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Abstract- With the popularity of social media (e.g., Facebook 
and Flicker), users can easily share their check-in records and 
photos during their trips. In view of the huge number of user 
historical mobility records in social media, we aim to discover 
travel experiences to facilitate trip planning. When planning a 
trip, users always have specific preferences regarding their 
trips. Instead of restricting users to limited query options such 
as locations, activities, or time periods, we consider arbitrary 
text descriptions as keywords about personalized 
requirements. Moreover, a diverse and representative set of 
recommended travel routes is needed. Prior works have 
elaborated on mining and ranking existing routes from check-
in data. To meet the need for automatic trip organization, we 
claim that more features of Places of Interest (POIs) should be 
extracted. Therefore, in this paper, we propose an efficient 
Keyword-aware Representative Travel Route framework that 
uses knowledge extraction from users’ historical mobility 
records and social interactions. Explicitly, we have designed a 
keyword extraction module to classify the POI-related tags, 
for effective matching with query keywords. We have further 
designed a route reconstruction algorithm to construct route 
candidates that fulfill the requirements. To provide befitting 
query results, we explore Representative Skyline concepts, that 
is, the Skyline routes which best describe the trade-offs among 
different POI features. To evaluate the effectiveness and 
efficiency of the proposed algorithms, we have conducted 
extensive experiments on real location-based social network 
datasets, and the experiment results show that our methods do 
indeed demonstrate good performance compared to state-of-
the-art works. 
 
Keywords- Location-based social network, text mining, travel 
route recommendation 
 

I. INTRODUCTION 
 
 LOCATION-BASED social network (LBSN) 
services allow users to perform check-in and share their 
check-in data with their friends. In particular, when a user is 
traveling, the check-in data are in fact a travel route with some 
photos and tag information. As a result, a massive number of 
routes are generated, which play an essential role in many 
well-established research areas, such as mobility prediction, 

urban planning and traffic management. In this paper, we 
focus on trip planning and intend to discover travel experi-
ences from shared data in location-based social networks. To 
facilitate trip planning, the prior works in [1], [2], [3], [4], 
 
[5] provide an interface in which a user could submit the 
query region and the total travel time. In contrast, we con-
sider a scenario where users specify their preferences with 
keywords. For example, when planning a trip in Sydney, one 
would have “Opera House”. As such, we extend the input of 
trip planning by exploring possible keywords issued by users. 
 

However, the query results of existing travel route 
rec-ommendation services usually rank the routes simply by 
the popularity or the number of uploads of routes. For such 
ranking, the existing works [6], [7], [8] derive a scoring func-
tion, where each route will have one score according to its 
features (e.g., the number of Places of Interest, the popular-ity 
of places). Usually, the query results will have similar routes. 
Recently, [9] aimed to retrieve a greater diversity of routes 
based on the travel factors considered. As high scor-ing routes 
are often too similar to each other, this work con-siders the 
diversity of results by exploiting Skyline query. 
  

In this paper, we develop a Keyword-aware 
Representative Travel Route (KRTR) framework to retrieve 
several recommended routes where keyword means the 
personalized requirements that users have for the trip. The 
route dataset could be built from the collection of low-
sampling check-in records. 
 

Definition 1 (Travel route). Given a set of check-in 
points recorded as a series of travel routes, each check-in point 
represents a POI p and the user’s checked-in time t. The 
check-in records were grouped by individual users and 
ordered by the creation time.  
 

Consider the example illustrated in Fig. 1, the related 
route information of which is stored in Table 1. For ease of 
illustration, each POI is associated with one keyword (though 
our model can support multiple keywords) and a 
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Fig. 1. Keyword-aware travel routes query running example. 

 
two-dimensional score vector (each dimension 

represents the rank of a feature). Assume a tourist plans a date 
with a set of keywords [“Whisky” “Sydney Cove” “Sunset”]. 
First, we can find that these keywords vary in their semantic 
meaning: “Sydney Cove” is a geographical region; “Sunset” is 
related to a specific time period (evening) and locations such 
as beach; “Whisky” is the attribute of POI. 
 

We argue that knowing semantics is important, as 
some query keywords do not need to be matched in the POI 
key-word. For example, p9, even though its name does not 
include “Whiskey”, is a good match, as it is an important 
attribute of Bar POIs. Similarly, “Sydney Cove” is not men-
tioned, but based on the location of Opera House, p8 matches 
the requirement. As a result, T3 matches all the requirements, 
which could not be supported by existing simple keyword-
based matches. In this example, the key-word “Sunset” can be 
easily matched. Although the other two words are not stored in 
the database, we want to corre-spond them to Drinking whisky 
at a bar and Opera House in Sydney Cove. Finally, T3 
matches all the requirements. Mean-while, there is still a 
possibility that no existing route is in accordance with the 
query keywords. For this challenge, we propose a candidate 
route generation algorithm to increase the number of routes. 
For instance, a travel sequence T 0 ¼ fp1 ! p3 ! p4 ! p5 ! p8 ! 
p9g, which is aggregated from the route segments of T1 to T3, 
also matches all the key-words specified. 
 

Additionally, we have mentioned that the final results 
may have similar characteristics and be monotonous due to the 
fact that all of the factors are aggregated into one score for 
each travel route. Consequently, the system will retrieve the 
top-k routes with the highest score as the results. Users may 
not understand the characteristic of these routes through the 
final single score (e.g., Which one has the most interesting 
landmarks? Which one is well-connected to the place I want to 

go?) so it may be hard to choose a route from the final results. 
Furthermore, users need to pre-define the weight for each 
factor, although it is hard to select a suitable weight in most 
cases. Since travel route recommendation has to take several 
factors into consideration to emphasize the unique travel 
factors of travel routes, we borrowed the concept of Distance-
based Representative Skyline [10] to retrieve travel routes. 
Distance-based Representative Sky-line search on the travel 
routes also includes a small number k of skyline routes that 
best describe the full optimal 
  

TABLE 1 Example of Route Dataset 

 
 

(Skyline) results in terms of the features derived. 
Consider an example in Fig. 1, where the score vector of POIs 
represents the attractiveness score and the visiting time 
information. To compute the average POI score of T1, T2 and 
T3, we get the final score values (0.1, 0.34), (0.15, 0.44), and 
(0.18, 0.3) respectively. For example, with k ¼ 3, the skyline 
points in Fig. 2 can be divided into three subsets {T4}, {T2; 
T5; T6} and {T3; T8}. Our representative skyline travel route 
solution will report fT2; T3; T4g. 
 

This paper builds on and significantly improves the 
KSTR framework [9] of recommending a diverse set of travel 
routes based on several score features mined from social 
media. KSTR then constructs travel routes from different route 
segments. Specifically, we extend KSTR to consider 
representative and approximate results under an optional k 
limit in Section 5. Additionally, resources including passive 
check-ins such as GPS-tagged photos are discussed in Section 
6. This addition would enable KRTR to consider a larger input 
including active and passive check-ins with high efficiency 
and scalability. 
 
