
IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1356 www.ijsart.com

The Classical Thread Model

Bindu Singh
Department of Computer Engineering

Vadodara Institute of Engineering

Abstract-One way of looking at a process is that it is a way to
group related resources together. A process has an address
space containing program text and data, as well as other
resources. This resource may include open files, child
processes, pending alarms, signal handlers, accounting
information, and more. By putting them together in the form of
a process, they can be managed more easily. The other
concept a process has is a thread of execution, usually
shortened to just thread.

Keywords-Thread,User space,Kernal Space.,Process,Program
counter

I. INTRODUCTION

A thread is the smallest unit of processing that can be

performed in an OS. In most modern operating systems, a
thread exists within a process - that is, a single process may
contain multiple threads. The thread has a program counter
that keeps track of which instruction to execute next. It has
registers, which hold its current working variables. It has a
stack, which contains the execution history, with one frame for
each procedure called but not yet returned from. Although a
thread must execute in some process, the thread and its
process are different concepts and can be treated separately.
Processes are used to group resources together; threads are the
entities scheduled for execution on the CPU. What threads add
to the process model is to allow multiple executions to take
place in the same process environment, to a large degree
independent of one another. Having multiple threads running
in parallel in one process is analogous to having multiple
processes running in parallel in one computer. In the former
case, the threads share an address space and other resources.
In the latter case, processes share physical memory, disks,
printers, and other resources. Because threads have some of
the properties of processes, they are sometimes called
lightweight processes. The term multithreading is also used to
describe the situation of allowing multiple threads in the same
process.some CPUs have direct hardware support for
multithreading and allow thread switches to happen on a
nanosecond time scale. When a multithreaded process runs on
a single-CPU system, the threads take turns running. By
switching back and forth among multiple processes, the
system gives the illusion of separate sequential processes
running in parallel. Multithreading works the same way. The
CPU switches rapidly back and forth among the threads,

providing the illusion that the threads are running in parallel,
albeit on a slower CPU than the real one. With three compute-
bound threads in a process, the threads would appear to be
running in parallel, each one on a CPU with one-third the
speed of the real CPU.

Different threads in a process are not as independent

as different processes. All threads have exactly the same
address space, which means that they also share the same
global variables. Since every thread can access every memory
address within the process' address space, one thread can read,
write, or even wipe out another thread's stack. There is no
protection between threads because (1) it is impossible, and
(2) it should not be necessary. Unlike different processes,
which may be from different users and which may be hostile
to one another, a process is always owned by a single user,
who has presumably created multiple threads so that they can
cooperate, not fight. In addition to sharing an address space,
all the threads can share the same set of open flies, child
processes, alarms, and signals, an so on. Per process items Per
thread items

1) Address space
2) Global variables
3) Open files
4) Child processes
5) Pending alarms
6) Signals and signal handlers
7) Accounting information
Per Thread items
8) Program counter
9) Registers
10) Stack
11) State

The items in the first column are process properties,

not thread properties. For example, if one thread opens a file,
that file is visible to the other threads in the process and they
can read and write it. This is logical, since the process is the
unit of resource management, not the thread. If each thread
had its own address space, open files, pending alarms, and so
on, it would be a separate process. What we are trying to
achieve with the thread concept is the ability for multiple
threads of execution to share a set of resources so that they can
work together closely to perform some task. Like a traditional
process (i.e., a process with only one thread), a thread can be
in any one of several states: running, blocked, ready, or

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1357 www.ijsart.com

terminated. A running thread currently has the CPU and is
active. A blocked thread is waiting for some event to unblock
it. For example, when a thread performs a system call to read
from the keyboard, it is blocked until input is typed. A thread
can block waiting for some external event to happen or for
some other thread to unblock it. A ready thread is scheduled to
run and will as soon as its turn comes up. The transitions
between thread states are the same as the transitions between
process states.It is important to realize that each thread has its
own stack, Each thread's stack contains one frame for each
procedure called but not yet returned from. This frame
contains the procedure's local variables and the return address
to use when the procedure call has finished. For example, if
procedure X calls procedure Y and Y calls procedure Z, then
while Z is executing, the frames for X, Y, and Z will all be on
the stack. Each thread will generally call different procedures
and a thus have a different execution history. This is why each
thread needs its own stack.

