
IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1142 www.ijsart.com

A Study on Hibernate Framework: Object Relational
Mapping Solution For Java

Naresh Purohit1, Shakti Singh2

1, 2 Dept of Computer Science Engineering
1Mahaveer Institute of Technology & Science, Pali, Rajasthan, India

2Aishwarya College of Education, Pali, Rajasthan, India

Abstract- This paper presents a study on Hibernate, an object
relational tool for Java based applications. Hibernate is an
ambitious project that aims to be a complete solution to the
problem of managing persistent data in Java. It mediates the
application’s interaction with a relational database, leaving
the developer free to concentrate on the business problem at
hand. Hibernate is a non-intrusive solution. It integrates
smoothly with most new and existing applications and does
not require disruptive changes to the rest of the application.
Hibernate is an open source ORM implementation.

Keywords- Relational Database, Hibernate, ORM, Open
Source

I. INTRODUCTION

 Today, many software developers work with
Enterprise Information Systems (EIS). When developers work
with an object-oriented system, there is a mismatch between
the object model and the relational database. RDBMSs
represent data in a tabular format whereas object-oriented
languages, such as Java or C# represent it as an interconnected
graph of objects. First problem, what if developers need to
modify the design of database after having developed a few
pages or application? Second, loading and storing objects in a
relational database exposes us to the following mismatch
problems:

Table -1: Configuration Property Classes

To overcome these problems, Hibernate is tool that
aims to be a complete solution to the problem of managing
persistent data in Java. It mediates the application’s interaction
with a relational database, leaving the developer free to
concentrate on the business problem at hand.

First, we define persistent data management in the
context of object-oriented applications and discuss the
relationship of SQL, JDBC, and Java, the underlying
technologies and standards that Hibernate is built on. We then
discuss the so-called object/relational paradigm mismatch and
the generic problems we encounter in object-oriented software
development with relational databases.

A. What is persistence?

Almost all applications require persistent data.

Persistence is one of the fundamental concepts in application
development. When we talk about persistence in Java, we’re
normally talking about storing data in a relational database
using SQL.[4]

 Relational Databases

A relational database management system isn’t

specific to Java, and a relational database isn’t specific to a
particular application. Relational technology provides a way
of sharing data among different applications or among
different technologies that form part of the same application
(the transactional engine and the reporting engine, for
example). Relational technology is a common denominator of
many disparate systems and technology platforms. Hence, the
relational data model is often the common enterprise-wide
representation of business entities. Relational database
management systems have SQL-based application
programming interfaces; hence we call today’s relational
database products SQL database management systems or,
when we’re talking about particular systems, SQL databases.

 Understanding SQL

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1143 www.ijsart.com

To use Hibernate effectively, a solid understanding of
the relational model and SQL is a prerequisite. We will need
to use our knowledge of SQL to tune the performance of our
Hibernate application. Hibernate will automate many
repetitive coding tasks, but our knowledge of persistence
technology must extend beyond Hibernate itself if we want
take advantage of the full power of modern SQL databases.
Remember that the underlying goal is robust, efficient
management of persistent data.

 Using SQL in Java

When we work with an SQL database in a Java

application, the Java code issues SQL statements to the
database via the Java DataBase Connectivity (JDBC) API. The
SQL itself might have been written by hand and embedded in
the Java code, or it might have been generated on the fly by
Java code. We use the JDBC API to bind arguments to query
parameters, initiate execution of the query, scroll through the
query result table, retrieve values from the result set, and so
on. These are lowlevel data access tasks; as application
developers, we’re more interested in the business problem that
requires this data access.

 Persistence in object-oriented applications

In an object-oriented application, persistence allows

an object to outlive the process that created it. The state of the
object may be stored to disk and an object with the same state
re-created at some point in the future. An application with a
domain model doesn’t work directly with the tabular
representation of the business entities; the application has its
own, object-oriented model of the business entities. If the
database has ITEM and BID tables, the Java application
defines Item and Bid classes. Then, instead of directly
working with the rows and columns of an SQL result set, the
business logic interacts with this object-oriented domain
model and its runtime realization as a graph of interconnected
objects. The business logic is never executed in the database
(as an SQL stored procedure), it’s implemented in Java. This
allows business logic to make use of sophisticated object-
oriented concepts such as inheritance and polymorphism.