The contributions of this paper are summarized as follows: 
 

We propose a KRTR framework in which users are 
able to issue a set of keywords and a query region, and for 
which query results contain diverse trip routes. 
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Check-in information is mined from passive check-
ins to enrich the input data. GPS-tagged photos are larger in 
scale than foursquare check-ins. This min-ing thus improves 
the coverage of the input data. 
 

 
Fig. 2. An extended example of skyline travel routes built by 

Table 1. 
  

TABLE 2 Symbols and Notations 

 
 

We propose a route reconstruction method to parti-
tion routes into segments by considering spatial and temporal 
features. 
 

Representative Skyline query for travel route search 
is adopted to combine the multi-dimensional meas-urements 
of routes, which increases the diversity of the  recommended  
results.  Moreover,  a  greedy method is designed for the 
efficiency of the online application. 
 

To evaluate our proposed framework, we conducted 
experiments on real LBSN and photo datasets. The experi-
ments show that KRTR is able to retrieve travel routes that are 
of interest to users. 
 

The rest of the paper is organized as follows. Section 
2 presents the overview of the KRTR framework. Section 3 
describes the feature scoring algorithms and how to extend 
KSTR to mine from both active and passive check-ins. In 
Section 4, we provide a travel routes exploration module of 
KRTR. The experiment results of the proposed methods are 

presented in Section 5. Section 6 summaries the related work. 
Finally, Section 7 concludes this paper. 
 

II. FRAMEWORK OVERVIEW 
 

In this section, the proposed framework KSTR is 
presented. KSTR is comprised of two modules: the offline 
pattern dis-covery and scoring module and the online travel 
routes exploration module. The notations used throughout the 
paper are summarized below in Table 2. 
 

Offline Pattern Discovery and Scoring Module. 
Given an LBSN dataset, we first analyze the tags of each POI 
to deter-mine the semantic meaning of the keywords, which 
are classi-fied into (i) Geo-specific keywords, (ii) Temporal 
keywords, and (iii) Attribute keywords according to their 
characteristics. Furthermore, we derive the feature scores of 
the POIs and generate proper candidate travel routes. 
 

Online Travel Routes Exploration Modulez. In this 
module, we aim to provide an interface for users to specify 
query ranges and preference-related keywords. Once the 
system receives a specified range and time, the online module 
will retrieve those travel routes that overlap the query range 
and the stay time period. Then, it will compute a matched 
score of how well the travel route is connected to the 
keywords. Consequently, the online module returns the k most 
 representative routes considering the aforementioned feature 
scores to the users. 

 
III.PATTERN DISCOVERY 

 
This section describes an offline process of pattern 

discovery from trajectory histories, which includes (1) the 
scoring mechanism for keywords and POIs; (2) a review of 
feature scoring methods that quantify the goodness of the 
routes; and (3) the candidate route generation algorithm. 
 
3.1 Keyword Extraction 
  

In this section, we present how we extract the 
semantic meaning of the keywords and propose a matched 
score to describe the degree of connection between keywords 
and trajectories. The keyword extraction module first 
computes the spatial, temporal and attribute scores for every 
keyword win the corpus. At query time, each query keyword 
will be matched to the pre-computed score of matching w. 
 
3.1.1 Geo-Specific Keywords 
 

Some tags are specific to a location, which represents 
its spa-tial nature. To quantify the geo-specificity of a tag, an 
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exter-nal database identifies geo-terms in the overall tag set 
and then the tag distribution on the map rates the identified 
geo-terms. Specifically, to identify name tags, we leverage an 
external geo-database. In Microsoft Bing services, Geo-code 
Dataflow API (GDA)1 can query large numbers of geo-terms 
to get their representative locations and addresses. For a tag w, 
using GDA, we set as 1 if its location latitude; longitude is 
returned, and 0 otherwise. Then, using the geographic 
distribution of the tags, we can find place-level geo-terms like 
‘Taipei101’ in noisy geo-terms. Country-level geo-terms like 
‘USA’ and city-level geo-terms like ‘Seattle’ are far more 
widely distributed on the globe than place-level geo-terms. 
Thus, we compute the variance of the latitude; longitude set 
including a tag w. With these features, we define a geo-
specificity (GS) score of a tag w as(1) 
 

We consider a tag w as a geo-specific keyword if is 
greater than a pre-defined threshold. 
 
3.1.2 Temporal Keywords 
 

Some tags are specific to a time interval, which 
represents its temporal nature. To quantify the temporal-
specificity of a tag, time distribution on a tag rates the 
identified tempo-ral-terms. Using the time distribution of tags, 
we can find tags associated with a specific time interval like 
‘sunset’. Tags independent of time like ‘Taipei’ are far more 
widely distributed in time than time-specific tags. Thus, to 
identify temporal-tags, we compute the variance Timeof the 
creation time of check-ins including a tag w. With these 
features, we define a temporal-specificity (TS) score of a tag 
w as 

 
We consider a tag w as a temporal keyword if is 

greater than a pre-defined threshold. Then, given a tempo-ral 
keyword w, we generate a one-dimensional Gaussian 
 
N ; that models the distribution of the occurring time of 
w and define the associated time of w as a time interval with 
up to two standard deviations from m. 
 
3.1.3 Attribute Keywords 
 

To find attribute keywords, we consider tags 
frequently associated with a POI (TF), while not with so many 
other POIs (IDF). To quantify the relevance between a tag and 
a POI, we define a “document” as an estimated check-in set Ip 
of p. Using this POI-driven knowledge, our scoring con-veys 
the POI semantic information in both TF and IDF. 
 

Specifically, we use three types of frequencies: 
check-in frequency (pf), user frequency (uf), and POI 

frequency (rf). Given a tag w and a POI p, pfðIp; wÞ is the 
number of check-ins that have w in Ip. It is reasonable that a 
tag is likely to be one of the attribute tags as more check-ins of 
the POI have the tag. However, some users have the same tags 
in differ-ent check-ins causing overestimation of pf. Similarly, 
ufðIp; w Þ is the number of users that assign w in Ip. uf can 
control overestimated pf. However, we need to filter com-mon 
tags like ‘Travel’, which also have high pf and uf. Given a tag 
w and a set L of all POIs, rfðL; wÞ is the number of POIs p 2 
L having w in Ip. Consider the rf distribution of the overall tag 
set. The head may contain tags that would be too generic 
attributes for all POIs, while tags in the tail (i.e., rf ¼ 1) are 
likely not to be attribute terms. With these three types of 
frequencies, we define an attribute (AT ) score of a tag w as 
 

We consider a tag w as an attribute keyword if AT is 
greater than a pre-defined threshold . 

