker(A)$, then there exists $U \in M_I^* - O(X)$ such that $A \subseteq U$ and $x \notin U$. Therefore, $x \notin A$. Thus it is proved.

(ii) Let $A \subseteq B$.If suppose $M_I^* - \ker(A) \subseteq M_I^* - \ker(B)$, then $x \in M_I^* - \ker(A)$ but $x \notin M_I^* - \ker(B)$. By definition of M_I^* -kernel, there exist a M_I^* -open set U such that $B \subseteq U$ and $x \notin U$. Since $A \subseteq B \subseteq U, x \notin M_I^* - \ker(A)$. By this contradiction, $M_I^* - \ker(A) \subseteq M_I^* - \ker(B)$.

(iii) Obvious from the Definition 3.17 of M_I^* – ker (A).

(iv) From the subdivisions (i) and (ii) ,we have $M_I^* - \ker(A) \subseteq M_I^* - \ker(M_I^* - \ker(A))$. To prove the other implication, if $x \notin M_I^* - \ker(A)$, then there exists $U \in M_I^* - O(X)$ such that $A \subseteq U$ and $x \notin U$. Hence $M_I^* - \ker(A) \subseteq U$ and so we have $x \notin M_I^* - \ker(M_I^* - \ker(A))$. Thus $M_I^* - \ker(M_I^* - \ker(A)) = M_I^* - \ker(A)$.

Proposition.3.22. If a singleton set $\{x\}$ is a M_l^* -Dset of (X, τ, l) , then $M_l^* - \ker(\{x\}) \neq X$.

Proof. Since $\{x\}$ is a M_I^* -Dset of (X, τ, I) , then there exists two M_I^* -open subsets U, V such that $\{x\} = U \setminus V$. Then $\{x\} \subseteq U$ and $U \neq X$. Thus, we have that $M_I^* - \ker(\{x\}) \subseteq U \neq X$ and so $M_I^* - \ker(\{x\}) \neq X$.

IV. M_I R_k -SPACE (k=0,1)

In this section new classes of an ideal spaces called $M_I^*R_0$ and $M_I^*R_1$ spaces are introduced and found the necessary and sufficient conditions for a space (X, τ, I) to be $M_I^*R_0$ and $M_I^*R_1$.

Definition.4.1. An ideal space (X, τ, I) is said to be

(i) $M_I^* R_0$, if every M_I^* -open set contains the M_I^* -closure of each of its singletons. That is, for any M_I^* -open set U in X, we have M_I^* -cl($\{x\}$) $\subseteq U$ for every $x \in U$.

(ii) $M_I^* R_{\perp}$ if for any $x, y \in X$ such that $M_I^* cl(\{x\}) \neq M_I^* cl(\{y\})$, there exists disjoint M_I^* -open sets U and V such that $M_I^* cl(\{x\}) \subseteq U$ and $M_I^* cl(\{y\}) \subseteq V$

Let

Example.4.2. $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} and I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

. Then M_1^* -open sets of an ideal space are $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. Clearly the ideal space (X, τ, I) is $M_1^* R_0$ as well as $M_1^* R_1$

Proposition.4.3. For an ideal space (X, τ, I) , the following properties are equivalent: (i) (X, τ, I) is $M_I^* R_0$ (ii) For any $F \in M_I^* - C(X)$, $x \notin F$ implies $F \subseteq U$ and $x \notin U$ for some $U \in M_I^* - O(X)$

(iii) For any $F \in M_I^* - C(X), x \notin F$ implies $F \cap M_I^* cl({x}) = \emptyset$

(iv)For any distinct points x and y of X, either $M_i^* cl(\{x\}) = M_i^* cl(\{y\})$ or $M_i^* cl(\{x\}) C M_i^* cl(\{y\}) = \emptyset$.

Proof: (*i*) \Rightarrow (*ii*).Let $F \in M_l^* - C(X)$ and $x \notin F$. Then by (*i*), $M_l^* cl(\{x\}) \subseteq X \setminus F$.Set $U = X \setminus M_l^* cl(\{x\})$, then U is a M_l^* -open set such that $F \subseteq U$ and $x \notin U$.

