
IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2605 www.ijsart.com

Paging And Virtual Memory

Bindu Singh

Dept of Computer Department
Vadodara Institute of Engineering

Abstract- Mention the abstract for the article. An abstract is a
brief summary of a research article, thesis, review, conference
proceeding or any in-depth analysis of a particular subject or
discipline, and is often used to help the reader quickly
ascertain the paper's purpose. When used, an abstract always
appears at the beginning of a manuscript, acting as the point-
of-entry for any given scientific paper or patent application.

I. INTRODUCTION

 Virtual memory is a memory management capability
of an OS that uses hardware and software to allow a computer
to compensate for physical memory shortages by temporarily
transferring data from random access memory (RAM) to disk
storage. The basic idea behind virtual memory is that each
program has its own address space, which is broken up into
chunks called pages. Each page is a contiguous range of
addresses. These pages are mapped onto physical memory, but
not all pages have to be in physical memory at the same time
to run the program. When the program references a part of its
address space that is in physical. Memory, the hardware
performs the necessary mapping on the fly. When the program
references a part of its address space that is not in physical
memory, the operating system is alerted to go get the missing
piece and re-execute the instruction that failed. With virtual
memory, instead of having separate relocation for just the text
and data segments, the entire address space can be mapped
onto physical memory in fairly small units. We will show how
virtual memory is implemented below. Virtual memory works
just fine in a multiprogramming system, with bits and pieces
of many programs in memory at once. While a program is
waiting for pieces of itself to be read in, the CPU can be given
to another process.

II. PAGING

It is sometimes said that the operating system takes

one of two approaches when solving most any space-
management problem. The first approach is to chop things up
into variable-sized pieces, as we saw with segmentation in
virtual memory. Unfortunately, this solution has inherent
difficulties. In particular, when dividing a space into different-
size chunks, the space itself can become fragmented, and thus
allocation becomes more challenging over time. Thus, it may
be worth considering the second approach: to chop up space

into fixed-sized pieces. Instead of splitting up a process’s
address space into some number of variable-sized logical
segments (e.g., code, heap, stack), we divide it into fixed-sized
units, each of which we call a page. Correspondingly, we view
physical memory as an array of fixed-sized slots called page
frames; each of these frames can contain a single virtual-
memory page. To help make this approach more clear, let’s
illustrate it with a simple example. Figure 18.1 (page 2)
presents an example of a tiny address space, only 64 bytes
total in size, with four 16-byte pages (virtual pages 0, 1, 2, and
3). Real address spaces are much bigger, of course, commonly
32 bits and thus 4-GB of address space, or even 64 bits1 ; in
the book, we’ll often use tiny examples to make them easier to
digest.

Physical memory, as shown in second figure consists
of a number of fixed-sized slots, in this case eight page frames
(making for a 128-byte physical memory, also ridiculously
small). As you can see in the diagram, the pages of the virtual
address space have been placed at different locations
throughout physical memory; the diagram also shows the OS
using some of physical memory for itself. Paging, as we will
see, has a number of advantages over our previous approaches.
Probably the most important improvement will be flexibility:
with a fully-developed paging approach, the system will be
able to support the abstraction of an address space effectively,
regardless of how a process uses the address space; we won’t,
for example, make assumptions about the direction the heap
and stack grow and how they are used. Another advantage is
the simplicity of free-space management that paging affords.
For example, when the OS wishes to place our tiny 64-byte
address space into our eight-page physical memory, it simply
finds four free pages; perhaps the OS keeps a free list of all
free pages for this, and just grabs the first four free pages off
of this list. In the example, the OS has placed virtual page 0 of
the address space (AS) in physical frame 3, virtual page 1 of
the AS in physical frame 7, page 2 in frame 5, and page 3 in
frame 2. Page frames 1, 4, and 6 are currently free. To record
where each virtual page of the address space is placed in

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2606 www.ijsart.com

physical memory, the operating system usually keeps a per-
process data structure known as a page table. The major role
of the page table is to store address translations for each of the
virtual pages of the address space, thus letting us know where
in physical memory each page resides. For our simple
example (Figure 18.2, page 2), the page table would thus have
the following four entries: (Virtual Page 0 → Physical Frame
3), (VP 1 → PF 7), (VP 2 → PF 5), and (VP 3 → PF 2). It is
important to remember that this page table is a per-process
data structure (most page table structures we discuss are per-
process structures; an exception we’ll touch on is the inverted
page table). If another process were to run in our example
above, the OS would have to manage a different page table for
it, as its virtual pages obviously map to different physical
pages (modulo any sharing going on).

