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Abstract- Multifactor user authentication systems enhance 
security by augmenting passwords with the verification of 
extra items of data like the possession of a specific device. 
This paper presents an innovative user authentication theme 
that verifies the possession of one’s smartphone by uniquely 
characteristic its camera. High-frequency parts of the photo-
response unsimilarity of the optical sensor square measure 
extracted from raw pictures and used as a weak physical 
unclonable perform. a completely unique theme for efficient 
transmission associate degreed server-side verification is 
additionally designed supported adaptational random 
projections and on an innovative fuzzy extractor exploitation 
polar codes. the safety of the system is completely analyzed 
underneath completely different attack scenarios each on 
paper and through an experiment. 
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I. INTRODUCTION 

 
 The very large diffusion in everyday life of web-
based services like social networks, internet banking, cloud-
based storage, requires the development of user authentication 
tech-niques that are both secure and user friendly [1]. In this 
sense, the traditional mechanism based on secret passwords 
shows several shortcomings. Security means that long and 
unpredictable passwords should be generated and 
remembered, which is not user friendly. As a consequence, 
short and easily predictable passwords are commonly reused, 
which considerably reduces the security of the system. 
 

Recently, several solutions have been proposed for 
providing an additional level of security in current user 
authentication systems. A common approach is to resort to a 
multifactor authentication scheme, in which the knowledge of 
a secret password is complemented with the possession of one, 
or more, physical or software tokens [2]. Typical solutions 
cur-rently implemented on several existing web services are 
the generation of one-time passwords (OTPs) on a dedicated 
token, or receiving a OTP by text message on the user’s 
smartphone [3], [4], [5]. Even if multifactor authentication 

effectively solves the security problem, the existing solutions 
typically reduce user friendliness. As an alternative, several 
authors have proposed authentication systems based on the 
possession of unique signals that are not easily reproducible. 
A natural choice is using biometric traits like fingerprints, 
irises, or faces [6], [7], [8]. An innovative approach consists in 
deriving a secret from some physical characteristics of an 
integrated circuit that are deemed unique, implementing a so-
called physical unclonable function (PUF) [9]. 
 

In this paper, we propose a novel authentication 
system that relies on an unclonable physical property of digital 
image sensors named photo-response non-uniformity (PRNU). 
The PRNU is a sensor-specific multiplicative noise pattern 
that has enjoyed great popularity in the last decade because it 
can be used to solve several forensic problems. Examples of 
its many applications are: determining which camera has 
acquired a given photo [10], [11], clustering collections of 
images by their source camera [12], [13], camera-based image 
retrieval [14], [15] and detecting and localizing image 
forgeries [16], [17]. 
 

The concept proposed in this paper is to use the 
PRNU of the camera sensor of the user’s smartphone as a 
weak PUF [9], that can be used as a possession factor in a 
multifactor authentication scheme, or even employed in a 
single step authentication protocol. Due to the ubiquitous 
diffusion of smartphones, such a system is potentially much 
user friendlier than existing solutions, enabling the 
implementation of an application that automatically acquires 
pictures, computes a compact code derived from the sensor 
PRNU and transmits it to a remote verification server 
requiring minimal or no user interaction. However, turning 
this idea into a practical authen-tication system requires to 
solve several important problems, as well as rigorously show 
the security of such solutions. 
 

First, the PRNU survives JPEG compression, as well 
as some image processing operations, and it can be found in 
photos that are publicly available, e.g., on social networks 
[18]. Luckily, the  
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PRNU is inevitably degraded by such operations, 
while in the framework of user authentication, the legitimate 
user has full control over the camera and could extract the 
PRNU with an arbitrarily high quality. In the following, we 
consider extracting the PRNU from RAW images and keeping 
only its high-frequency components. Since JPEG compression 
acts as a lowpass filter, the high-frequency components are 
unavailable or severely degraded in publicly available images 
and can only be estimated if one has access to the raw data. 
 

Second, the PRNU has the same size as the image 
sensor. Sending a complete PRNU signal over a mobile 
connection could be impractical in several scenarios, as well 
as storing the reference PRNUs of a large number of users at 
the server side. In this case, we propose to compress the 
PRNU using random projections. Recent results show that this 
technique can reduce the PRNU size by several orders of 
magnitude, without significantly affecting the matching 
performance [14]. Moreover, this also provides an additional 
security layer since the actual PRNU is never disclosed and if 
a compressed PRNU is compromised this can be revoked and 
replaced by a freshly generated compression. 
 