 $\begin{array}{ll} (ii) \implies (iii). \ \text{Let} \ F \in M_{I}^{*} - C(X) \ \text{and} \ x \notin F. \ \text{Then there} \\ \text{exists} \ U \in M_{I}^{*} - O(X) \ \text{such that} \ F \subseteq U \ \text{and} \ x \notin U. \ \text{Since} \\ U \in M_{I}^{*} - O(X), U \cap M_{I}^{*} cl(\{x\}) = \emptyset \\ F \cap M_{I}^{*} cl(\{x\}) = \emptyset. \end{array}$

(iii) \Rightarrow (iv) Suppose that $M_1^* cl(\{x\}) \neq M_1^* cl(\{y\})$ for distinct points $x, y \in X$. There exists $z \in M_1^* cl(\{x\})$ such that $z \notin M_1^* cl(\{y\})$ (or $z \in M_1^* cl(\{y\})$ such that $z \notin M_1^* cl(\{x\})$). There exists $V \in M_1^* - O(X)$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, we have $x \notin M_{I}^{*} cl(\{y\})$. By (iii) we obtain $M_I^* cl(\{x\}) \cap M_I^* cl(\{y\}) = \emptyset.(tv) \Longrightarrow (t)$. Let $V \in M_1^* - O(X)$ and $x \in V$. For each $y \notin V$ and $x \neq y$ and $x \notin M_i^* cl(\{y\}).$ This shows that $M_i^* cl(\{x\}) \neq x \notin M_i^* cl(\{y\}).$ By (iv), $M_l^* cl(\{x\}) \cap M_l^* cl(\{y\}) = \emptyset$ for each $y \in X \setminus V$ and hence $M_{l}^{*}cl(\{x\}) \cap \bigcup_{y \in X \setminus V} M_{l}^{*}cl(\{y\}) = \emptyset.$

On the other hand, since $V \in M_I^* - O(X)$ and $y \in X \setminus V$, we have $M_I^* cl(\{y\}) \in X \setminus V$ and hence $X \setminus V = \bigcup_{y \in X \setminus V} M_I^* cl(\{y\})$. Therefore we obtain $(X \setminus V) \cap M_I^* cl(\{x\}) = \emptyset$ and $M_I^* cl(\{x\}) \subseteq V$. This shows that (X, τ, I) is a $M_I^* R_0$ space.

Proposition.4.4. If an ideal space (X, τ, I) is $M_I^* T_0$ and $M_I^* R_0$ space, then it is $M_I^* T_1$.

Proof: Let x and y be any points of X. Since $(X_t\tau, I)$ is $M_I^*T_0$, there exists a M_I^* -open set U such that $x \in U$ and $y \in U$. Since (X,τ,I) is $M_I^*R_0, x \in U$ implies that $M_I^*cl(\{x\}) \subseteq U$. Since $y \notin U$, so $y \notin M_I^*cl(\{x\})$. Hence $y \in V = X \setminus M_I^*cl(\{x\})$ and it is clear that $x \notin V$. Hence it follows that, there exist two M_I^* -open sets U and V containing x and y respectively, such that $y \notin U$ and $x \notin V$. This implies that (X,τ,I) is $M_I^*T_1$.

Proposition.4.5. For an ideal space $(X_t \tau_t I)$, the following statements are equivalent:

(i) (X, τ, I) is a $M_I^* R_0$ -space (*ii*) $x \in M_I^* cl(\{y\})$ if and only if $y \in M_I^* cl(\{x\})$ for any points $x, y \in X$. **Proof.(i)** \Rightarrow (ii). Assume that (X, τ, I) is $M_I^* R_0$. Let $x \in M_I^* cl(\{y\})$ and V be any M_I^* -open set such that $y \in V$. Now by hypothesis, $x \in V$. Therefore, every M_I^* -open set which contain y contains x. Hence $y \in M_I^* cl(\{x\})$. Similarly the converse is obvious.