 
3.2 Passive Check-Ins 
 

In previous sections, we worked with check-ins 
generated by users manually recording their whereabouts, 
such as foursquare check-ins of visiting Taipei 101. However, 
some such whereabouts are only passively recorded, such as 
pho-tos of Taipei 101. Considering that six billion public 
photos have been uploaded in Facebook and more than 3 
percent of photos have geo data,2,3 the volume of geo-tagged 
photos is 2.5 times larger than that of active check-ins. In 
addition, they capture locations that cannot be covered by 
active check-ins, such as new restaurants yet to be registered 
at Foursquare DB. We study how such passive check-ins can 
be leveraged, by extending our framework KSTR [9]. 
 

Our goal is to extract a check-in triple, hwho, where, 
wheni from a Flickr photo. As who and when are often clear 
from the user ID and the timestamp, we focus on extracting 
where based on the location and tags of the photo. However, 
this task is non-trivial, as users describe the same POI, such as 
 
2. Finding Images on Flickr. 
http://www.jiscdigitalmedia.ac.uk/ guide/ 
 
3. Facebook Photos: The Astonishing Stats. 
http://www.bitrebels. com/social/ 
  
 

Taipei 101, using many different names. For 
example, photo uploaders prefer to use various synonymous 
tags to refer to the same POI, which do not necessarily match 
with the offi-cial POI name. Besides, not all people assign tags 
referring to POIs taken in photos. To overcome the informal 
nature of photo tagging, we present a two-phase method for 
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extracting check-ins from Flickr photos. The first phase 
identifies syn-onymous tags of an official POI name by 
exploiting charac-teristics of POIs. Considering the synonyms 
found, the second phase harvests virtual check-ins by 
propagating POI-relevance scores through duplicate/near-
duplicate photos. 
 
3.2.1 Phase I: Synonym-Based Check-in Extraction 
 

The first phase is extracting a set Np of semantically 
equiva-lent terms (i.e., synonyms) of an official name np of a 
POI p. To be specific regarding POIs, considering photo tags 
as synonym candidates, we leverage rich signals associated 
between POIs and photos. Specifically, to extract tags syn-
onymous with np, we quantify the location signals of a can-
didate tag t and image signals between np and t obtained from 
an estimated photo set Ip. 
 

Toward this goal of mining many synonyms, we have 
devised a scoring function which gives a high score for a 
keyword that is likely to be the name. To devise such a scor-
ing function, we adopt KSTR metrics. 
 

Geo-Specificity GS (Eq. (1)). Some name tags are 
spe-cific to the given location, which represents its spa-tial 
nature leading to a higher likelihood that it refers to a POI. 
 
POI-Specificity AT (Eq. (3)). Among geo-specific key-words, 
we consider names frequently associatedwith the given POI 
(TF), which are not so much asso-ciated with other POIs 
(IDF). 
 

Considering both scores in Eqs. (1) and (3), we 
compute a synonym score of a tag w of a POI p as 
 
3.2.2 Phase II: Collective Check-in Extraction 
 

Once the synonym set Np is found, we can find a set 
of matching clusters among duplicate/near-duplicate [11] 
photo clusters Cp. We find c 2 Cp such that 9h 2 c \ Hp. Given 
c 2 Cp, we compute P, which represents how relevant a cluster 
c is to a POI characterized by Np. The photo set Ip is then 
approximated as an aggregation of the clusters, i.e., [ c, such 
that P is greater than a linking threshold . However, poor 
clusters in emerging nature cannot have sufficient tags and so 
this linking rule is still too strict to achieve high recall in 
finding photos. 
 

To loosen it, a cluster cu can be matched with a POI 
p if a cluster cj is annotated with Np and we can answer the 
ques-tion “Do two clusters cu and cj refer to the same POI?”. 
For that, we adopt a Bayesian approach to derive such a rela-

tionship by POI-semantic similarity between the clusters. 
Specifically, P ðNpjcÞ is obtained from a pseudo-generative 
model using Bayes’ Rule. Given two clusters cj and cu, we 
combine the two clusters. P ðcj; cuÞ representing the tag simi-
larity of two clusters and P ðNejcjÞ representing the reliabil-
ity of cj for representing a POI e as follows: 
 

Strictly speaking, neither the generative process from 
cu to cj nor the generative model from cj to Np are known or 
defined precisely; hence the above conditional probabilities 
cannot be known exactly. However, we are not interested in 
probabilities per-se, but rather in probability values as indi-
cators used eventually for linking the decision with . 
 

For this reason, we can use proxy quantities-
respectively a cluster-to-cluster similarity and a POI-to-cluster 
rele-vance-which are presented as below. 
 

The term P ðcj jcuÞ represents the probability of 
generating the contents of a cluster cj from the contents of 
another clus-ter cu. As the contents, we consider textual 
knowledge, i.e., tags semantically-enriched by duplicate/near-
duplicate photo clustering. We thus identify the tag frequency 
vector of each cluster and check whether two clusters share 
many co-occurring tags. Specifically, to estimate P, the cosine 
similarity of the cluster pair is calculated based on the Bag-of-
Words model 
 

where Tc is a frequency vector of tags annotated in a 
photo cluster c. All tags are weighted using term frequency-
inverted document frequency (TFIDF) intuition, abstracting a 
photo cluster cu as a document. The detailed formula will be 
discussed later. Now a proxy of the probability P ðcjjcuÞ can 
be obtained by normalizing the content similarity between cu 
and cj according to the total similarity between cu and Cp 
 

The term P ðNpjcjÞ can be interpreted as an indicator 
of how reliably a photo cluster represents a POI. We directly 
derive the proxy value for this term using a simple fre-quency-
based approach as follows: 
 
where Tcj is a set of tags annotated in a photo cluster cj. 
 
3.3 Feature Scoring Methods 
 

With a set of travel route records, feature scoring 
should be considered to find proper recommendations. In this 
paper, we also explore three travel factors: “Where: people 
tend to visit popular POIs”, “When: each POI has its proper 
visiting time”, and “Who: people might follow social-
connected friends’ footsteps”. To achieve the “Where, When, 
Who” consideration issue of user demands, the pattern 
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discovery and scoring module defines the ranking mechanism 
for each POI with global attractiveness, proper visiting time 
and geo-social influence [9]. From the viewpoint of the POI, 
we store the attractiveness score and the visiting time infor-
mation in the POI score vector. On the other hand, from the 
viewpoint of the user, we also consider a score to quantify an 
individual’s influence in recommendation. 
 
