
IJSART - Volume 4 Issue 3 – MARCH 2018                                                                                     ISSN [ONLINE]: 2395-1052 
 

Page | 487                                                                                                                                                                     www.ijsart.com 
 

Designing of Real Time Scheduling Algorithm For 
Multicore Architecture – A Review 

 
Jyotsna Gaikwad1, Radhakrishna Naik2 

1Dept of Computer Science and IT 
2Dept of Computer Science and Engineering 

1, 2 Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 
2Maharashtra Institute of Technology, Aurangabad 

 
Abstract- Various works in the literature commerce with the 
real time scheduling algorithm for multi core architecture. In 
maximum proposed multicore platforms, different cores share 
the common memory. Every multicore processor contains of a 
single computing module with several autonomous central 
processing units (cores) that perform the user written program 
instructions. The actual processor expansion has stimulated 
from single core chips to ones with hundreds or even 
thousands of cores. In addition to that most of the multi core 
chips have come up with Simultaneous Multi-Threading (SMT) 
idea which extremely improves the computing power. 
 
Keywords- Multicore, Multi-Threading, Processor. 
 

I. INTRODUCTION 
 
 The researcher presents a task scheduling algorithm 
for multi-core processors, which is based on priority queue 
and task duplication. In this algorithm, the Directed A cyclic 
Graph (DAG) is used to construct a task model. Based on the 
model, task critical degree, task reminder, task execution time 
and the average communication time are all measured as the 
priority metrics. A priority built task posting list is set up by 
complete analysis and calculating the priority for every task. 
Then interval addition and task duplication approaches are 
employed to map tasks to processors, which can reduction the 
communication cost, progress the processor utilization rate 
and reduce the schedule length [1]. 
 

Author proposed a task scheduling algorithm on the 
source of task duplication, which is collected of three steps of 
operations so that threads are assigned to processing cores 
more appropriately. Designed algorithm not only increases the 
executive efficiency of task scheduling, but also can adjust 
scheduling sets according to the number of processing core. 
This algorithm reduces communication overhead and keeps 
load balancing between cores, and for the moment speedup 
ratio of parallel program is enhanced. The model experiment 
data shows that the algorithm can find close optimal solutions 
in rational time, and that it can find results in less time [2]. 
 

The faulty multicore (FTM) algorithm performs 
backups in order to recuperate from errors produced by non-
permanent and permanent hardware faults. The worst-case 
schedule ability analysis of FTM algorithm is obtainable 
considering an application level error model, which is 
autonomous of the stochastic comportment of the underlying 
hardware-level fault model. Formerly, the stochastic behavior 
of hardware-level fault model is attached in to the analysis to 
originate the probability of meeting all the goals. Such 
probabilistic guarantee is the level of guarantee concerning the 
correct functional and timing performances of the system [3]. 
 

The central processing unit is the core of the 
computer system so it should be used resourcefully. For this 
purpose central processing unit scheduling is very essential. 
Central processing unit scheduling is basic fundamental 
concepts of operating system. Allocation of computer 
resources between multiple processes is called scheduling [4]. 
 

II. SINGLE CORE AND MULTICORE 
 
Single Core: A single core tasks runs at any point in time, 
meaning that the central processing unit is dynamically 
executing information for that task. Multitasking explains this 
problem with the help of scheduling. That means, which task 
may run at any given time and when alternative waiting task 
gets a turn [4]. 

 
Figure 1: Single Core Architecture 



IJSART - Volume 4 Issue 3 – MARCH 2018                                                                                     ISSN [ONLINE]: 2395-1052 
 

Page | 488                                                                                                                                                                     www.ijsart.com 
 

Multicore: When running on a multicore structure, the 
multitasking operations can execute multiple tasks 
simultaneously. The multiple computing machines work 
autonomously on different tasks. For example, on a dual-core 
system, four tasks can access a separate processor core at the 
same time. That is nothing but multitask, which improving 
overall performance of the system [4].   
 

 
Figure 2: Dual Core Architecture 

 
III. THREAD 

 
A thread is anelementary unit of central processing 

unitoperation, containing of a program counter, a stack, and a 
set of registers. Customarymethods have a single thread. 
Multi-threaded applications have multiple threads within a 
single process, each thread having their own program counter, 
stack and set of registers. Multithreading spreads the idea of 
multitasking into applications [4] 
 

 
Figure 3: Parallel Execution on Multicore 

 . 
 
 
 
 
 
 
 
 
 
 

IV. METHODOLOGY 
 

 
Figure 4: Processor Graph, Task Graph and Schedule 

 
Above figure shows the processor and task graph and 
schedule. 
 
The symbols used are listed in Table 1.  
 
Task graph:  A task graph is a DAG in which each node 
characterizes a task to be performed. The computation time to 
execute task , which is a node in the graph, is denoted . 
 