(ii) \Rightarrow (i). Let U be any M_I^* -open set in (X, τ, I) and $x \in U$. If $y \notin U$, then $x \notin M_I^* cl(\{y\})$ and hence $y \notin M_I^* cl(\{x\})$. This implies that $M_I^* cl(\{y\}) \subseteq U$. Hence (X, τ, I) is $M_I^* R_0$.

Proposition.4.6. For any point x, y in an ideal space (X, τ, I) , the following properties are equivalent:

(i)
$$M_{I}^{*} - ker(\{x\}) \neq M_{I}^{*} - ker(\{y\}).$$

(ii) $M_{I}^{*} - cl(\{x\}) \neq M_{I}^{*} - cl(\{y\})$

 $Proof.(i) \Rightarrow (ii).$ Suppose that $M_{I}^{*} - ker(\{x\}) \neq M_{I}^{*} - ker(\{y\})$, then there exists a point z in X such that $z \in M_1^* - ker(\{x\})$ and $z \notin M_1^* - ker(\{y\})$. $z \in M_I^* - ker(\{x\}),$ From it follows that $\{x\} \cap M_i^* cl(\{z\}) \neq \emptyset$ which implies $x \in M_i^* cl(\{z\})$. By $z \notin M_1^* - ker(\{y\})$, we have $\{y\} \cap M_1^* cl(\{z\}) = \emptyset$. Since $x \in M_l^* cl(\{z\}),$ $M_{l}^{*} cl(\{x\}) \subseteq M_{l}^{*} cl(\{z\})$ and $\{y\} \cap M_i^* cl(\{x\}) = \emptyset.$ Therefore, it follows that $M_{l}^{*}cl(\{x\}) \neq M_{l}^{*}cl(\{y\}).$ Now $M_{I}^{*} - ker(\{x\}) \neq M_{I}^{*} - ker(\{y\})$ implies that $M_I^* cl(\{x\}) \neq M_I^* cl(\{y\}).$ $(tt) \Rightarrow (t).$ Suppose that $M_1^* cl({x}) \neq M_1^* cl({y})$. Then there exists a point z in X such that $z \in M_1^* cl(\{x\})$ and $z \notin M_1^* cl(\{y\})$. Then there exists a M_1^* -open set containing z and therefore x but not y, $y \in M_l^* ker(\{x\})$ namely and thus $M_{I}^{*} - ker(\{x\}) \neq M_{I}^{*} - ker(\{y\}).$

Theorem.4.7. Let (X, τ, I) be an ideal space. Then $\bigcap \{M_I^* cl(\{x\}) : x \in X\} = \emptyset$ and only if $M_I^* - ker(\{x\}) \neq X$ for every $x \in X$.

Proof. Necessity: Suppose that $\bigcap \{M_i \ cl(\{x\}) : x \in X\} = \emptyset$. Assume that there is a point $y \in X$ such that $M_i \ -ker(\{y\}) = X$. Let x be any point of X, then $x \in V$ for every $M_i \ -open$ set V containg y and hence $y \in M_i \ cl(\{x\})$ for any $x \in X$. This implies that $y \in \bigcap \{M_i \ cl(\{x\}) : x \in X\}$. But this is a contradiction.

Sufficiency: Assume that $M_I^* - ker(\{x\}) \neq X$ for every $x \in X$. If there exist apoint y in X such that $y \in \bigcap\{M_I^*cl(\{x\}) : x \in X\}$, then every M_I^* -open set containing y must contain every point of X. This implies that the space (X, τ, I) is the unique M_I^* -open set containing y. Hence $M_I^* - ker(\{y\}) = X$, which is contradiction. Therefore $\bigcap\{M_I^*cl(\{x\}) : x \in X\} = \emptyset$.