However, in the case of applications with nontrivial

business logic, the domain model helps to improve code reuse
and maintainability significantly. We focus on applications
with a domain model in this paper, since Hibernate and ORM
in general are most relevant to this kind of application.

A. Persistence layers and alternatives

A layered architecture defines interfaces between
code that implements the various concerns, allowing a change
to the way one concern is implemented without significant
disruption to code in the other layers.[4] Layering also
determines the kinds of interlayer dependencies that occur.
The rules are as follows:

 Layers communicate top to bottom. A layer is

dependent only on the layer directly below it.
 Each layer is unaware of any other layers except for

the layer just below it.

Typical, proven, high-level application architecture

uses three layers, one each for presentation, business logic,
and persistence, as shown in figure-1

Figure -1 : Layered Architecture

 Presentation layer—The user interface logic is

topmost. Code responsible for the presentation and
control of page and screen navigation forms the
presentation layer.

 Business layer—The exact form of the next layer
varies widely between applications. It’s generally
agreed, however, that this business layer is
responsible for implementing any business rules or
system requirements that would be understood by
users as part of the problem domain.

 Persistence layer—The persistence layer is a group
of classes and components responsible for data
storage to, and retrieval from, one or more data
stores.

 Database—The database exists outside the Java
application. It’s the actual, persistent representation
of the system state. If an SQL database is used, the
database includes the relational schema and possibly
stored procedures.

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1144 www.ijsart.com

II. OBJECT - RELATIONAL MAPPING

A. What is ORM?

Briefly, object/relational mapping is the automated

(and transparent) persistence of objects in a Java application to
the tables in a relational database, using metadata that
describes the mapping between the objects and the database.

An ORM solution consists of the following four pieces:

 An API for performing basic CRUD operations on
objects of persistent classes

 A language or API for specifying queries that refer to
classes and properties of classes

 A facility for specifying mapping metadata
 A technique for the ORM implementation to interact

with transactional objects to perform dirty checking,
lazy association fetching, and other optimization
functions

B. Why ORM?

ORM is an advanced technique to be used by
developers who have already done it the hard way. To use
Hibernate effectively, we must be able to view and interpret
the SQL statements it issues and understand the implications
for performance. Some of the benefits of ORM – Hibernate
are:

 Productivity

Persistence-related code can be perhaps the most

tedious code in a Java application. Hibernate eliminates much
of the grunt work and concentrate on the business problem. No
matter which application-development strategy we prefer—
top-down, starting with a domain model, or bottom-up,
starting with an existing database schema—Hibernate, used
together with the appropriate tools, will significantly reduce
development time.

 Maintainability

Hibernate application is more maintainable. In

systems with hand-coded persistence, an inevitable tension
exists between the relational representation and the object
model implementing the domain. Changes to one usually
involve changes to the other, and often the design of one
representation is compromised to accommodate the existence
of the other. ORM provides a buffer between the two models,
allowing more elegant use of object orientation on the Java

side, and insulating each model from minor changes to the
other.
 Performance

In a project with time constraints, hand-coded

persistence usually allows us to make some optimizations.
Hibernate allows many more optimizations to be used all the
time. Furthermore, automated persistence improves developer
productivity so much that we can spend more time hand
optimizing the few remaining bottlenecks. ORM software
probably had much more time to investigate performance
optimizations than we have.

 Vendor independence

It is usually much easier to develop a cross-platform

application using ORM. Even if we do not require cross-
platform operation, an ORM can still help mitigate some of
the risks associated with vendor lock-in. In addition, database
independence helps in development scenarios where
developers use a lightweight local database but deploy for
production on a different database.