When multithreading is present, processes normally

start with a single thread present. This thread has the ability to
create new threads by calling a library procedure, for example,
thread ^create. A parameter to thread^create typically
specifies the name of a procedure for the new thread to run. It
is not necessary (or even possible) to specify anything about
the new thread's address space, since it automatically runs in
the address space of the creating thread. Sometimes threads
are hierarchical, with a parent-child relationship, but often no
such relationship exists, with all threads being equal. With or
without a hierarchical relationship, the creating thread is
usually returned a thread identifier that names the new
thread.When a thread has finished its work, it can exit by
calling a library procedure, say, thread-exit. It then vanishes
and is no longer schedulable. In some thread systems, one
thread can wait for a (specific) thread to exit by calling a
procedure, for example, thread-join. This procedure blocks the
calling thread until a (specific) thread has exited. In this
regard, thread creation and termination is very much like
process creation and termination, with approximately the same
options as well. Another common thread call is thread-yield,
which allows a thread to voluntarily give up the CPU to let
another thread run. Such a call is important because there is no
clock interrupt to actually enforce multiprogramming as there
is with processes. Thus it is important for threads to be polite
and voluntarily surrender the CPU from time to time to give
other threads a chance to run. Other calls allow one thread to
wait for another thread to finish some work, for a thread to
announce that it has finished some work, and so on.While
threads are often useful, they also introduce a number of
complications into the programming model. To start with,
consider the effects of the UNDC fork system call. If the
parent process has multiple threads, should the child also have

them? If not, the process may not function properly, since all
of them may be essential.However, if the child process gets as
many threads as the parent, what happens if a thread in the
parent was blocked on a read call, say, from the keyboard?
Are two threads now blocked on the keyboard, one in the
parent and one in the child? When a line is typed, do both
threads get a copy of it? Only the parent? Only the child? The
same problem exists with open network connections. Another
class of problems is related to the fact that threads share many
data structures. What happens if one thread closes a file while
another one is still reading from it? Suppose that one thread
notices that there is too little memory and starts allocating
more memory. Partway through, a thread switch occurs, and
the new thread also notices that there is too little memory and
also starts allocating more memory. Memory will probably be
allocated twice. These problems can be solved with some
effort, but careful thought and design are needed to make
multithreaded programs work correctly.

II. IMPLEMENTING THEAD IN USER SPACE

There are two main ways to implement a threads

package: in user space and in the kernel. The choice is
moderately controversial, and a hybrid implementation is also
possible. We will now describe these methods, along with
their advantages and disadvantages. The first method is to put
the threads package entirely in user space. The kernel knows
nothing about them. As far as the kernel is concerned, it is
managing ordinary, single-threaded processes. The first, and
most obvious, advantage is that a user-level threads package
can be implemented on an operating system that does not
Support threads. All operating systems used to fall into this
category, and even now some still do. With this approach,
threads are implemented by a library.All of these
implementations have the same general structure.The threads
run on top of a run-time system, which is a collection of
procedures that manage threads. We have seen four of these
already:pthread_create, pthread^exit, pthread_join, and
pthread^yield,(a) A ttser-levei threads package, (b) A threads
package managed by the kernel.When threads are managed in
user space, each process needs its own private thread table to
keep track of the threads in that process. This table is
analogous to the kernel's process table, except that it keeps
track only of the per-thread properties,such as each thread's
program counter, stack pointer, registers, state, and so forth.
The thread table is managed by the run-time system. When a
thread is moved to ready state or blocked state, the
information needed to restart it is stored in the thread table,
exactly the same way as the kernel stores information about
processes in the process table. When a thread does something
that may cause it to become blocked locally,for example,
waiting for another thread in its process to complete some