Theorem.4.8. An ideal space (X, τ, I) is $M_I^* R_0$ if and only if for every

$$\begin{array}{l} x, y \in X, M_{l}^{*}cl(\{x\}) \neq M_{l}^{*}cl(\{y\}) \Longrightarrow M_{l}^{*}cl(\{x\}) \cap \\ M_{l}^{*}cl(\{y\}) = \emptyset \end{array}$$

Proof. Necessity: Suppose that (X, τ, I) is $M_I^* - R_0$ and $x, y \in X$ such that $M_I^* cl(\{x\}) \neq M_I^* cl(\{y\})$. Then there exists some $z \in M_I^* cl(\{x\})$ such that $z \notin M_I^* cl(\{y\})$ ($z \in M_I^* cl(\{y\})$) such that $z \notin M_I^* cl(\{x\})$. Then there exists a M_I^* -open set V such that $y \notin V$ and $z \in V$, hence $x \in V$. Therefore we have $x \notin M_I^* cl(\{y\})$. Thus $x \in X \setminus M_I^* cl(\{y\})$ which is a M_I^* -open set containing x. Since (X, τ, I) is $M_I^* - R_0, M_I^* cl(\{x\}) \subseteq X \setminus M_I^* cl(\{y\})$ and hence $M_I^* cl(\{x\}) \cap M_I^* cl(\{y\}) = \emptyset$.

Sufficiency: Let $V \in M_l^* - O(X)$ and let $x \in V$. We claim that $M_l^* cl(\{x\}) \subseteq V$. Let $y \notin V$, that is $y \in X \setminus V$. Then $x \neq y$ and $x \notin M_l^* cl(\{y\})$. This shows that $M_l^* cl(\{x\}) \neq M_l^* cl(\{y\})$. By assumption, $M_l^* cl(\{x\}) \cap M_l^* cl(\{y\}) = \emptyset$. Hence $y \notin M_l^* cl(\{x\})$ and therefore $M_l^* cl(\{x\}) \subseteq V$. Hence (X, τ, I) is $M_l^* - R_0$.

Theorem.4.9. An ideal space (X, τ, I) is $M_I^* R_0$ if and if only for every $x, y \in X, M_I^* ker(\{x\}) \neq M_I^* ker(\{y\}) \Longrightarrow M_I^* ker(\{x\}) \cap$ $M_I^* ker(\{y\}) = \emptyset$

Proof. Necessity: Suppose that (X,τ,I) is $M_I^* - R_0$. Thus by Proposition 4.6, for any points $x, y \in X$ if $M_{l}^{*}ker(\{x\}) \neq M_{l}^{*}ker(\{y\})$ then $M_{l}^{*}cl(\{x\}) \neq M_{l}^{*}cl(\{y\})$. Now we prove that $M_I^*kor(\{x\}) \cap M_I^*kor(\{y\}) = \emptyset$. Assume that $z \in M_l^* ker(\{x\}) \cap M_l^* ker(\{y\})$. By Proposition 3.19, and $z \in M_I^* ker(\{x\})$, it follows that $x \in M_I^* cl(\{z\})$. $x \in M_l^* cl(\{z\})$ Since and by Proposition 4.3, $M_{l}^{*}cl(\{x\}) = M_{l}^{*}cl(\{x\}).$ Similarly, we have $M_{l}^{*}cl(\{y\}) = M_{l}^{*}cl(\{z\}) = M_{l}^{*}cl(\{x\}).$ This is а contradiction. Therefore, we have $M_l^*kor(\{x\}) \cap M_l^*kor(\{y\}) = \emptyset$.