Processor graph: A processor graph is a graph that signifies 
the network topology between processors. A node with 
onlyone link is called a processor node [5]. 
 

Table 1: Symbol Table 

 
 
Scheduling Algorithm: 
 
Following algorithm is a hypothetical scheduling algorithm 
based on previous literature work. 
 
INPUT: Task graph G = (V,E, w, c) and processor graph 



IJSART - Volume 4 Issue 3 – MARCH 2018                                                                                     ISSN [ONLINE]: 2395-1052 
 

Page | 489                                                                                                                                                                     www.ijsart.com 
 

H = (P,R). 
 
1: Sort nodes n ∈V into list L, according to priority scheme 
and priority constraints. 
2: for each n ∈L do do 
3: Find processor p ∈P that allows earliest finish time  
ofn. 
4: Schedule n on p. 
5: end for 
The algorithm proposed by Sinnen, et al. [5].  
 

V. CONCLUSION 
 

In real-time systems, a task desires to be performed 
appropriately and timely. The accuracy of each calculation 
depends on both the logical results of the computation and the 
time at which results are formed. So, the time is very 
important in real-time application structures. Multicore and 
multithreaded becomes the new method in real time system to 
accomplish system performance, power competence, etc. The 
presents work is a comparative study of various customized 
Multicore scheduling algorithms which make the most of 
system performance and resolves the real time tasks that can 
be managed without sacrilegious timing constraints. A main 
advantage of the model is that it delivers a fast and easy way 
to evaluate the system performance in real-time system and 
reflect tasks priorities which cause higher system utilization 
and lowers deadline miss time. 
 

REFERENCES 
 

[1] Xuanxia Yao, Peng Geng and Xiaojiang Du, “A Task 
Scheduling Algorithm for Multi-core Processors”, 
International Conference on Parallel and Distributed 
Computing, Applications and Technologies, IEEE Xplore, 
ISSN: 2379-5352, DOI: 10.1109/PDCAT.2013.47, 2013. 

[2] Xiaozhong Geng, Gaochao Xu, Dan Wang and Ying Shi, 
“A Task Scheduling Algorithm Based on Multi-Core 
Processors”,International Conference on Mechatronic 
Science, Electric Engineering and Computer, IEEE 
Xplore,DOI: 10.1109/MEC.2011.6025620, 2011. 

[3] Risat Mahmud Pathan, “Real-Time Scheduling Algorithm 
For Safety-Critical Systems On Faulty Multicore 
Environments”, Springer, Real-Time System, DOI 
10.1007/s11241-016-9258-z, 2017. 

[4] Prerena Jaipurkar  and Pranali D. Tembhurne, “A 
Comparitive Study of Different Customized 
Multiprocessor Scheduling Algorithms on Multicore 
Architecture”, International Conference On Emanations in 
Modern Engineering Science and Management , ISSN: 
2321-8169, Volume: 5 Issue: 3 25 – 29, 2017. 

[5] Sinnen, O. and Sousa, L.A. : “Communication Contention 

in Task Scheduling,” IEEE Trans. on Parallel and 
Distributed Systems, 16, 6, pp. 503-515, 2005. 

[6] Sinnen O. and Kaur M., “Contention-aware scheduling 
with task duplication”, Journal of Parallel and Distributed 
Computing 71(1), 77–86, 2011. 

[7] Sinnen O., Sousa L., and Sandnes, F., “Toward a realistic 
task scheduling model”, Parallel and Distributed Systems, 
IEEE Transactions on 17(3), 263–275, 2006. 

[8] Gotoda S., and Shibata N., “Task scheduling algorithm 
for multicore processor system for minimizing recovery 
time in case of single node fault”, In Proceedings of 
Cluster, Cloud and Grid Computing (CCGrid), 12th 
IEEE/ACM International Symposium on., 260–267, 2011. 

[9] Park J and Dally W., “Buffer-space efficient and 
deadlock-free scheduling of stream applications on multi-
core architectures”, In Proceedings of the 22nd ACM 
symposium on Parallelism in algorithms and 
architectures, 2010. 

[10] Julian Bui and Chenguang Xu, “Understanding 
Performance Issues on both Single Core and Multi-core 
Architecture” IEEE Transaction Parallel Distribution 
System, pp. 599–611, 2009. 

[11] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, 
“Stamp: Stanford transactional applications for 
multiprocessing”, in IEEE International Symposium on 
Workload Characterization, 2008. 

[12] M. Diener, F. Madruga, E. Rodrigues, M. Alves, J. 
Schneider, P. Navaux, and H.-U. Heiss, “Evaluating 
thread placement based on memory access patterns for 
multi-core processors,” in IEEE International Conference 
on High Performance Computing and 
Communications,sept., pp. 491–496, 2010. 
 