3.4 Candidate Route Generation 
 

In the previous sections, we have proposed the 
methods for matching raw texts to POI features and mining 
preference patterns in existing travel routes. However, the 
route data-set sometimes may not include all the query 
criteria, and may have bad connections to the query keywords. 
Thus, we propose the Candidate Route Generation algorithm 
to com-bine different routes to increase the amount and 
diversity. The new candidate routes are constructed by 
combining the subsequences of trajectories. Here we introduce 
the pre-processing method first. We then utilize the pre-
processing results to accelerate the proposed route 
reconstruction algo-rithm. Last, we design a Depth-first 
search-based procedure to generate possible routes. 
 
Algorithm 1. Candidate Route Generation 
 
Input: Raw trajectory set T ; 
Output: New candidate trajectory set Tc. 
 
1: Initialize a stack S; 
2: Split each route r 2 T into (head,tail) subsequences; 
3: Reconstruct(headSet). 
4: Procedure Reconstruct(Set): 
5: foreach (head,tail) 2 Set do 
6: endFlag = False; 
7: if S is empty or tail.time > S.pop().time then 
8: Push head in S; 
9: Push tail in S; 
10: else 
11: Push head in S; 
12: endFlag = True; 
13: if endFlag is False then 
14: Reconstruct(tailSet) 
15: Insert S in Tc; 
16: Procedure End 
 
 

Pre-Processing. With the information that a trajectory 
Ti consists of sequence of POIs, {p1; p2; . . . pn}, we use the 
data structure (head,tail) to reinterpret the trajectory for one-
step transition, i.e., {p1 ! p2; p2 ! p3; . . . ; pn 1 ! pn}. Two 

dictio-naried lists headSet and tailSet are used to record the 
head and tail records respectively. 
 

Combined Points Should be Ordered by Time. 
Obviously, it is intuitive to combine (pi; pj) and (pk; pl) if pj 
and pk are the same location. Besides considering spatial 
distance, we also need to consider the visiting time order 
among combined points. Since tail.time must be larger than 
head. time, pk.time should be larger than pi.time in order to 
replace pj with pk. 
 

DFS-Based Route Enumeration. In order to generate 
all possible routes from their original trajectories, we recon-
struct new trajectories by linking the (head,tail) subsequen-ces 
using combined points. This would be a depth-first search-
based procedure. We consider all the POIs in the headSet as 
the source, and explore as far as possible along each link 
before backtrack  
 

TABLE 3 Raw Trajectory Dataset 

 
 

TABLE 4 Subset of Candidate Routes 

 
 

For example, the three existing travel routes T1, T2 
and T3 from Fig. 1 can be reinterpreted as (head,tail) pairs, as 
shown in Table 3. Then we have the headSet {p1; p2; p3; p4; 
p5; p7; p8}. Starting from p1, {p1 (10:00) ! p3 (12:00)} is 
found first. p3 is the combined point to {p3 (12:30) ! p4 
(17:00)} since the visiting time order is correct. Finally, a can-
didate route T40 is generated as {p1 (10:00) ! p3 (12:30) ! p4 
(17:00) ! p5 (19:00) ! p6 (19:30)}. Table 4 shows the result of 
the candidate routes: T1-T3 are the original routes and T40-
T60 are three of the reconstructed routes. 
 

IV. TRAVEL ROUTES EXPLORATION 
 

With the featured trajectory dataset, our final goal is 
to rec-ommend a set of travel routes that connect to all or 
partial user-specific keywords. We first explain the matching 
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func-tion to process the user query. Next, we introduce the 
back-ground of why we apply a skyline query, which is 
suitable for the travel route recommendation applications, and 
pres-ent the algorithm of the distance-based representative 
skyline search for the online recommendation system. 
Furthermore, an approximate algorithm is required to speed up 
the real-time skyline query. The Travel Route Exploration 
procedure is presented as Algorithm 2. 
 
Algorithm 2. Travel Routes Exploration 
 
Input: User u, query range Q, a set of keywords K; 
Output: Keyword-aware travel routes with diversity in 
goodness domains KRT. 
 
1: Initialize priority queue CR, KRT; 
2: Scan the database once to find all candidate routes 
covered by region Q; 
/* Fetch POI scores and check keyword matching 
3: foreach route r found do 
4: r.kmatch   0; 
5: foreach POI p 2 r do 
6: r.kmatch r.kmatch + KM(p,k); 
7: if r.kmatch    then 
8: Push r into CR; 
/* Initialize an arbitrary skyline route, see Section 4.3 9: CR.r0 
route r with the largest value of an arbitrary 
dimension; 
/* Greedy algorithm for representative skyline, see Algorithm 
3 */ 
10: KRT   I-greedy(CR); 
11: return KRT. 
 
4.1 Query Keyword Matching 
 

To process the user queries, we first describe how to 
match query keywords with the characteristic scores assigned 
to tags. The user-specific keywords in the query reflect the 
individual’s preferences regarding the trip, i.e., the user tends 
to choose a travel route that contains POIs closely related to 
the semantic meanings. In the offline model, we have built a 
tag corpus for POIs with characteristic scores and metadata. 
Also, relevant tags for each POI are weighted in the TFIDF 
manner. Given a keyword set K and arbitrary POI p at query 
time, we define a keyword matching mea-sure KM with the 
pre-computed information 
 

where tf is the frequency of tag w in a POI and idf is 
the number of POIs with the tag w.; is the product of tf and 
idf. 
 

For example, consider that given the keyword set K = 
[“night” “ximending”], we then find the temporal score of 
“night”= 0.9 and the geo-specific score = 0.001; the temporal 
score of “ximending” = 0.5 and the geo-specific score = 0.95. 
On the other hand, in a POI “red house”, the TFIDF score of 
night = 0.3 and the TFIDF score of ximending = 0.8. These 
scores of keyword set K can be aggregated for POI “red 
house” as score (0.3 (0.9 + 0.001)) + (0.8 (0.5 + 0.95)). For the 
route with multiple POIs, the score of each POI as com-puted 
above will be summed up. The higher the score, the more 
related the route is with the keyword. We filter out the routes 
under score, which means that those routes are not related to 
the user’s preference. 
 
4.2 Representative Skyline Travel Routes Search 
 

Given a specific query, we have already retrieved a 
set of travel routes with multidimensional scores, e.g., 
attractive-ness, time, and geographical social influence scores 
to fulfill the requirements. To recommend a subset of diverse 
travel routes, [9] proposed a KSTR algorithm applying the 
sky-line search. A skyline search returns the subset of data in a 
data set which is not dominated by any others. Let a and b be 
data points, where a dominates b if a is as good as or bet-ter 
than b in all dimensions and better in at least one dimen-sion. 
Instead of using a traditional top-k recommendation system 
considering a fixed weighting for a set of criteria, skyline 
query considers all possible weighting criteria that might offer 
an optimal result, which stands out among others and is of 
special interest to users. In other words, the results of the 
skyline travel route are not dominated by any other routes so 
the user need not specify the weight between every criteria 
first because travel route skyline returns all the possible 
optimal results w.r.t. arbitrary weight. 
  