Sufficiency: Let (X, τ, I) be an ideal space such that for any points x and y in X, M_1 *ker ({x}) $\neq M_1$ *ker ({y}) implies $M_l^*ker(\{x\}) \cap M_l^*ker(\{y\}) = \emptyset$. By Proposition 4.6, if $M_{l}^{*}ker(\{x\}) \neq M_{l}^{*}ker(\{y\})$ then $M_{l}^{*}cl(\{x\}) \neq M_{l}^{*}cl(\{y\})$. Hence $M_l^*ker(\{x\}) \cap M_l^*ker(\{y\}) = \emptyset$ which implies $M_l^* cl(\{x\}) \cap M_l^* cl(\{y\}) = \emptyset.$ Because $z \in M_l^* cl(\{x\})$ $x \in M_i^* ker(\{z\})$ implies that and therefore $M_l^*ker(\{x\}) \cap M_l^*ker(\{z\}) = \emptyset$. By hypothesis, we have $M_{l}^{*} - ker(\{x\}) = M_{l}^{*} - ker(\{z\})$. Then $z \in M_l^* cl(\{x\}) \cap M_l^* cl(\{y\}) \text{ implies that } M_l^* - ker(\{x\})$

 $=M_{I}^{*} - ker(\{z\}) = M_{I}^{*} - ker(\{y\})$. This is

а

contradiction. Therefore, $M_l^* cl(\{x\}) \cap M_l^* cl(\{y\}) = \emptyset$ and by Proposition 4.3, (X, τ, I) is a $M_l^* R_0$ -space.

Proposition.4.10.In an ideal space (X, τ, I) , the following statements are equivalent:

(i) (X,τ,I) is a $M_I^*R_0$ -space.

(ii) For any non-empty set A and $G \in M_I^* - O(X)$ such that $A \cap G \neq \emptyset$, there exists $F \in M_I^* - C(X)$ such that $A \cap F \neq \emptyset$ and $F \subseteq G$.

(iii) $G = \bigcup \{F \in M_I^* - C(X) : F \subseteq G\}$ for any $G \in M_I^* - O(X)$. (iv) $F = \bigcap \{G \in M_I^* - O(X) : F \subseteq G\}$ for any $F \in M_I^* - C(X)$. (v) $M_I^* cl(\{x\}) \subseteq M_I^* - \ker(\{x\})$ for every $x \in X$.

Proof.(*i*) \Rightarrow (*ii*).Let *A* be any non-empty subset of *X* and $G \in M_I^* - O(X)$ such that $A \cap G \neq \emptyset$.Then choose $x \in A \cap G$.Since (X, τ, I) is a $M_I^* R_{\mathbb{C}^-}$ space, $x \in G \in M_I^* - O(X), M_I^* cl(\{x\}) \subseteq G$.Suppose $E = M_I^* - U(I_I)$ then $E \in M_I^* - O(X)$ such that $A \cap G \neq \emptyset$.

 $F = M_I^* cl(\{x\}), \text{then } F \in M_I^* - C(X) \text{ such that } A \cap F \neq \emptyset$ and $F \subseteq G$.

 $\begin{array}{ll} (\mathfrak{u}) \Rightarrow (\mathfrak{u}\mathfrak{u}). \text{Let} & G \in M_{I}^{*} - O(X). \text{Then} & \text{for every} \\ x \in F \in M_{I}^{*} - C(X), F \subseteq G, x \in G, & \text{and} & \text{hence} \\ \bigcup \{F \in M_{I}^{*} - C(X): F \subseteq G\} \subseteq G. \text{On the other hand, suppose} \\ \text{that } x \text{ is an arbitrary point of } G. \text{If we define } A = \{x\}, \text{then by} \\ \text{hypothesis, there exists } F \in M_{I}^{*} - C(X) \text{ such that } x \in F \text{ and} \\ F \subseteq G. \text{Therefore, } G \subseteq \bigcup \{F \in M_{I}^{*} - C(X): F \subseteq G\} \text{ and hence} \\ G = \bigcup \{F \in M_{I}^{*} - C(X): F \subseteq G\}. \end{array}$

 $(iii) \Rightarrow (iv)$. It is obvious.