Lastly, the server should not store a copy of the 
PRNU, or its compressed version. This problem can be solved 
by resorting to techniques used for biometric template 
protection [19], [20]. Namely, we present an innovative 
implementation of a secure sketch and a fuzzy extractor based 
on polar codes, which is specifically tailored to compressed 
PRNUs. Since in the proposed system an attacker may have a 
partial knowledge of the PRNU from publicly available 
photos, the proposed construction incorporates a specific 
coding technique for the wiretap channel based on polar 
codes, which effectively prevents the attacker from gaining 
access to the system. 

 
A. Related works and contribution 
 

The idea of using high frequency components of 
PRNU has been recently introduced in a different context in 
[21]. The authors considered the case of fingerprint-copy 
attacks [22], where an attacker wants to plant a fingerprint in 
an image but only has access to JPEG images of the camera, 
while the defender has access to RAW data. The user 
authentication scenario significantly differs from a copy attack 
and provides unique requirements. Our goal is to show that an 
attacker that can only access JPEG-compressed images cannot 
reliably estimate the high-frequency components of the PRNU 
that the legitimate user employs as fingerprint. In our analysis, 
the legitimate user has full control over the raw image quality, 
and the number of images that can be used to generate the 
reference and test fingerprints. The attacker potentially has 

access to a large number of high-quality JPEG images and 
tries to extract a fingerprint that is highly correlated with the 
legitimate one. In this work, we assume that an attacker can 
only access public images in JPEG format and we do not 
consider the possible theft of RAW images. With respect to 
[21] we also provide a different fingerprint extraction method 
that is not constrained to work on 8 8 blocks. A significantly 
larger database with RAW and JPEG images, mostly from 
smartphone cameras, has been assembled in order to test 
attacks with hundreds of high-quality JPEG images. 
 

The use of random projections for biometric template 
pro-tection has been proposed in a number of works [23], [24], 
[25], [26], and later extended also to PUFs [27]. With respect 
to existing papers, we introduce a novel adaptive random 
projection technique, similar to a technique proposed in [28] 
and then further expanded and carefully analysed in [29]. 
Moreover, using the PRNU as a PUF requires an ad-hoc 
design of the fuzzy extractor, for which we provide an original 
construction based on polar codes and a rigorous security 
analysis. Finally, we provide a rigorous security analysis of 
the whole proposed system under different attack scenarios. 
 

Very recently, the authors of [30] proposed to 
combine several device sensor features, including PRNU, and 
apply machine learning for smartphone authentication. The 
paper provides some interesting insights on the distinctiveness 
of smartphone sensors, however security issues are not 
addressed and a complete authentication system is not 
discussed. The possibility of using PRNU for authentication is 
also discussed at high level in this recent contribution [31], but 
no technical solutions are proposed, and a rigorous security 
analysis is not provided. 
 

II. RELATED WORK 
 

The following subsections provide some background ma-terial 
to help the reader understanding the rest of the paper. We first 
(Sec. II-A) present some notation used throughout the paper. 
Sec. II-B recalls the basics of PRNU of digital imaging 
sensors. Sec. II-C introduces random projections, a useful 
dimensionality reduction method. Sec. II-D discusses fuzzy 
extractors, a set of techniques to extract uniform randomness 
from a source that is not exactly reproducible. Finally, Sec. II-
E reviews polar codes, a channel coding technique. 
 
A. Notations 
 

Lower-case (upper-case) bold symbols denote real-
valued vectors (matrices). Lower-case letters indicate scalars 
or bit strings. Upper-case letters denote random variables. 
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Symbols P and E denote the probability and expectation 
operators, respectively. 
 

The predictability of a random variable A is 
measured by the min-entropy, defined as H1 (A) = log(maxa 
P(A = a)). A variable whose min-entropy is m bits is as hard to 
predict as a uniformly random string of m bits. 
 

If the adversary observes a variable B which is 
correlated with A, the expected predictability of A can be 
expressed by 
the average min-entropy of given , defined as ~

 j 
A B H1(A B) = 
log(Eb[2

H1(AjB=b)
]). 

 
It is also useful to define how much two random 

variablesdiffer using the statistical distance between variable 
A and B, defined as dS(A; B) = 12 Pv jP(A = v) P(B = v)j. 
 
Table I summarises the main symbols used throughout the 
paper, along with their description. 
 