In our system, the user can choose the travel route 
consid-ering the different weights in three dimensions: (i) how 
attractive this trajectory is, (ii) the proper visiting time of each 
POI in the travel sequence, and (iii) the social influence of the 
users who have visited the POI. Each trajectory is regarded as 
a three-dimensional data point, and each dimen-sion 
corresponds to one score. However, considering the skyline 
search may return too many results that are not read-able to 
users, a limitation of a maximum number (an optionalk
 value) of the returned travel routes is required. In the 
fol-lowing, we review the existing definition of the distance-
based representative skyline in [10], and explain its applica-
tion over the output of travel routes recommendation. 
 

Definition 2 (Representative skyline travel routes). 
Con-sider the three dimensions that previously mentioned, i.e., 
attractiveness, time and geographical social influence; trajec-
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tory Ti dominates trajectory Tj if and only if the score of Ti in 
any dimension is not less than the corresponding score of Tj, 
where i is not equal to j. Given the full skyline S, the represen-
tative skyline routes R are the set of routes that has the 
smallest representation error ErðR; SÞ among all 
representative sky-lines R 
 
ErðR; SÞ ¼ maxp2S  Rfminp02Rk p; p0 kg: (6) 
 
4.3 Greedy Scoring Using Multidimensional Index 
 

Since computing the optimal representative skyline 
prob-lem is NP-hard in high dimensional space,4 a 
multidimen-sional index is helpful to efficiently return the 
results for real-time applications. Recall that in Section 3.4, 
the DFS-based approach to generate the candidate routes is to 
enu-merate all subsequences. In the procedure of generation, 
we can simultaneously build an R-tree index while adding 
each entry into the dataset Tc (at Line 15 of Algorithm 1). 
 

I-greedy [10] is a progressive algorithm that 
continuously returns 2-approximate guaranteed representative 
solutions. Instead of retrieving the entire skyline until it is 
fully com-puted, I-greedy ables to access only a fraction the 
skyline, which saves a considerable cost. The fundamental of 
I-greedy is the best-first farthest neighbor search. Specifically, 
given an MBR M in the R-tree, its max representative dis-
tance, max-rep-dist(M; R), is a value which upper bounds the 
representative distance of any potential skyline point p in the 
subtree of M. Furthermore, to eliminate redundant 
computations, the greedy algorithm first maintains a conser-
vative skyline based on the intermediate and leaf entries 
already encountered. Second, it adopts an different access 
order with fewer empty tests which checks if an arbitrary point 
is a skyline point. 
 

Conservative Skyline. Let O as a mixed set of a 
points and b MBRs. A set O0 is generated with all the a points 
and the side-max corners of the b MBRs. The conservative 
skyline is the skyline of O0. It is proved that any point 
dominated by the conservative skyline set cannot appear in the 
real skyline. 
 

Access Order. Let L be the set of intermediate and 
leaf entries that waiting to be processed and E be the entry in 
L with the largest max-rep-dist. I-greedy checks whether there 
 
4. For the dimensional space that is more than two. 
  
 

is any other intermediate of leaf entry in L whose min-cor-ner 
dominates the min-corner of E, which may result in a tighter 
conservative skyline. 
 

Algorithm 3 presents the procedure of I-greedy to 
find out representative skyline results from the candidate 
routes. The input is the candidate route set containing a 
skyline route as a point. This point is used as the first 
representative. Recall that I-greedy does not require a given 
number of representa-tives to be returned. Instead, until 
stopped, it continuously outputs representatives ensuring that 
their representation error is at most twice larger than the 
optimal representative skyline of the same size. In summary, I-
greedy maintains three structures in memory at any moment: 
(1) the set R of representatives found so far; (2) an access list 
L that contains all the intermediate and leaf entries that have 
been encoun-tered but not processed or pruned yet; and (3) a 
conservative skyline Scon of the set L [ R. 
 
Algorithm 3. I-Greedy (O) 
 
 
Input: A set O with its arbitrary skyline point O:p0; 
Output: Skyline representatives R. 
 
1: Initialize priority queue R; 
2: Initialize L to contain the root entries of the R-tree 
and compute Scon of O; 
3: while L is not empty do 
4: E   the entry in L with the largest max-rep-dist; 
5: if E is not dominated by any point in Scon then 
6: E’ = the entry with the minimum L1-distance to the 
origin whose min-corners dominate that of E; 
7: if E’ exists then 
8: access the child node C of E’; 
9: foreach entry e in C do 
10: if e 6¼ O:p0 and e is not dominated by any point in 
S con then 
11: insert e in L; 
12: else 
13: if E is a point p then 
14: add p to R; 
15: else 
16: access the child node C of E; 
17: foreach entry e in C do 
18: if e 6¼ O:p0 and e is not dominated by any 
point in Scon then 
19: insert e in L; 
20: return R. 
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Given the set O as the input, I-greedy progressively 
pro-duces the representatives. At the beginning, L starts with 
the root entries of the R-tree. Next, I-greedy executes in iter-
ations that identifies the entry E of L with the largest max-rep-
dist. Then it checks whether the min-corner of E is dom-inated 
by any point in the conservative skyline Scon. If yes, E is 
pruned, and the current iteration finishes. On the other hand, if 
E is not pruned, the iteration continues. Following the idea on 
access order, the entry E0 with the smallest L1-dis-tance to the 
origin among all entries in L whose min-corners dominate E 
needs to be extracted. If E0 exists, it must be an intermediate 
entry; otherwise, E would be in the conserva-tive skyline 
Scon, and would have pruned E already. In this case, the child 
node of E0 is processed and its entries are inserted into the L 
that are not dominated by any point in 
  

TABLE 5 Details of the LBSNs 

 
  

Scon. If E0 does not exist, I-greedy processes E. If E 
is a point, it becomes the next representative skyline point. 
Oth- 
erwise if the points in E are dominated by any point in Scon, 
we access its child node, and insert its entries in L. 
 
4.3.1 Complexity 
 

Assume that the number of routes in the dataset is N, 
and the average length of the routes is l. The time complexity 
of our Travel Route Exploration algorithm depends on three 
parts: (i) scan the whole database to find the candidate routes 
in the query range, (ii) calculate feature scores and extract an 
arbi-trary skyline search on all candidate routes, and (iii) 
derive the representative skyline travel routes. First, the search 
for(i)takes and gets even faster since the R-tree based GIS 
index filters out non-candidate routes efficiently. 
 