III. HIBERNATE

Hibernate is an Object-Relational Mapping (ORM)

solution for JAVA. It is an open source persistent framework
created by Gavin King in 2001. It is a powerful, high
performance Object-Relational Persistence and Query service
for any Java Application. Hibernate maps Java classes to
database tables and from Java data types to SQL data types
and relieves the developer from 95% of common data
persistence related programming tasks. Hibernate sits between
traditional Java objects and database server to handle all the
works in persisting those objects based on the appropriate O/R
mechanisms and patterns.[2]

Figure -2: Communication B/W Java Objects & RDBMS

using Hibernate

A. Hibernate Architecture

Hibernate has a layered architecture which helps the

user to operate without having to know the underlying APIs.
Hibernate makes use of the database and configuration data to

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1145 www.ijsart.com

provide persistence services (and persistent objects) to the
application.

Following is a very high-level view of the Hibernate

Application Architecture.

Figure -3: Hibernate Architecture (High Level View)

\
Hibernate uses various existing Java APIs, like

JDBC, Java Transaction API(JTA), and Java Naming and
Directory Interface (JNDI). JDBC provides a rudimentary
level of abstraction of functionality common to relational
databases, allowing almost any database with a JDBC driver
to be supported by Hibernate. JNDI and JTA allow Hibernate
to be integrated with J2EE application servers.[1]

Following is a detailed view of the Hibernate
Application Architecture with its important core classes.

Figure -4: Hibernate Architecture (Core Classes View)

Above is a high level diagram to understand
different components of hibernate.

 Configuration (org.hibernate.cfg.Configuration)

It allows the application on startup, to specify

properties and mapping documents to be used when creating a
Session Factory. Properties file contains database connection
setup info while mapping specifies the classes to be mapped.

 SessionFactory (org.hibernate.SessionFactory)

It's a thread-safe immutable object created per

database & mainly used for creating Sessions.It caches
generated SQL statements and other mapping metadata that
Hibernate uses at runtime.

 Session (org.hibernate.Session)

It's a single-threaded object used to perform create,

read, update and delete operations for instances of mapped
entity classes. Since it's not thread-safe, it should not be long-
lived and each thread/transaction should obtain its own
instance from a SessionFactory. The Session object is
lightweight and designed to be instantiated each time an
interaction is needed with the database. Persistent objects are
saved and retrieved through a Session object.

 Transaction (org.hibernate.Transaction)

It's a single-thread object used by the application to

define units of work. A transaction is associated with a
Session. Transactions abstract application code from
underlying transaction implementations(JTA/JDBC), allowing
the application to control transaction boundaries via a
consistent API. It's an Optional API and application may
choose not to use it.

 Query (org.hibernate.Query)

A single-thread object used to perform query on

underlying database. A Session is a factory for Query. Both
HQL(Hibernate Query Language) & SQL can be used with
Query object.

Hibernate provides a lot of flexibility in use. It is
called "Lite" architecture when we only uses the object
relational mapping component. While in "Full Cream"
architecture all the three component Object Relational
mapping, Connection Management and Transaction
Management) are used.

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1146 www.ijsart.com

B. Hibernate Configuration

Hibernate allows many configuration options, based

on an application's persistence requirements. However, most
of these parameters have default values, which relieve us of
detailed configuration in most situations. Hibernate allows us
to choose either Hibernate-managed JDBC connections or a
container-managed data source. If we decide to use Hibernate-
managed connections, we need to tell Hibernate about the
database properties, such as the name of the driver class, the
database JDBC URL, and the database username and
password. These are the basic configuration settings for
Hibernate-managed connections. Each of these settings is
represented by a name, as explained in the following table:

Table -2: Configuration Property Classes

C. Hibernate Mappings

An entity/relational mappings are generally defined
in an XML document. This mapping file instructs Hibernate
how to map the defined class or classes to the database tables.
Still many Hibernate users select to write the XML by hand, a
number of tools live to create the mapping document. These
contain Docket, Middlemen and Andromeda for advanced
Hibernate users.[3]

There are three types of mappings in Hibernate:

 Collections Mappings

If an entity or class has collection of values for a

particular variable, then we can map those values using any
one of the collection interfaces available in java. Hibernate
can persist instances of java.util.Map, java.util.Set,

java.util.SortedMap, java.util.SortedSet, java.util.List, and any
array of persistent entities or values.