B. PRNU 
 

PRNU [11], [32] of imaging sensors is a property 
unique to each sensor array due to the different ability of each 
individual optical sensor to convert photons to electrons. This 
difference is mainly caused by impurities in silicon wafers and 
its effect is a noise pattern affecting every image taken by that 
specific sensor. Hence, the PRNU can be thought of as a 
spread– spectrum fingerprint of the sensor. 

 
The literature on camera forensics [11], [33] widely 

consid-ers the PRNU as unique for each camera since it has 
very large entropy and therefore the probability of two 
cameras having the same pattern is negligible. For instance, 
Bayram et al. [34] estimate the entropy of the PRNU to be 20 
bits per pixel, and considering that the PRNU has the same 
pixel size as the sensor, and the value for each pixel is 
uncorrelated with the others, the PRNU has very large 
discriminative power. Being a multiplicative pattern, its 
strength with respect to other noise sources depends on the 
brightness of the acquired image. 
 

The PRNU characterizing one sensor can be 
extracted from a set of images (typically, 20 to 50 smooth 
images are enough). The procedure to extract the fingerprint k 
of a sensor from a set of pictures depends on the model used to 
characterize the optical sensor. The sensor output o can be 
modelled as 
 

o = oid + oid  k + e ; (1) 
where oid is the ideal sensor output, oid � k is the 

PRNU term and e collects other sources of noise. Assuming to 
be able to obtain through proper filtering a denoised version of 
o, referred to as o dn , then this can be used as an 
approximation of the ideal sensor output and subtracted from 
each side of (1) to obtain the so-called noise esidual, which 
can be modeled as: 

 
where ~ e accounts for e and for the non-idealities of 

the model [11]. Supposing that a certain number C of images 
is available, the maximum likelihood estimate b^k can be 
obtained a 

 
To improve further the quality of the estimation, 

artifacts shared among cameras of the same brand or model 
can be removed by subtracting row and column averages. In 
the case of color images, the estimation must be performed 
separately on each color channel, and then an RGB–to–gray 
conversion  can be applied.Finally, a pair of ingerprint vectors 
k1, k2 is typically compared using their correlation 
coefficient, defined a 

 
 

C. Random projections 
 

Random projections (RPs) are a method for 
dimensionality reduction [35]. A collection X Rn of signals 
living in a high-dimensional space can be embedded with low 
distortion into low-dimensional representations Y Rm (also 
known as measurements, or random projections, with m < n) 
by computing inner products with random vectors. In matrix 
form this is written as y = x, for x 2 X , y 2 Y, and where is 
often referred to as sensing matrix. Measurements can also be 
quantized to achieve more storage-efficient representations. 
The key property of random projections is that they approxi-
mately preserve distances. A classic result is that real-valued 
random projections, where the sensing matrix is made of 
independent and identically distributed (i.i.d.) Gaussian 
entries, are a mapping that satisfies the Johnson-Lindenstrauss 
(JL) lemma [36], meaning that `2 distances are nearly 
preserved. A key property following from the JL lemma is that 
the number of measurements m depends only on the desired 
distortion on distances between signals introduced by the 
embedding, and on the number of signals that are to be 
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embedded but not on the dimensionality of input space n. Of 
particular interest are binary random projections that are 
computed with a sensing matrix made of i.i.d. Gaussian 
entries, and then quantized to one bit by keeping the sign of 
the measurement. The Hamming distance between the 
resulting binary vectors approximately preserves the angle 
between the signals in the original space [37], i.e., 

 

 

 
is often impractical to use a fully random sensing 
matrix,either because the high dimensionality of the signals 
requires to generate too many random numbers or because 
performing the full matrix-vector product is too 
computationally intensive.Circulant matrices with randomized 
column signs [38] are an appealing solution ecause they allow 
to generate only the first row of the sensing matrix and 
compute the measurements using the FFT.In [14], [15], RPs 
were used to perform imensionality reduction of PRNU 
patterns, showing significant gains in terms of storage 
requirements as well as in the complexity of the match or 
search in large database operations. 
 

