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Abstract- Mention the abstract for the article. An abstract is a 
brief summary of a research article, thesis, review, conference 
proceeding or any in-depth analysis of a particular subject or 
discipline, and is often used to help the reader quickly 
ascertain the paper's purpose. When used, an abstract always 
appears at the beginning of a manuscript, acting as the point-
of-entry for any given scientific paper or patent application. 
 

I. INTRODUCTION 
 
 Virtual memory is a memory management capability 
of an OS that uses hardware and software to allow a computer 
to compensate for physical memory shortages by temporarily 
transferring data from random access memory (RAM) to disk 
storage. The basic idea behind virtual memory is that each 
program has its own address space, which is broken up into 
chunks called pages. Each page is a contiguous range of 
addresses. These pages are mapped onto physical memory, but 
not all pages have to be in physical memory at the same time 
to run the program. When the program references a part of its 
address space that is in physical. Memory, the hardware 
performs the necessary mapping on the fly. When the program 
references a part of its address space that is not in physical 
memory, the operating system is alerted to go get the missing 
piece and re-execute the instruction that failed. With virtual 
memory, instead of having separate relocation for just the text 
and data segments, the entire address space can be mapped 
onto physical memory in fairly small units. We will show how 
virtual memory is implemented below. Virtual memory works 
just fine in a multiprogramming system, with bits and pieces 
of many programs in memory at once. While a program is 
waiting for pieces of itself to be read in, the CPU can be given 
to another process. 
 

II. PAGING 
 
It is sometimes said that the operating system takes 

one of two approaches when solving most any space-
management problem. The first approach is to chop things up 
into variable-sized pieces, as we saw with segmentation in 
virtual memory. Unfortunately, this solution has inherent 
difficulties. In particular, when dividing a space into different-
size chunks, the space itself can become fragmented, and thus 
allocation becomes more challenging over time. Thus, it may 
be worth considering the second approach: to chop up space 

into fixed-sized pieces. Instead of splitting up a process’s 
address space into some number of variable-sized logical 
segments (e.g., code, heap, stack), we divide it into fixed-sized 
units, each of which we call a page. Correspondingly, we view 
physical memory as an array of fixed-sized slots called page 
frames; each of these frames can contain a single virtual-
memory page. To help make this approach more clear, let’s 
illustrate it with a simple example. Figure 18.1 (page 2) 
presents an example of a tiny address space, only 64 bytes 
total in size, with four 16-byte pages (virtual pages 0, 1, 2, and 
3). Real address spaces are much bigger, of course, commonly 
32 bits and thus 4-GB of address space, or even 64 bits1 ; in 
the book, we’ll often use tiny examples to make them easier to 
digest. 

 

 
 

Physical memory, as shown in second figure consists 
of a number of fixed-sized slots, in this case eight page frames 
(making for a 128-byte physical memory, also ridiculously 
small). As you can see in the diagram, the pages of the virtual 
address space have been placed at different locations 
throughout physical memory; the diagram also shows the OS 
using some of physical memory for itself. Paging, as we will 
see, has a number of advantages over our previous approaches. 
Probably the most important improvement will be flexibility: 
with a fully-developed paging approach, the system will be 
able to support the abstraction of an address space effectively, 
regardless of how a process uses the address space; we won’t, 
for example, make assumptions about the direction the heap 
and stack grow and how they are used. Another advantage is 
the simplicity of free-space management that paging affords. 
For example, when the OS wishes to place our tiny 64-byte 
address space into our eight-page physical memory, it simply 
finds four free pages; perhaps the OS keeps a free list of all 
free pages for this, and just grabs the first four free pages off 
of this list. In the example, the OS has placed virtual page 0 of 
the address space (AS) in physical frame 3, virtual page 1 of 
the AS in physical frame 7, page 2 in frame 5, and page 3 in 
frame 2. Page frames 1, 4, and 6 are currently free. To record 
where each virtual page of the address space is placed in 
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physical memory, the operating system usually keeps a per-
process data structure known as a page table. The major role 
of the page table is to store address translations for each of the 
virtual pages of the address space, thus letting us know where 
in physical memory each page resides. For our simple 
example (Figure 18.2, page 2), the page table would thus have 
the following four entries: (Virtual Page 0 → Physical Frame 
3), (VP 1 → PF 7), (VP 2 → PF 5), and (VP 3 → PF 2). It is 
important to remember that this page table is a per-process 
data structure (most page table structures we discuss are per-
process structures; an exception we’ll touch on is the inverted 
page table). If another process were to run in our example 
above, the OS would have to manage a different page table for 
it, as its virtual pages obviously map to different physical 
pages (modulo any sharing going on). 