Then for each candidate route, step (ii) computes 
thescores and compares the domination of other routes. The 
complexity is  In the case of extensive routes returned from a 
large-scale query region, it leads to exces-sive computational 
time and is not applicable for an interac-tive online system. 
The process to find out any skyline route with the largest value 
of an arbitrary dimension takes 
 
OðlogB NÞ I/Os where B is the page size. We optimize the 
implementation by parallelizing the score comparison in step 

(ii), which involves independent computations of each route. 
See Section 5.3 for the optimized run time results. 
 
For step (iii), when allowed to run continuously, I-greedy 
eventually retrieves the whole skyline S with the optimal I/ O 
cost as naive-greedy. Any R-tree-based skyline algorithm 
must access all nodes whose min-corners are not dominated by 
any skyline point. Assume that I-greedy is not I/O opti-mal, 
and accesses a node M dominated by a skyline point p. This 
access must happen at either Line 8 or 16 in Algorithm 3. In 
either case, when M is accessed, p or one of its ances- 
tors must be in L. Otherwise, p already appears in the repre-
sentative set R, and hence, would have pruned M. As the min-
corner of any ancestor of p dominates M, we can elimi- 
nate the possibility that M is visited at Line 16, because for 
this to happen E0 at Line 5 must not exist, i.e., the min-cor-ner 
of no entry in L can dominate M. On the other hand, if M is 
visited at Line 8, M must have the lowest L1-distance 
to the origin, among all entries in L whose min-corners 
dominate E at Line 3. This is impossible because any E 
dominated by the min-corner of M is also dominated by por 
the min-corner of any of its ancestors, and p or any of its 
ancestors has a smaller L1-distance to the origin than M. 
 

V. EXPERIMENTS 
 

In this section, we empirically evaluate the 
effectiveness and efficiency of the proposed algorithms. First, 
we describe the 
  

 
Fig. 3. The number of check-ins and the number of routes for 

all users in the CA and the FB dataset, respectively. The 
distribution shows a long tail extending in the negative 

direction. 
 

baseline approaches and evaluation methodology of 
the experiments. We use two real-world LBSN datasets shown 
in Table 4. The FB dataset is collected by Facebook API.5 We 
have taken 96 volunteers’ Facebook accounts as user seeds 
(most of the users live in Taiwan) and crawled all their and 
their friends’ location records (i.e., check-ins and geo-tagged 
photos) over the period of Jan. 2012-Dec. 2014. CA is another 
Foursquare dataset with an undirected friendship network 
from [12]. 
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We implemented the system on an x86_64 Linux 
server with 16 cores and 8 GB memory. All the scores 
mentioned in Section 3 are computed offline and stored in a 
Post-greSQL 9.3 database with GIS extension. 
 

To gain insights into the datasets, we plotted both the 
number of check-ins and routes of each user of our datasets. 
As shown in Fig. 3, the number of check-ins and routes for 
each user is highly skewed in both datasets. Moreover, all 
distributions have long tails. In particular, the top 10 percent 
ranked users in all datasets have nearly 60 percent of total 
check-ins and routes. This indicates that most of the users are 
quite inactive. The data sparsity issue may cause consid-erable 
bias in the results of inactive users. We therefore chose the top 
10 percent of users, who were ranked by the travel route 
histories they have, as active users for testing. 
 
5.1 Keyword Matching Accuracy 
 

In this section, we evaluate the quality of the 
extracted key-words. Since our check-in datasets do not have 
sufficient text descriptions, i.e., tags, we collected an 
additional photo dataset consisting of 165,057 photos with 
958,441 tags. For that, the tags are regarded as input 
keywords. We used Flickr API to collect photos with photo 
ID, image, location (lat and lon), user ID, photographed time, 
and textual tags (only if they existed) as attributes. We 
collected GPS-tagged photos in the same local area, i.e., the 
Taipei area,6 amount-ing to 165,057 photos. 
 
5. Facebook Developers. 
https://developers.facebook.com/ 
6. We set the Taipei area as a rectangle on the globe 
with left bottom h24:973; 121:423i and right top h25:118; 
121:603i. 
12;463  69:6% 
165;057 
  

TABLE 6 Precision of Keyword Extraction 

 
We ranked the tags by using the scores in Section 3.1 

and measured precision@K. Table 6 shows the precision of 
deciding the Geo-specific, Temporal, and Attribute 
keywords.7 We can see that the precision is reasonably high 
and does not decrease much as K increases. Table 7 shows the 
results for keyword extraction. Note that the keywords in 
italics are the Chinese keywords returned, which we translate 
for presentation. In the geo-specific dimension, 10 keywords 
referring to certain places are highly ranked. For example, a 

keyword ‘Longshan’ represents ‘Longshan Temple’. In the 
temporal dimension, there is no doubt that keywords such as 
‘Sunset’, ‘Sunrise’, ‘Lunch’ and ‘Night’ are specific to a 
certain time interval. ‘Dadaocheng’ is ranked high as it is a 
place famous for its sunset. Also, ‘Butterfly’ and ‘Fireworks’ 
are strongly associated with day time and night time 
respectively. In the attribute dimension, keywords relevant to 
restaurant POIs are highly ranked. 
 

In this section, we present the photo and POI 
datasets, the evaluation measure, and the baselines for 
evaluation. 
 

We used the Flickr dataset amounting to 165,057 
photos. We manually matched the photo data with 502 
attractions in Taipei obtained from TripAdvisor and, as a 
result, found 12,463 POI-labeled photos with 64 POIs. 
 

To evaluate the performance of the check-in 
extraction, we consider a labeled photo as a ground truth 
check-in hwho : user ID; where : labeled POI; when : 
photographed timei. Based on the ground truth, we used the 
evaluation meas-ures, precision, recall, and F1 score as 

 
where IpGT is a set of manually labeled photos on 

POI p and Ipm is a set of photos labeled with p by a check-in 
extraction method m. We perform a 2-fold validation: Each 
half of the ground truth is used as training data and test data, 
respectively. 
 

As candidates for the check-in extraction method m, 
we present the following two baseline extraction methods, and 
our three proposed extraction methods. 
 

Base [14]: A baseline method that only considers 
duplicate/near-duplicate photo clusters with an offi-cial POI 
name. 
 
7. For attribute extraction, we adopt [13] extracting probable 
attrib-utes of all possible concepts. We can adopt 10 concepts 
aligned with POI categories, and Table 6 illustrates attributes 
of the ‘Food’ concept for restaurant POIs. 
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TABLE 7 Top-10 Results of Keyword Extraction 

 
 

Base+ [14], [15]: A baseline method that considers 
duplicate/near-duplicate photo clusters with multi-ple POI 
names extracted by a state-of-the-art name expansion method. 
 
SCE: A component, Synonym-based Check-in Extraction, of 
our proposed method in Section 3.2.1. 
 
CCE: A component, Collective Check-in Extraction, of our 
proposed method in Section 3.2.2. Note that, to evaluate 
independently with SCE, CCE uses ne instead of Ne. 
 