This approach works the best in guidance of fellow
researchers. In this the authors continuously receives or asks
inputs from their fellows. It enriches the information pool of
your paper with expert comments or up gradations. And the
researcher feels confident about their work and takes a jump to
start the paper writing.

III. PAGE TABLES

Page tables can get terribly large, much bigger than
the small segment table or base/bounds pair we have discussed
previously. For example, imagine a typical 32-bit address
space, with 4KB pages. This virtual address splits into a 20-bit
VPN and 12-bit offset (recall that 10 bits would be needed for
a 1KB page size, and just add two more to get to 4KB). A 20-
bit VPN implies that there are 2 20 translations that the OS
would have to manage for each process (that’s roughly a
million); assuming we need 4 bytes per page table entry (PTE)
to hold the physical translation plus any other useful stuff, we
get an immense 4MB of memory needed for each page table!
That is pretty large. Now imagine there are 100 processes
running: this means the OS would need 400MB of memory
just for all those address translations! Even in the modern era,
where machines have gigabytes of memory, it seems a little
crazy to use a large chunk of it just for translations, no? And
we won’t even think about how big such a page table would
be for a 64-bit address space; that would be too gruesome and

perhaps scare you off entirely. Because page tables are so big,
we don’t keep any special on-chip hardware in the MMU to
store the page table of the currently-running process. Instead,
we store the page table for each process in memory
somewhere. Let’s assume for now that the page tables live in
physical memory that the OS manages; later we’ll see that
much of OS memory itself can be virtualized, and thus page
tables can be stored in OS virtual memory (and even swapped
to disk), but that is too confusing right now, so we’ll ignore it.
What’s Actually In The Page Table? Let’s talk a little about
page table organization. The page table is just a data structure
that is used to map virtual addresses (or really, virtual page
numbers) to physical addresses (physical frame numbers).
Thus, any data structure could work. The simplest form is
called a linear page table, which is just an array. The OS
indexes the array by the virtual page number (VPN), and looks
up the page-table entry (PTE) at that index in order to find the
desired physical frame number (PFN). For now, we will
assume this simple linear structure; in later chapters, we will
make use of more advanced data structures to help solve some
problems with paging. As for the contents of each PTE, we
have a number of different bits in there worth understanding at
some level. A valid bit is common to indicate whether the
particular translation is valid; for example, when a program
starts running, it will have code and heap at one end of its
address space, and the stack at the other. All the unused space
in-between will be marked invalid, and if the process tries to
access such memory, it will generate a trap to the OS which
will likely terminate the process. Thus, the valid bit is crucial
for supporting a sparse address space; by simply marking all
the unused pages in the address space invalid, we remove the
need to allocate physical frames for those pages and thus save
a great deal of memory. We also might have protection bits,
indicating whether the page could be read from, written to, or
executed from. Again, accessing a page in a way not allowed
by these bits will generate a trap to the OS. There are a couple
of other bits that are important but we won’t talk about much
for now. A present bit indicates whether this page is in
physical memory or on disk (i.e., it has been swapped out).
We will understand this machinery further when we study how
to swap parts of the address space to disk to support address
spaces that are larger than physical memory; swapping allows
the OS to free up physical memory by moving rarely-used
pages to disk. A dirty bit is also common, indicating whether
the page has been modified since it was brought into memory.
A reference bit (a.k.a. accessed bit) is sometimes used to track
whether a page has been accessed, and is useful in determining
which pages are popular and thus should be kept in memory;
such knowledge is critical during page replacement, a topic we
will study in great detail in subsequent chapters. Figure 18.5
shows an example page table entry from the x86 architecture
[I09]. It contains a present bit (P); a read/write bit (R/W)

IJSART - Volume 4 Issue 3 – MARCH 2018 ISSN [ONLINE]: 2395-1052

Page | 2607 www.ijsart.com

which determines if writes are allowed to this page; a
user/supervisor bit (U/S) which determines if user-mode
processes can access the page; a few bits (PWT, PCD, PAT,
and G) that determine how hardware caching works for these
pages; an accessed bit (A) and a dirty bit (D)

IV. CONCLUSION

Paging is a process to translate virtual address to
physical address. Virtual memory is the memory used by
process whenever there is a shortfall in the memory in the
physical memory.

REFERENCES

[1] pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf
[2] www.uobabylon.edu.iq/download/M.S%202013-

2014/Operating_System_Concepts,_8th_Edition%5BA4
%5D.pdf