Fuzzy extractors denote a set of techniques for 
extracting nearly uniform randomness from sources of 
information that are neither exactly reproducible nor 
uniformly distributed [20] 
[19]. These techniques were originally developed for 
gener-ating strong keys from biometric data, however they can 
be applied to any form of noisy data used for authentication, 
like PUFs. More precisely, such techniques rely on two 
primitives: 1) a fuzzy extractor that extracts nearly uniform 
randomness from an input in an error-tolerant way, i.e., close 
inputs are guaranteed to generate the same randomness; 2) a 
secure sketch producing public information about a secret 
input w that does not reveal anything about w, yet allows to 
recover w when combined with another value that is 
sufficiently close to w. 
 

In our scheme, we will employ a slightly relaxed 
definition of secure sketches and, in turn, of fuzzy extractors, 
that accounts for a negligible probability of not recovering the 
secret input w. This definition applies when the error pattern 
on w can be modeled by a binary symmetric channel with 
crossover probability p (BSC-p). 
 

Definition 1. An (n; m; m;~ p; )-secure sketch 
consists in a pair of functions SS : f0; 1gn ! f0; 1g and Rec : f0; 
1gn f0; 1g ! f0; 1gn with the following properties: 

1) Correctness: if w0 is the output of a BSC-p when the 
input is w, then Rec(w0; SS(w)) = w with probability at least 1 
. 
2) Security: if then ~ j . 
H1(W ) = m H1(W SS(W )) m~ 
Definition 2. An (n; m; `; p; ; )-fuzzy extractor consists in a 
pair of functions Gen : f0; 1gn ! f0; 1g` f0; 1g and Rep : f0; 1gn 
f0; 1g ! f0; 1g` with the following properties: 
1) Correctness: if (x; s) = Gen(w) and w0 is the output of 
a BSC-p when the input is w, then Rep(w0; s) = x with 
probability at least 1 . 
 
2) Security: if (x; s) = Gen(w) and H1(W ) = m then 
dS((X; S); (U`; S)) , where U` is a uniformly distributed string 
of ` bits. 
 

From the above definitions, it is evident that a fuzzy 
ex-tractor can be constructed on top of a secure sketch, 
provided that one can extract sufficiently uniform randomness 
from the secret input w [20]. 

 
III. PROPOSED TECHNIQUE 

 
The main idea of the proposed technique is to use the 

PRNU fingerprint of the optical sensor of a user’s device, e.g. 
a smartphone or a tablet, as a PUF for authentication. An 
overview block diagram is shown in Fig. 1. 
 

In a first phase, the user enrolls into the system by 
providing a high quality estimate of the device fingerprint, 
obtained from a certain number of photos acquired in 
controlled conditions. Instead of directly sending the 
fingerprint, which usually consists in millions of real numbers, 
the user first compresses it by means of random projections. 
The user also stores some side information related to the seed 
of the pseudorandom number generator and the positions of 
the entries with largest magnitude (outliers) within those 
random projections, which will be then used in the 
authentication phase. The exact algorithm as well as the role 
of the outliers will be made clear in the following sections. At 
the server side, the compressed fingerprint is processed by a 
fuzzy extractor. Namely, the server extracts a uniformly 
random bit string from the compressed fingerprint and stores a 
secure hash of this bit string, together with a secure sketch of 
the fingerprint. 
 

In the authentication phase, the user reproduces a 
noisy version of the device fingerprint by acquiring a fresh set 
of photos and compressing the resulting fingerprint according 
to the stored side information. The server then uses the fuzzy 
extractor scheme for reproducing the secret bit string from the 
received compressed fingerprint and the secure sketch, and 
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compares the recovered bit string with the stored secure hash. 
If the user provides a version of the compressed fingerprint 
sufficiently close to the enrolled one, then the server can 
reproduce the same bit string of the enrollment phase and 
grants access to the system; otherwise, it denies access. 
 

With respect to existing authentication systems based 
on biometrics/PUFs and fuzzy extractors, the proposed 
technique introduces two important novelties. First, the actual 
PRNU-based PUF is obtained by means of a novel 
compression technique based on adaptive random projections. 
Besides re-ducing the size of the transmitted fingerprint, this 
technique provides an additional security layer, as will be 
discussed in the following sections. Secondly, the PRNU of a 
sensor is not a completely private information, since it can be 
approximated from public photos acquired by that sensor. In 
order to solve  
 
VERIFICATION 
 

 
Fig. 1. System block diagram. 

 
this problem, we introduce a novel fingerprint 

estimation technique that relies on RAW data acquired by the 
sensor, which is not usually available from public photos. 
Moreover, we design the fuzzy extractor in such a way that it 
is robust with respect to illegitimate fingerprints obtained from 
public photos. In the following sections, we will discuss the 
details of both PRNU-based PUF computation and user 
verification based on the proposed fuzzy extractor. 
 