SCE + CCE: Our proposed method combining the 
 
two components in Section 3.2. 
 

Table 8 shows the performance of check-in extraction 
from Flickr photos. Beyond simple matching with an official 
POI name, harvesting more check-ins requires a trade-off 
between precision and recall. The performance of check-in 
extraction depends on whether this trade-off is well con-
trolled. We can see that our proposed method, SCE+CCE, has 
the best F1 score and a significant recall gain with some loss 
of precision. The improvement of SCE+CCE is achieved by 
combining SCE and CCE, which shows the complemen-tary 
nature of the two components. Base+ (using synonyms) 
improves the F1 score and recall compared to Base but not its 
comparable methods, SCE and SCE+CCE. This fact shows 
that our scoring for synonym extraction is more effective for 
POIs. 
 

Because not all web-photos can be used as check-ins, 
it is an important question how many photos we can use as 
check-ins. Based on the statistics of datasets and recall per-
formance, we found that our proposed method can use 
 

¼ 5:3% photos as attraction check-ins. Consider-ing 
that five hundred thousand GPS-tagged photos are being 
uploaded per day by Facebook alone (while geo-tagged pho-
tos can be collected from arbitrary sources including Insta-
gram, Twitter, Flickr, and many more), passive check-ins 

TABLE 8 Performance of Check-In Extraction 

 
 

 
Fig. 4. Influence of threshold and weight parameters u and a. 

The two heat-maps represent F1 scores in different data 
distributions. 

 
have the potential to complement both the quantity 

and quality of active check-ins. 
 

As a sensitivity test, Fig. 4 shows the performance of 
check-in extraction (F1 score) when varying threshold and 
weight parameters u and a in the two different randomly 
distributed and same-sized datasets. From the results in Fig. 4, 
we can make the following observations: First, the optimal 
threshold values are focused on a narrow range, i.e., around 
0.8, because the number of POI synonyms is extremely small, 
e.g., around three in our datasets. Second, around 0.4 to 0.5 is 
optimal for a (linear combination weight for GS or AT). This 
explains the complementary nature such that our combined 
approach outperforms using either GS and AT (a ¼ 1 or 0). 
Third, despite the different data distri-butions, the influence of 
the parameters used in our approach is very similar in the two 
heat-maps. This sug-gests that the supervised learning of u and 
a is reliable. 
 
5.2 Evaluation of Route Prediction Accuracy 
 

In this experiment, we compared the following three 
base-line recommendation models and the original KSTR 
model with our keyword-aware representative travel route 
model. Pattern Aware Trajectory Search (PATS). Only 
consider the sum of the POI attractiveness score. Different to 
the Multi-nomial model, [16] considers the mobility transition 
among POI pairs. 
 

Time-Sensitive Routes (TSR). Only consider the 
visiting time score of routes. The arrival time of the POIs in 
the rec-ommendation best fits the extracted proper visiting 
time. 
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Geo-Social Influenced Routes (GSI). Only consider the geo-
social influence score of [8]. The route consists of POIs vis-
ited by geo-social influential users in the social network. 
  
Keyword-Aware Skyline Travel Route (KSTR). KSTR [9] 
out-puts full Skyline routes based on both POI and user 
factors. 
 
Keyword-Aware Representative Travel Route. Our KRTR 
outputs optimal representative Skyline routes. 
 

Unfortunately, raw LBSN data provide no ground 
truth to verify the acceptance of the recommended travel route 
suggestions. Therefore, we studied the “appropriateness” of 
the recommended travel routes as a route prediction prog-ress 
under different spare time conditions. We used the data shown 
in Table 5 for training and testing the model. For each dataset, 
the test data were created by collecting the last travel sequence 
of the top-10 percent of users (ranked by route count) in the 
most recent 30 percent time periods. The training dataset 
consisted of the set of travel sequences excluding the testing 
data part. To be exact, the number of training data (the number 
of test data) used in this experi-ment is slightly larger than the 
number of testing data sinceusers with multiple travel 
sequences only keep the last sequence. 
 
5.2.1 Comparison of Route Prediction Accuracy 
 

We measured the difference between the generated 
routes and each test sequence. Three goodness functions are 
applied as the evaluation metrics. 
 

Edit Distance. The edit distance measures the 
distance between two sequences in terms of the minimum 
number of edit operations required to transform one sequence 
into the other [17]. The allowable edit operations are: insert 
into a sequence, delete from a sequence, and replace one land-
mark with another. 
 

Geographical Region Cover Ratio. The test route and 
recom-mended route can both be bounded by a geographical 
box. The ratio of the overlapped region to the testing route 
region. 
 

Category Similarity. To consider the closeness of 
user interest, we compute the cosine similarity of the 
categories between two routes, which is # of overlapped 
category/ 
 
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffiffiffiffiffiffi 

#ofcategory1  #ofcategory2. 
 

We compared our KRTR model with the other 
models: KSTR model, pattern aware trajectory search, time-
sensitive (TSR) and geo-social influenced (GSI) routes. Fig. 5 
shows the performance of each model among the three 
measures. Over-all, we observe that the CA dataset shows 
better performance than the FB dataset. This might be caused 
from the fact that the unitary seed users lead to much biased 
preferences. We can also find that the proposed KRTR model 
shows near iden-tical results to the KSTR model. Since the 
output of KRTR is the k-itemset subset of KSTR, we can 
claim that KRTR is as effective as KSTR without losing the 
generality, which is the same conclusion as the previous 
section. 
 

Moreover, it is easy to see that KRTR and KSTR 
offer the lowest edit distance in both datasets, which 
represents the highest prediction accuracy. For example, Fig. 
5a depicts that even the worst edit distance results of KRTR is 
still bet-ter than the 90 percent of the results of the three 
baseline methods. On the other hand, considering the measure 
of region cover ratio and category similarity, PATS has better 
performance in region cover ratio and GSI has better cate-gory 
similarity than ours. The results show that the pro-posed 
KRTR is effective and beats other baselines and state-of-the-
art methods in terms of route prediction accuracy. 
 
5.3 Efficiency 
 

Table 9 shows the online response time of KRTR in 
the three main sub-procedures: (i) scan the dataset to find the 
overlap routes and compute the score of candidate routes 
(O_scor-ing+R_scoring), (ii) Initial skyline point search 
(I_skyline), and (iii) Representative skyline search 
(R_skyline). We syn-thesize 34,928 queries from testing users 
of the FB dataset and 39,729 queries from the CA dataset. The 
average response is 1.561708549 seconds. We can find that 
skyline query (I_skyline & R_skyline) is the most time-
consuming step. In Section 5.3.1, we observe the optimal 
Nfrac for approximate candidate route generation. The total 
running time under different scales is shown in Section 5.3.2. 
 