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1358 www.ijsart.com

work, it calls a run-time system procedure. This procedure
checks to see if the thread must be put into blocked state. If so,
it stores the thread's registers (i.e., its own) in the thread table,
looks in the table for a ready thread to run, and reloads the
machine registers with the new thread's saved values. As soon
as the stack pointer and program counter have been switched,
the new thread comes to life again automatically. If the
machine has an instruction to store all the registers and
another one to load them all, the entire thread switch can be
done in just a handful of instructions. Doing thread switching
like this is at least an order of magnitude—maybe ore-—faster
than trapping to the kernel and is a strong argument in favor of
user-level threads packages. However, there is one key
difference with processes. When a thread is finished running
for the moment, for example, when it calls thread-.yield, the
code of thread_yield can save the thread's information in the
thread table itself. Furthermore, it can then call the thread
scheduler to pick another thread to run. The procedure that
saves the thread's state and the scheduler are just local
procedures, so invoking them is much more efficient than
making a kernel call. Among other issues, no trap is needed,
no context switch is needed, the memory cache need not be
flushed, and so on. This makes thread scheduling very fast.

User-level threads also have other advantages. They

allow each process to have its own customized scheduling
algorithm. For some applications, for example, those with a
garbage collector thread, not having to worry about a thread
being stopped at an inconvenient moment is a plus. They also
scale better, since kernel threads invariably require some table
space and stack, space in the kernel,which can be a problem if
there are a very large number of threads.

Despite their better performance, user-level threads

packages have some major problems. First among these is the
problem of how blocking system calls are implemented.
Suppose that a thread reads from the keyboard before any keys
have been hit. Letting the thread actually make the system call
is unacceptable, since this will stop all the threads. One of the
main goals of having threads in thefirst place was to allow
each one to use blocking calls, but to prevent one blocked
thread from affecting the others. With blocking system calls, it
is hard to see how this goal can be achieved readily.

The system calls could all be changed to be

nonblocking (e.g., a read on the keyboard would just return 0
bytes if no characters were already buffered), but requiring
changes to the operating system is unattractive. Besides, one
of the arguments for user-level threads was precisely that they
could run with existing operating systems. In addition,
changing the semantics of read will require changes tomany
user programs.Another alternative is possible in the event that

it is possible to tell in advance if a call will block. In some
versions of UNIX, a system call, select, exists, which allows
the caller to tell whether a prospective read will block. When
this call is present, the library procedure read can be replaced
with a new one that first doesa select call and then only does
the read call if it is safe (i.e., will not block). If the read call
will block, the call is not made. Instead, another thread is run.
The next time the run-dme system gets control, it can check
again to see if the read is now safe. This approach requires
rewriting parts of the system call library, is inefficientand
inelegant, but there is little choice. The code placed around the
system call to do the checking is called a jacket or wrapper.

Somewhat analogous to the problem of blocking

system calls is the problem of page faults.. It is sufficient to
say that computers can be set up in such a way that not all of
the program is in main memory at once. If the program calls or
jumps to an instruction that is not in memory, a page fault
occurs and the operating system will go and get the missing
instruction (and its neighbors) from disk. This is called a page
fault. The process is blocked while the necessary instruction is
being located and read in. If a thread causes a page fault, the
kernel, not even knowing about the existence of threads,
naturally blocks the entire process until the disk I/O is
complete, even though other threads might be runnable.
Another problem with user-level thread packages is that if a
thread starts running,no other thread in that process will ever
run unless the first thread voluntarilygives up the CPU. Within
a single process, there are no clock interrupts,making it
impossible to schedule processes round-robin fashion (taking
turns). Unless a thread enters the run-time system of its own
free will, the scheduler will never get a chance. One possible
solution to the problem of threads running forever is to have
therun-time system request a clock signal (interrupt) once a
second to give it control,but this, too, is crude and messy to
program. Periodic clock interrupts at a higher frequency are
not always possible, and even if they are, the total overhead
may be substantial. Furthermore, a thread might also need a
clock interrupt, interfering with the run-time system's use of
the clock.Another, and really the most evastating, argument
against user-level threads is that programmers generally want
threads precisely in applications where the threads block often,
as, for example, in a multithreaded Web server. These threads
are constantly making system calls. Once a trap has occurred
to the kernel to carry out the system call, it is hardly any more
work for the kernel to switch threads if the old one has
blocked, and having the kernel do this eliminates the need for
constantly making select system calls that check to see if read
system calls are safe. For applications that are essentially
entirely CPU bound and rarely block, what is the point of
having threads at all? No one would seriously propose
computing the first n prime numbers or playing chess using

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1359 www.ijsart.com

threads because there is nothing to be gained by doing it that
way.