 $(iv) \Rightarrow (v)$.Let $x \in X$ be arbitrary and $y \notin M_i^* - \ker(\{x\})$. There exists $V \in M_i^* - O(X)$ such that $M_{I}^{*}cl(\{y\}) \cap V = \emptyset.By$ $x \in V$ and y ∉ V,hence (iv), $\bigcap \{ G \in M_I^* - O(X) : M_I^* cl(\{y\}) \subseteq G \} \cap V = \emptyset$ and hence there exists $G \in M_{I}^* - O(X)$ such that $x \notin G$ and $M_i^* cl(\{y\}) \subseteq G$. Therefore $M_l^* cl(\{y\}) \cap G = \emptyset$ and $y \notin M_1^{*}cl(\{x\})$. Consequently, we obtain $M_l^* cl(\{x\}) \subseteq M_l^* - \ker(\{x\}).$ $(v) \Rightarrow (i)$.Let G be any M_i^* -open set and $x \in G$ be any arbitrary point.Let $y \in M_l^* - \ker(\{x\})$, then $x \in M_l^* \operatorname{cl}(\{y\})$

and $y \in G$. This implies that $M_l^* - \ker (\{x\}) \subseteq G$. Therefore, we obtain $x \in M_l^* cl(\{x\}) \subseteq M_l^* - \ker (\{x\}) \subseteq G$. This shows that (X, τ, I) is a $M_l^* R_0$ -space.

Corollary.4.11. For an ideal space (X, τ, I) the following statements are equivalent:

(i) (X, τ, I) is a $M_I * R_0$ -space. (ii) $M_I * cl(\{x\}) = M_I * - \ker(\{x\})$ for all $x \in X$. **Proof.** (i) \Rightarrow (ii).Suppose that (X,τ, I) is a $M_I^* R_0$ -space.By Proposition 4.10 (v), $M_I^* cl(\{x\}) \subseteq M_I^* - \ker(\{x\})$ for each $y \in M_i^* - \ker(\{x\})$, then $x \in X$.Let **by**Proposition 3.19, $x \in M_{I}^{*}cl(\{y\})$ and bv Proposition 4.3 $(iv), M_{I}^{*} cl(\{x\}) = M_{I}^{*} cl(\{y\}).$ Therefore, $y \in M_{I}^{*} cl(\{x\})$ and hence $M_{l}^{*} - \ker (\{x\}) \subseteq M_{l}^{*} cl(\{x\})$. This shows that $M_{I}^{*}cl(\{x\}) = M_{I}^{*} - \ker(\{x\}).$ (*ii*) \Rightarrow (*i*). It follows from Proposition 4.10.

Proposition.4.12. For an ideal space (X, τ, I) the following statements are equivalent.

(i) $(X_t \tau_t I)$ is a $M_I^* R_0$ -space. (ii) If F is M_I^* -closed, then $F = M_I^* - \ker(F)$. (iii) If F is M_I^* -closed and $x \in F$, then $M_I^* - \ker(\{x\}) \subseteq F$. (iv) If $x \in X$, then $M_I^* - \ker(\{x\}) \subseteq M_I^* cl(\{x\})$.

Proof. (*i*) \Rightarrow (*ii*).Let *F* be a M_I^* -closed set and $x \notin F$.Thus $X \setminus F$ is a M_I^* -open set containing *x*.Since (X, τ, I) is M_I^* - $R_0, M_I^* cl(\{x\} \subseteq X \setminus F$.Thus $M_I^* cl(\{x\}) \cap F = \emptyset$ and byProposition $3.20, x \notin M_I^* - \ker(F)$.Therefore $F = M_I^* - \ker(F)$.

 $(iv) \Rightarrow (i)$. We show that the implication by using Proposition 4.5. Let $x \in M_i^* cl(\{y\})$. Then by Proposition 3.19, $y \in M_i^* - ker(\{x\})$. Since $x \in M_i^* cl(\{x\})$ and $M_i^* cl(\{x\})$ is M_i^* -closed, by (iv), we obtain $y \in M_i^* - ker(\{x\}) \subseteq M_i^* cl(\{x\})$. Therefore

 $x \in M_I^* cl(\{y\})$ implies $y \in M_I^* cl(\{x\})$. The converse is obvious and (X, τ, I) is $M_I^* R_0$.