5.3.1 Tuning Approximation Parameters 
 

First, we study the accuracy of the approximate 
routes reconstruction algorithm. We define the term “relative 
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Fig. 5. Average goodness accuracy of recommended travel 
route at different query region sizes. The yellow line 
represents our method and shows that KRTR has good results 
over the three measurements.ratio” as the ratio of 
reconstructed routes to the skyline searched results. By 
randomly choosing 1,000 routes in the testing set, we observe 
the optimal parameter Nfrac for selecting the top-Nfrac 
percent ranked POIs to generate routes that control the best 
trade-off between effectiveness and running time. Fig. 6 
shows the average relative ratio of the 1,000 testing routes 
compared to the value of Nfrac. Note that the brute-force 
method is N ¼ 100. 
 

As shown in Figs. 6a and 6b, we can find that the 
relative ratio of both datasets converges rapidly as Nfrac 
increases. Moreover, although the running time of 
reconstruction is only slightly longer when Nfrac ¼ 100, the 
running time of the whole procedure is obviously affected 
because the num-ber of generated routes increases 
exponentially w.r.t. the size of the POI elements. Moreover, 
the growth trend of the route number levels off when Nfrac > 
50. The reason is that the reconstructed routes start to 
duplicate when Nfrac is large enough, since the procedure of 
Candidate Route Genera-tion choose POIs with a high score as 
elements. Therefore, we choose Nfrac ¼ 10 in both datasets, 
which maintains the accuracy and speed. 
 
5.3.2 Scalability 
 

The objective of this set of experiments is to study 
the scal-ability of the proposed algorithms with variation of 
the number of computations. We have made use of several 
methods to optimize the implementation of the online sys-tem. 
Fig. 7 shows the total running time and the comparison of the 
sequential scoring and the multiprocess8 scoring. In general 
cases, the number of route computations of a user query 
seldom exceeds 5,000, and the response time of the query 
takes no more than one second. Since the result is suf-ficiently 
fast, the multiprocess mechanism does not lead to Eight-cores 
multi-processing evident improvement. On the other hand, in 
extreme cases with 26,000 route computations, using a 
multiprocessor reduces 25 percent of time cost. 

Also, the selection of Nfrac is fixed to 10 within a 
larger route processing number. As shown in Fig. 8, the 
average results of 100 queries within 10 to 30 k candidate 
routes. The curves present similar trends to Figs. 6c and 6d. 
 

VI. RELATED WORK 
 

Trip Planning. Trip planning has been intensively 
studied recently. The problem is to develop a collaborative 
recom-mendation model to recommend routes for a given user 
at a query region. Some studies have modeled the goodness of 
existing trip routes by self-defined traveling factors [5], [16], 
[18]. On the other hand, [2], [4], [19], [20] constructed 
person-alized routes according to user queries. The traveling 
factors can be summarized into “Where, When, Who” issues. 
For example, [20] and [2] developed a system to construct 
time-sensitive routes, which considered location popularity, 
visit-ing order, proper visiting time, and proper transit time to 
model the goodness of a route. [19] developed the Photo2-Trip 
system, which integrates a series of traveling factors including 
time duration, season, user preference, destination type, and 
popularity to recommend trip itineraries. [4] ranked the 
constructed routes by the location attractiveness, proper 
visiting time and the distance to query locations. 
 

TABLE 9 Running Time Ratio (Sub-Procedure Time 
Cost / Total Time Cost) of Each Step 

 
 

 
Fig. 6. The effectiveness of the candidate route generation of 

the CA and FB datasets, respectively, under different top-
Nfrac percent of POI ele-ments. The results converge as R 

increases. 
  

Location Recommendation and Prediction. In 
addition, a num-ber of research projects focused on 
recommendation and prediction of single location. The task of 
location recommen-dation is to recommend new locations that 
the user has never visited before [6], [7], [8], [21], [22], [23], 
while the task of loca-tion prediction is to predict the next 
locations that the user is likely to visit [12], [24], [25], [26]. 
Also, most of the research has considered “Where, When, 
Who” issues to model user mobility. For the location 
recommendation part, [7] pointed out that people tend to visit 
near-by locations but may be interested in more distant 
locations that they are in favor of. Finally, it combined user 
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preference, geographical influence, and historical trajectories 
to recommend check-in locations.[6] recommended a 
list of POIs for a user to visit at a given time by exploiting 
both geographical and temporal influen-ces. [8] focused on the 
relationships between individuals and recommended the 
locations that influential users have been to. For the location 
prediction part, [25] predicted the most likely location of an 
individual at any time, given the historical trajectories of her 
friends. [26] constructed a Time-constrained Mobility Graph 
that captures a user’s moving behavior within a certain time 
interval, and computes the reachability between locations to 
infer the next one. 
 

Similarity Route Search. Another relevant area is the 
simi-larity route search under specific attributes. Research on 
this subject has focused on finding routes according to 
 

 
Fig. 7. Runtime versus route number (computation size). 

 

 
Fig. 8. The total process time of the candidate route generation 

under different top-Nfrac percent of POI elements. 
 

location, activity or keyword-related queries. [1] 
defined a similarity function for measuring how well a 
trajectory con-nects the query locations, considering both 
spatial distance and order constraint. [27] studied the problem 
of similarity search on an activity trajectory database. [28] and 
[29] also dealt with the problem of identifying preferable 
routes con-sidering a set of user-specified keywords. 
However, those works focused on the efficient way to search 
for existing routes that cover all the pre-defined keywords. 
 

To the best of our knowledge, we are the first to 
tackle keyword and social influence in trip planning by check-
in data. This work is the most comprehensive model for a 
generic travel route recommendation system. 
 

VII. CONCLUSION 
 

In this paper, we study the travel route 
recommendation problem. We have developed a KRTR 
framework to suggest travel routes with a specific range and a 
set of user prefer-ence keywords. These travel routes are 
related to all or par-tial user preference keywords, and are 
recommended based on (i) the attractiveness of the POIs it 
passes, (ii) visiting the POIs at their corresponding proper 
arrival times, and (iii) the routes generated by influential users. 
We propose a novel keyword extraction module to identify the 
semantic meaning and match the measurement of routes, and 
have designed a route reconstruction algorithm to aggregate 
route segments into travel routes in accordance with query 
range and time period. We leverage score functions for the 
three aforementioned features and adapt the representative 
Skyline search instead of the traditional top-k recommenda-
tion system. The experiment results demonstrate that KRTR is 
able to retrieve travel routes that are interesting for users, and 
outperforms the baseline algorithms in terms of effec-tiveness 
and efficiency. Due to the real-time requirements for online 
systems, we aim to reduce the computation cost by recording 
repeated queries and to learn the approximate parameters 
automatically in the future. 
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