 

 
 

This approach works the best in guidance of fellow 
researchers. In this the authors continuously receives or asks 
inputs from their fellows. It enriches the information pool of 
your paper with expert comments or up gradations. And the 
researcher feels confident about their work and takes a jump to 
start the paper writing. 
 

III. PAGE TABLES 
 

Page tables can get terribly large, much bigger than 
the small segment table or base/bounds pair we have discussed 
previously. For example, imagine a typical 32-bit address 
space, with 4KB pages. This virtual address splits into a 20-bit 
VPN and 12-bit offset (recall that 10 bits would be needed for 
a 1KB page size, and just add two more to get to 4KB). A 20-
bit VPN implies that there are 2 20 translations that the OS 
would have to manage for each process (that’s roughly a 
million); assuming we need 4 bytes per page table entry (PTE) 
to hold the physical translation plus any other useful stuff, we 
get an immense 4MB of memory needed for each page table! 
That is pretty large. Now imagine there are 100 processes 
running: this means the OS would need 400MB of memory 
just for all those address translations! Even in the modern era, 
where machines have gigabytes of memory, it seems a little 
crazy to use a large chunk of it just for translations, no? And 
we won’t even think about how big such a page table would 
be for a 64-bit address space; that would be too gruesome and 

perhaps scare you off entirely. Because page tables are so big, 
we don’t keep any special on-chip hardware in the MMU to 
store the page table of the currently-running process. Instead, 
we store the page table for each process in memory 
somewhere. Let’s assume for now that the page tables live in 
physical memory that the OS manages; later we’ll see that 
much of OS memory itself can be virtualized, and thus page 
tables can be stored in OS virtual memory (and even swapped 
to disk), but that is too confusing right now, so we’ll ignore it. 
What’s Actually In The Page Table? Let’s talk a little about 
page table organization. The page table is just a data structure 
that is used to map virtual addresses (or really, virtual page 
numbers) to physical addresses (physical frame numbers). 
Thus, any data structure could work. The simplest form is 
called a linear page table, which is just an array. The OS 
indexes the array by the virtual page number (VPN), and looks 
up the page-table entry (PTE) at that index in order to find the 
desired physical frame number (PFN). For now, we will 
assume this simple linear structure; in later chapters, we will 
make use of more advanced data structures to help solve some 
problems with paging. As for the contents of each PTE, we 
have a number of different bits in there worth understanding at 
some level. A valid bit is common to indicate whether the 
particular translation is valid; for example, when a program 
starts running, it will have code and heap at one end of its 
address space, and the stack at the other. All the unused space 
in-between will be marked invalid, and if the process tries to 
access such memory, it will generate a trap to the OS which 
will likely terminate the process. Thus, the valid bit is crucial 
for supporting a sparse address space; by simply marking all 
the unused pages in the address space invalid, we remove the 
need to allocate physical frames for those pages and thus save 
a great deal of memory. We also might have protection bits, 
indicating whether the page could be read from, written to, or 
executed from. Again, accessing a page in a way not allowed 
by these bits will generate a trap to the OS. There are a couple 
of other bits that are important but we won’t talk about much 
for now. A present bit indicates whether this page is in 
physical memory or on disk (i.e., it has been swapped out). 
We will understand this machinery further when we study how 
to swap parts of the address space to disk to support address 
spaces that are larger than physical memory; swapping allows 
the OS to free up physical memory by moving rarely-used 
pages to disk. A dirty bit is also common, indicating whether 
the page has been modified since it was brought into memory. 
A reference bit (a.k.a. accessed bit) is sometimes used to track 
whether a page has been accessed, and is useful in determining 
which pages are popular and thus should be kept in memory; 
such knowledge is critical during page replacement, a topic we 
will study in great detail in subsequent chapters. Figure 18.5 
shows an example page table entry from the x86 architecture 
[I09]. It contains a present bit (P); a read/write bit (R/W) 
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which determines if writes are allowed to this page; a 
user/supervisor bit (U/S) which determines if user-mode 
processes can access the page; a few bits (PWT, PCD, PAT, 
and G) that determine how hardware caching works for these 
pages; an accessed bit (A) and a dirty bit (D) 
 

IV. CONCLUSION 
 

Paging is a process to translate virtual address to 
physical address. Virtual memory is the memory used by 
process whenever there is a shortfall in the memory in the 
physical memory. 
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