IV. PRNU-BASED PUF 
 

This section describes in detail the client-side 
functional blocks introduced in the previous section 
concerning finger-print extraction and compression. 

 
A. Fingerprint extraction 

 
In order to devise a PUF for the authentication 

scheme, we propose to use high frequency components of the 
PRNU pattern estimated from RAW photos. The motivation is 

to obtain a fingerprint that is capable of discriminating 
different sensors and, at the same time, that is uncorrelated 
with any estimate that can be extracted from JPEG data. In the 
following we propose an extraction method from RAW 
images and then model JPEG images to devise an extraction 
method that better approximates the output of the extraction 
method from RAW images, in order to study an attack tailored 
to the proposed system. Since the RAW acquisition process 
can be controlled and the fingerprint extraction has to run 
efficiently on a user’s smartphone, we suppose that the user 
acquires approximately flat images to streamline the extraction 
process. 

 
1) Extracting high-frequency PRNU from RAW data: The 
process described in this section is summarized in Fig. 2. It is 
important to notice that since the authentication process relies 
on photos taken at that specific moment rather than using 
already available photos, the acquisition process can be 
controlled, i.e., it is possible to select the shooting parameters 
so to acquire photos that will yield the highest quality 
estimates of the PRNU. In particular, the exposure should be 
as high as possible without saturating the pixel values and the 
content should be uniform and possibly out of focus so that the 
scene can be well approximated by a constant value. 
Moreover, we can use a set of fixed values for ISO sensitivity, 
aperture, and focal length, so that different PRNU estimates 
will not be affected by those shooting parameters. 
 

 
 
The RAW image is first demosaiced and color 

calibrated to obtain image o = [r; g; b]. The luminance 
component of such image is then obtained by applying the 
transformation 
 
= 0:299r + 0:587g + 0:114b : 
 

It is possible to extract an estimate of the high-
frequency components of the PRNU pattern to be used as 
fingerprint by means of a highpass filter (hereafter denoted as 
HPF) applied to the luminance component of the demosaiced 
and color calibrated image. This filter can be implemented as a 
product in the DCT domain. In Sec. VII we explore two 
possible solutions where the filtering is performed blockwise 
(to mimic JPEG), or on the whole image. Hence a first 
estimate of the fingerprint is: 
 
kRAW = HPF ( ) oid  HPF (k) + e0: -----------------(5) 
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Since the scene, represented by the term oid, is flat it 
is clear that a highpass version of the PRNU pattern is 
observed. When multiple images o(l) are available the 
fingerprint is jointly estimated as 
 

 
 
in (1) we can approximate the image after JPEG 

compression, denoted as oJPG, as a lowpass filtered version of 
the original, where the cutoff frequency of the filter essentially 
depends on the compression quality factor. We denote such 
lowpass filter with LPF. 
oJPG = LPF oid + oidk + e = LPF oid  + LPF oidk + e0: 

 
 
Conventionally, one wants to estimate k by means of 

flat images so that oid const:, obtaining after denoising the 
noise residual 
 

r = oid  LPF (k) + e00: (7) 
 
It is clear that using flat images one can only observe 

a lowpass version of the PRNU pattern. However, if the image 
is not flat, the noise residual is 
 

r = LPF oidk + e00: (8) 
 
The idea is to replicate the extraction procedure used 

for RAW data, i.e. highpass filtering, but on the noise residual 
since the attacker does not have control on the quality of the 
JPEG images and the flat assumption may or may not hold. 
First, the luminance noise residual is extracted, then it is 
filtered with the same highpass filter used to extract the RAW 
fingerprint and finally a weighted average as in (6) is 
performed if multiple images are available. Finally, mean 
removal and Wiener filtering are performed as post-processing 
operations. Notice that according to (8) the noise residual is a 
lowpass version of the PRNU modulated by the input image. 
If highpass filtering is performed one obtains 
 
r0 = HPF LPF oidk + e~ = F  oidk + e~: 

 
This means that if the highpass filter is properly 

designed only a very weak signal can be observed due to the 
leakage of the combination of the two filters, represented by F 
. The experimental results show that higher correlation values 
can be achieved by this method instead of using the 
conventional method that does not include the highpass filter 
in the extrac-tion chain. Notice that this procedure is not 

optimal, as the optimal extraction method would retrieve HPF 
(k). However, this would require solving a challenging 
deconvolution prob-lem to disentangle the PRNU term from 
the image content in the observed LPF oidk . 
 