 Association Mappings

The mapping of associations between entity classes

and the relationships between tables is the soul of ORM.
Following are the four ways in which the cardinality of the
relationship between the objects can be expressed. An
association mapping can be unidirectional as well as
bidirectional.

 Component Mappings

It is very much possible that an Entity class can have

a reference to another class as a member variable. If the
referred class does not have its own life cycle and completely
depends on the life cycle of the owning entity class, then the
referred class hence therefore is called as the Component
class. The mapping of Collection of Components is also
possible in a similar way just as the mapping of regular
Collections with minor configuration differences.

D. Hibernate - Sessions

A Session is used to get a physical connection with a

database. The Session object is lightweight and designed to be
instantiated each time an interaction is needed with the
database. Persistent objects are saved and retrieved through a
Session object. The session objects should not be kept open
for a long time because they are not usually thread safe and
they should be created and destroyed them as needed. The
main function of the Session is to offer, create, read, and
delete operations for instances of mapped entity classes.
Instances may exist in one of the following three states at a
given point in time –

Transient − A new instance of a persistent class, which is not
associated with a Session and has no representation in the
database and no identifier value is considered transient by
Hibernate.
Persistent − We can make a transient instance persistent by
associating it with a Session. A persistent instance has a
representation in the database, an identifier value and is
associated with a Session.
Detached − Once we close the Hibernate Session, the
persistent instance will become a detached instance.

E. Hibernate - Persistent Class

The entire concept of Hibernate is to take the values

from Java class attributes and persist them to a database table.

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1147 www.ijsart.com

A mapping document helps Hibernate in determining how to
pull the values from the classes and map them with table and
associated fields. Java classes whose objects or instances will
be stored in database tables are called persistent classes in
Hibernate. Hibernate works best if these classes follow some
simple rules, also known as the Plain Old Java Object (POJO)
programming model.[5]

Figure -5: POJO Programming Model

IV. HIBERNATE QUERY LANGUAGE (HQL)

Hibernate Query Language (HQL) is an object-

oriented query language, similar to SQL, but instead of
operating on tables and columns, HQL works with persistent
objects and their properties. HQL queries are translated by
Hibernate into conventional SQL queries, which in turns
perform action on database. Although we can use SQL
statements directly with Hibernate using Native SQL, but I
would recommend to use HQL whenever possible to avoid
database portability hassles, and to take advantage of
Hibernate's SQL generation and caching strategies. Keywords
like SELECT, FROM, and WHERE, etc., are not case
sensitive, but properties like table and column names are case
sensitive in HQL. Like in form clause of HQL query we need
to following this way

String hql = "FROM Employee";
Query query = session.createQuery(hql);
List results = query.list();

V. CONCLUSION

Finally, on discussing Hibernate ORM tool for java is

high-performance Object/Relational persistence and query
service, which is licensed under the open source GNU Lesser
General Public License (LGPL) and is free to download.
Hibernate not only takes care of the mapping from Java

classes to database tables (and from Java data types to SQL
data types), but also provides data query and retrieval
facilities.

REFERENCES

[1] Just Hibernate: A Lightweight Introduction to the

Hibernate Framework , Madhusudhan Konda, O’reilly
[2] Beginning Hibernate , Jeff Linwood, Dave Minte ,

Second Edition, Apress
[3] Hibernate: A Developer's Notebook, James Elliott , First

Edition , O’reilly
[4] Java Persistance With Hibernate, Christian Bauer, Gavin

King, Edition 2009 , DreamTech
[5] Professional Hibernate , Eric Pugh, Joseph D. Gradecki,

Third Edition, Wiley