III. IMPLEMENTING THEAD IN KERNEL SPACE

Now let us consider having the kernel know about

and manage the threads. No run-time system is needed in
each, as shown in Fig. 2-16(b). Also, there is no thread table in
each process. Instead, the kernel has a thread table that keeps
track of all the threads in the system. When a thread wants to
create a new thread or destroy an existing thread, it makes a
kernel call, which then does the creation or destruction by
updating the kernel thread table. The kernel's thread table
holds each thread's registers, state, and other information.

The information is the same as with user-level

threads, but now kept in the kernel instead of in user space
(inside the run-time system). This information is a subset of
the information that traditional kernels maintain about their
single threaded processes, that is, the process state. In
addition, the kernel also maintains the traditional process table
to keep track of processes. Ail calls that might block a thread
are implemented as system calls, at considerably greater cost
than a call to a run-time system procedure. When a thread
blocks, the kernel, at its option, can run either another thread
from the same process (if one is ready) or a thread from a
different process. With user-level threads, the run-time system
keeps running threads from its own process until the kernel
takes the CPU away from it (or there are no ready threads left
to run) Due to the relatively greater cost of creating and
destroying threads in the kernel, some systems take an
environmentally correct approach and recycle their threads.
When a thread is destroyed, it is marked as not runnable, but
its kernel data structures are not otherwise affected. Later,
when a new thread must be created, an old thread is
reactivated, saving some overhead. Thread recycling is also
possible for user-level threads, but since the thread
management overhead is much smaller, there is less incentive
to do this. Kernel threads do not require any new, nonblocking
system calls. In addition, if one thread in a process causes a
page fault, the kernel can easily check to see if the process has
any other runnable threads, and if so, run one of them while
waiting for the required page to be brought in from the disk.
Their main disadvantage is that the cost of a system call is
substantial, so if thread operations (creation, termination, etc.)
are common, much more overhead will be incurred. While
kernel threads solve some problems, they do not solve all
problems. For example, what happens when a multithreaded
process forks? Does the new process have as many threads as
the old one did, or does it have just one? In many cases, the
best choice depends on what the process is planning to do
next. If it is going to call exec to start a new program,

probably one thread is the correct choice, but if it continues to
execute, reproducing all the threads is probably the right thing
to do. Another issue is signals. Remember that signals are sent
to processes, not to threads, at least in the classical model.
When a signal comes in, which thread should handle it?
Possibly threads could register their interest in certain signals,
so when a signal came in it would be given to the thread that
said it wants it. But what happens if two or more threads
register for the same signal.

IV. CONCLUSION

This paper gives brief introduction about various

terms used in thread.These terms are useful to get the detail of
thread .Threads are minute processes that are working in
coordination with each other involved in any process.

REFERENCES

[1] G. O. Young, ―Synthetic structure of industrial

plastics (Book style with paper title and editor),‖ in
Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York:
McGraw-Hill, 1964, pp. 15–64.

[2] W.-K. Chen, Linear Networks and Systems (Book style).
Belmont, CA: Wadsworth, 1993, pp. 123–135.

[3] H. Poor, An Introduction to Signal Detection and
Estimation. New York: Springer-Verlag, 1985, ch. 4.

[4] B. Smith, ―An approach to graphs of linear forms
(Unpublished work style),‖ unpublished.

[5] E. H. Miller, ―A note on reflector arrays (Periodical
style—Accepted for publication),‖ IEEE Trans. Antennas
Propagat., to be published.

[6] J. Wang, ―Fundamentals of erbium-doped fiber
amplifiers arrays (Periodical style—Submitted for
publication),‖ IEEE J. Quantum Electron., submitted for
publication.