We remark that the existence of methods that 
improve the estimation of the high-frequency PRNU 
components beyond what we proposed in this section does not 
compromise the overall authentication scheme described in 
this paper. In fact, the legitimate user has full access to the 
RAW data provided by the device and can increase the 
difficulty of an attack by increasing the cutoff frequency of the 
filter or increasing the number of acquired photos to achieve 
arbitrarily high fingerprint quality levels. 
 
B. Fingerprint compression 
 

Since the fingerprint must be sent to a server for 
verification purposes, it is of paramount importance to 
compress it to a size that makes transmission over bandlimited 
channels manageable. The objective of the compression step is 
to transform the real-valued, high-dimensional fingerprint into 
a short binary code. Correlated fingerprints must be mapped 
into similar binary codes. 
 

In Sec.II-C we presented binary-quantized random 
pro-jections, characterized by the property that their Hamming 
distance concentrates around the angle between the original 
uncompressed fingerprints. One can therefore use them to 
obtain compact binary codes. Since the fingerprints are high-
dimensional objects, a complexity issue arises in the calcula-
tion of the random projections. This can be solved by using 
circulant random matrices with randomized column signs, as 
shown in [14]. For such matrices, only the first row must be 
generated at random and the matrix-vector product can be 
efficiently performed using the FFT. 
 

In this paper, however, we propose to use a modified 
version of such random projections, that we call adaptive 
random projections [29]. The key property of adaptive random 
projections is that some randomness is traded for a better 
(more compact) representation of signals correlated with a 
particular signal of interest. This solution has three main 
advantages in the context of the proposed user authentication 
system: more compact codes allow to save transmission time; 
more compact codes allow a more efficient and easier design 
of the fuzzy extractor at server side;adaptivity allows to 
preserve as much as possible of the inter-class correlation gap 
between fingerprints extracted from JPEG data and 
fingerprints extracted from RAW data; this also simplifies the 
design of the channel code in the fuzzy extractor because it 
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maximizes the margin between the bit-error probability 
observed by a legitimate user and that observer by an attacker. 
 

During the registration phase, a high-quality version 
of the fingerprint k 2 Rn is available. A vector with n i.i.d. 
Gaussian entries is generated and circularly convolved with k 
using the FFT to implement a circulant sensing matrix. The 
result of this operation is first subsampled to keep the first 
 
mpool values. The m < mpool entries with largest magnitude are 
identified and their locations l stored locally on the userdevice 
as side information. Finally, the sign of the entries at those 
locations is saved as compressed fingerprint w of m bits. 
During the verification phase, a test fingerprint k0 is presented 
for compression, and its projections are computed by keeping 
only the sign of the entries indexed by l. 
 

The value of mpool determines the storage overhead 
required for the location information. Choosing m outliers 
from a larger pool improves the adaptivity to the reference 
signal but increases the storage overhead. The effect of 
adaptivity is shown in Fig. 3 where the expected value of the 
Ham-ming distance between the binary codes is plotted 
against the correlation coefficient between the original 
uncompressed fingerprints. Notice that the adaptive method 
allows to achieve smaller values for the Hamming distance 
and maximize the margin between the class of invalid 
fingerprints having very low correlation values and the class 
of valid fingerprints having higher correlation values. 
 

However, some artifacts may be present, either 
because of the blockiness introduced by a blockwise highpass 
filter or because of non-unique artifacts (NUA) [33] such as 
CFA interpolation, linear pattern, etc.. Such artifacts may 
introduce ambiguities in the camera detection process and 
should be removed. Hence, as a post-processing operation we 
remove row and column means in a checkerboard pattern and 
perform Wiener filtering to suppress any periodic artifact. 
Such post-processing operations are well known in the 
literature to suppress non-unique artifacts. Some cameras may 
provide cor-rections for optical distortions, typically involving 
a resampling step. Such artifacts are notably difficult to 
remove and lower the detection rate in camera identification 
applications [42], 
[43]. However, since we access the RAW data before any 
kind of post-processing, our PRNU estimates will not contain 
this kind of artifacts. 
 