Proposition.4.13. (i) Every $\alpha - R_{\odot}$ space is $M_{I}^{*}R_{\odot}$ but not conversely.

(ii) Every $\alpha - R_1$ space is $M_1^* R_1$ but not conversely.

Proof. The proof is follows from the fact that every \mathbb{R} -open set is $M_{\mathbb{R}}^*$ -open.

Example.4.14. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then M_I^* -open sets of an ideal space are $\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ and α -open sets of X are $\emptyset, X, \{b\}, \{c\}, \{b, c\}$. Here the ideal space (X, τ, I) is $M_I^* R_0$ and $M_I^* R_1$ but not $\alpha - R_0$ and $\alpha - R_1$.

Proposition.4.15. An ideal space $(X_t \tau_t I)$ is $M_I^* R_1$ if it is $M_I^* T_2$.

Proof. Let x and y be any points of X such that $M_I^* cl(\{x\}) \neq M_I^* cl(\{y\})$. By Proposition 3.8(ii), every $M_I^* T_2^-$ space is $M_I^* T_1$. Therefore, by Proposition 3.5, $M_I^* cl(\{x\}) = \{x\}, M_I^* cl(\{y\}) = \{y\}$ and hence $x \neq y$. Since (X, τ, I) is $M_I^* T_2$, there exists disjoint M_I^* -open sets U and V such that $M_I^* cl(\{x\}) = \{x\} \subseteq U$ and $M_I^* cl(\{y\}) = \{y\} \subseteq V$. This shows that (X, τ, I) is $M_I^* R_1$.

Proposition.4.16. In an ideal space $(X_t \tau_t I)$ is M_I^{-} -symmetric, then the following statements are equivalent.

(i) **(Χ,τ, I)**is **M**_l***T**₂.

(ii) (X, τ, I) is $M_I^* R_1$ and $M_I^* T_1$.

(iii) (X, τ, I) is $M_I^* R_1$ and $M_I^* T_0$.

Proof. (*i*) \Rightarrow (*ii*). Follows from Proposition 3.8(ii) and Proposition 4.15.

(ii) \Rightarrow (iii).Follows from Proposition 3.8(i).

 $(iii) \Rightarrow (i)$.From Theorem 3.5, (X, τ, I) is $M_I^* T_0$ implies M_I^* closures of distinct points are distinct. Since (X, τ, I) is $M_I^* R_1$, there exists disjoint M_I^* -open sets U and V such that $M_I^* cl(\{x\}) \subseteq U$ and $M_I^* cl(\{y\}) \subseteq V$ and so $x \in U$ and $y \in V$.Hence (X, τ, I) is $M_I^* T_2$. **Proposition.4.17.** For an ideal space (X, τ, I) , the following statements are equivalent $(i)(X, \tau, I)$ is $M_I^* R_1$

(ii) If $x, y \in X$ such that $M_l^* cl(\{x\}) \neq M_l^* cl(\{y\})$, then there exists two M_l^* -closed sets F_1 and F_2 such that $x \in F_1, y \notin F_1$ $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

Proof.Proof is obvious.

Proposition.4.18. Every $M_I^* R_1$ space is $M_I^* R_0$.

Proof.Let U be M_I^* -open set such that $x \in U$. We have to prove, $M_I^* cl(\{x\}) \subseteq U$

If $y \notin U$ and since $x \notin M_l \operatorname{*} cl(\{y\})$, we have $M_l \operatorname{*} cl(\{x\}) \neq M_l \operatorname{*} cl(\{y\})$. So there exists a $M_l \operatorname{*}$ -open set V such that $M_l \operatorname{*} cl(\{y\}) \subseteq V$ and $x \notin V$, which implies $y \notin M_l \operatorname{*} cl(\{x\})$. Hence $M_l \operatorname{*} cl(\{x\}) \subseteq U$. Therefore (X, τ, I) is $M_l \operatorname{*} R_0$

Corollary.4.19. An ideal space (X, τ, I) is $M_I^* R_1$ if and only if for $x, y \in X$,

 $M_{I}^{*} - ker(\{x\}) \neq M_{I}^{*} - ker(\{y\})$, there exists disjoint M_{I}^{*} open sets U and V such that $M_{I}^{*}cl(\{x\}) \subseteq U$ and $M_{I}^{*}cl(\{y\}) \subseteq V$.

Proof.Follows from Proposition 4.6.

Theorem.4.19. An ideal space (X, τ, I) is $M_I^* R_{\perp}$ if and only if $x \in X \setminus M_I^* cl(\{y\})$ implies that x and y have disjoint M_I^* - open neighbourhoods.

Proof. Necessity: Let $x \in X \setminus M_i^* cl(\{y\})$. Since (X, τ, I) is $M_i^* R_1$, then $M_i^* cl(\{x\}) \neq M_i^* cl(\{y\})$, so x and y have disjoint M_i^* -open neighbourhoods.

Sufficiency: First we show that (X, τ, I) is $M_I^* R_0$. let U be a M_I^* -open set and $x \in U$. Suppose that $y \notin U$. Then $M_I^* cl(\{y\}) \cap U = \emptyset$ and $x \notin M_I^* cl(\{y\})$. By hypothesis, there exists two M_I^* -open sets U_x and U_y such that $\in U_x$, $y \in U_y$ and $U_x \cap U_y = \emptyset$. Hence $M_I^* cl(\{x\}) \subseteq M_I^* cl(\{U_x\})$ and $M_I^* cl(\{x\}) \cap U_y \subseteq M_I^* cl(\{U_x\}) \cap U_y = \emptyset$. Therefore, $y \notin M_I^* cl(\{x\})$. Consequently, $M_I^* cl(\{x\}) \subseteq U$ and (X, τ, I) is $M_I^* cl(\{x\}) \neq M_I^* cl(\{x\})$. Then, we can assume that there exists $z \in M_I^* cl(\{x\})$ such that $z \notin M_I^* cl(\{y\})$. There exists M_I^* -open sets V_y and V_z such that $\in V_y$, $z \in V_z$ and $V_y \cap V_z = \emptyset$. Since $z \in M_I^* cl(\{x\}) \subseteq V_z$, $M_I^* cl(\{y\}) \subseteq V_y$ and $V_y \cap V_z = \emptyset$. This shows that (X, τ, I) is $M_I^* R_1$.

V. ACKNOWLEDGEMENT

I would like to express my gratitude to the UGC who chose me for MANF fellowship for 2013-14 and also thanked my dear friend,Stephen Raj, who helped me to type this article.

REFERENCES

- J.Antony Rex Rodrigo, O.Ravi and A.Naliniramalatha.,g[^]closed sets in ideal topological spaces ,Methods of Functional Analysis and Topology, vol. 17.no. 3,pp. 274-280,2011.
- [2] J.Antony Rex Rodrigo and P.Mariappan,On[[M_I]]^*closed sets in Ideal Topological Spaces, IJMAA (accepted).
- [3] M.Caldas and S.Jafari, On some appications of b-open sets in topological spaces, Kochi.J.Math.,vol.2,pp.11-19,2007.
- [4] J.Dontchev,On some separation axioms associated with the αtopology,Mem.Fac.Sci.Kochi.Univ.Ser.A.Math.,vol.18,pp .31-35,1995.
- [5] E.Ekici, On R-spaces, Indian Journal of Math.,vol.25,no.2,pp.163-172,2005.
- [6] E.Hatir and T.Noiri,On decomposition of continuity via idealization, Acta.Math.Hungar.,vol.96.no.4,pp.341-349, 2002
- [7] D.Jankovic and T.R.Hamlett, New Topologies from Old via Ideals, The American Mathematical Monthly,vol.97,no.4,295-310, 1990

- [8] Kuratowski, Topology Vol. I, Academic Press, New York 1966.
- [9] R.Vaidyanathaswamy, Set Topology, Chelsea Publishing Company,1960.