2) Extracting high-frequency PRNU from JPEG data: The 
scope of this section is to develop a method to extract a 
fingerprint from JPEG images in such a way that it achieves 
the highest possible correlation with the fingerprint extracted 

from RAW data as described in the previous section. This 
method is what would be used by an attacker having access to 
publicly available JPEG images. 
 

JPEG compression uses a quantization table in the 
discrete cosine transform (DCT) domain to shrink the 
coefficients in a way that preserves perceived visual quality. 
This typically results in many high frequency coefficients 
being set to zero, thus losing all the information associated to 
high frequencies. If we follow the usual model for the 
acquired image presented 
 

 
V. CONCLUSION 

 
In this paper, comparative studies of different 

controllers are studied and performance is evaluated according 
to time domain functions. It is observed that all controllers 
able to maintain the set point at the desired value but ZN-PID 
,Fuzzy based controllers has slight overshoot, Model 
Reference Adaptive controller has no overshoot and settles 
quickly. So it conclude that Model Reference Adaptive 
Controller is the best controller then other controllers 
 

V. USER VERIFICATION 
 

Due to the non-exact repeatability of the PRNU 
fingerprint estimation procedure, during the verification phase 
the user will produce a compressed fingerprint that contains 
some bit errors with respect to the enrolled fingerprint. 
Moreover, an attacker having access to a certain number of 
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publicly available JPEG photos acquired by the user’s device 
may also be able to provide a noisy version of the enrolled 
fingerprint, albeit with a much higher number of bit errors. 
 

In order to cope with this scenario, we design a novel 
fuzzy extractor scheme. The proposed solution is based on the 
fuzzy commitment scheme proposed in [44] and a coding 
scheme for the wiretap channel that uses polar codes [45]. The 
proposed scheme is based on a generation function and a 
verification function, whose block diagrams are depicted in 
Fig. 4 and Fig. 5, respectively. 
 

During the enrollment phase, the server generates a 
uni-formly random string x of k bits. From this secret string, 
the server computes a hash h = SH(x), where SH( ) denotes a 
secure hashing function, and a secure sketch s = w C(x), where 
w is the compressed fingerprint received from the user and C 
denotes a (m; k ) error correcting code based on polar codes. 
The server then discards x and stores h and s. 
 

During the verification phase, the server computes 
the k-bit string x0 = D(w0 s), where w0 is the noisy fingerprint 
and D denotes the decoding algorithm of the error correcting 
code, and authenticates the user only if SH(x0) = h. 
 

The error correcting code is not a standard (m; k) 
polar code, but is constructed according to the scheme in [45]. 
Let 

 
us assume a BSC-pl for the legitimate channel and a BSC-pa 
for the attacker channel, and denote them as Q(l) and Q(a), 
respectively. The code construction requires choosing 
security parameter t > m(1 H2(pa)), where H2(p) = p log2(p) (1 
p) log2(1 p) denotes the binary entropy function, and verifying 
that k + t < m(1 H2(pl)). Then,we define two subsets Al and Aa 
Al of the indices i = 1; : : : ; N satisfying 
 

 
 

The encoder generates t uniformly random bits r, 
assigns them to the bit channels in Aa, and maps the k message 
bits x onto the remaining channels in Al n Aa. The code is then 
generated by using the corresponding rows in Gm. In order to 
take into account the randomization in the encoding process, 

in the following the encoder function will be denoted as C(x; 
r). The decoder simply applies the SCD to the received 
codeword and discards the t bits corresponding to Aa. It can be 
checked that the above construction verifies  

 
VI. CONCLUSIONS 

 
We projected a user authentication theme supported 

victimization the high-frequency parts of the PRNU pattern of 
optical sensors as a weak PUF. This was shown by 
experimentation to supply a fingerprint that can't be 
dependably extracted if solely JPEG compressed pictures area 
unit offered. Moreover, we tend to devised a sensible theme to 
transmit such fingerprint to a verification server. within the 
projected approach, the compression step is intimately joined 
to the server-side verification practicality enforced via a fuzzy 
extractor while not the necessity to directly store the 
fingerprint. 
 

We showed that the system is demonstrably secure 
beneath dif-ferent attack situations. one among the 
assumptions created during this paper is that a user doesn't 
publically disclose RAW pictures nonheritable by the device 
to be used for authentication functions. this can be a quite 
affordable assumption since it's not common apply to try and 
do therefore, particularly for smartphones. all the same, the 
safety analysis shows that different components of the system 
like the random projection matrix will guarantee security 
albeit RAW pictures are leaked. 
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