
IJSART - Volume 4 Issue 2 – FEBRUARY 2018                                                                              ISSN [ONLINE]: 2395-1052 
 

Page | 1356                                                                                                                                                                   www.ijsart.com 
 

The Classical Thread Model 
 

Bindu Singh 
Department of Computer Engineering 

Vadodara Institute of Engineering 
 

Abstract-One way of looking at a process is that it is a way to 
group related resources together. A process has an address 
space containing program text and data, as well as other 
resources. This resource may include open files, child 
processes, pending alarms, signal handlers, accounting 
information, and more. By putting them together in the form of 
a process, they can be managed more easily. The other 
concept a process has is a thread of execution, usually 
shortened to just thread. 
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I. INTRODUCTION 
 
A thread is the smallest unit of processing that can be 

performed in an OS. In most modern operating systems, a 
thread exists within a process - that is, a single process may 
contain multiple threads. The thread has a program counter 
that keeps track of which instruction to execute next. It has 
registers, which hold its current working variables. It has a 
stack, which contains the execution history, with one frame for 
each procedure called but not yet returned from. Although a 
thread must execute in some process, the thread and its 
process are different concepts and can be treated separately. 
Processes are used to group resources together; threads are the 
entities scheduled for execution on the CPU. What threads add 
to the process model is to allow multiple executions to take 
place in the same process environment, to a large degree   
independent of one another. Having multiple threads running 
in parallel in one process is analogous to having multiple 
processes running in parallel in one computer. In the former 
case, the threads share an address space and other resources. 
In the latter case, processes share physical memory, disks, 
printers, and other resources. Because threads have some of 
the properties of processes, they are sometimes called 
lightweight processes. The term multithreading is also used to 
describe the situation of allowing multiple threads in the same 
process.some CPUs have direct hardware support for 
multithreading and allow thread switches to happen on a 
nanosecond time scale. When a multithreaded process runs on 
a single-CPU system, the threads take turns running. By 
switching back and forth among multiple processes, the 
system gives the illusion of separate sequential processes 
running in parallel. Multithreading works the same way. The 
CPU switches rapidly back and forth among the threads, 

providing the illusion that the threads are running in parallel, 
albeit on a slower CPU than the real one. With three compute-
bound threads in a process, the threads would appear to be 
running in parallel, each one on a CPU with one-third the 
speed of the real CPU. 

 
Different threads in a process are not as independent 

as different processes. All threads have exactly the same 
address space, which means that they also share the same 
global variables. Since every thread can access every memory 
address within the process' address space, one thread can read, 
write, or even wipe out another thread's stack. There is no 
protection between threads because (1) it is impossible, and 
(2) it should not be necessary. Unlike different  processes, 
which may be from different users and which may be hostile 
to one another, a process is always owned by a single user,   
who has presumably created multiple threads so that they can 
cooperate, not fight. In addition to sharing an address space, 
all the threads can share the same set of open flies, child 
processes, alarms, and signals, an so on. Per process items Per 
thread items 

1) Address space  
2) Global variables  
3) Open files 
4) Child processes  
5) Pending alarms 
6) Signals and signal handlers 
7) Accounting information 
Per Thread items 
8) Program counter 
9) Registers 
10) Stack 
11) State 
 
The items in the first column are process properties, 

not thread properties. For example, if one thread opens a file, 
that file is visible to the other threads in the process and they 
can read and write it. This is logical, since the process is the 
unit of resource management, not the thread. If each thread 
had its own address space, open files, pending alarms, and so 
on, it would be a separate process. What we are trying to 
achieve with the thread concept is the ability for multiple 
threads of execution to share a set of resources so that they can 
work together closely to perform some task. Like a traditional 
process (i.e., a process with only one thread), a thread can be 
in any one of several states: running, blocked, ready, or 
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terminated. A running thread currently has the CPU and is 
active. A blocked thread is waiting for some event to unblock 
it. For example, when a thread performs a system call to read 
from the keyboard, it is blocked until input is typed. A thread 
can block waiting for some external event to happen or for 
some other thread to unblock it. A ready thread is scheduled to 
run and will as soon as its turn comes up. The transitions 
between thread states are the same as the transitions between 
process states.It is important to realize that each thread has its 
own stack, Each thread's stack contains one frame for each 
procedure called but not yet returned from. This frame 
contains the procedure's local variables and the return address 
to use when the procedure call has finished. For example, if 
procedure X calls procedure Y and Y calls procedure Z, then 
while Z is executing, the frames for X, Y, and Z will all be on 
the stack. Each thread will generally call different procedures 
and a thus have a different execution history. This is why each 
thread needs its own stack. 

 
When multithreading is present, processes normally 

start with a single thread present. This thread has the ability to 
create new threads by calling a library procedure, for example, 
thread ^create. A parameter to thread^create typically 
specifies the name of a procedure for the new thread to run. It 
is not necessary (or even possible) to specify anything about 
the new thread's address space, since it automatically runs in 
the address space of the creating thread. Sometimes threads 
are hierarchical, with a parent-child relationship, but often no 
such relationship exists, with all threads being equal. With or 
without a hierarchical relationship, the creating thread is 
usually returned a thread identifier that names the new 
thread.When a thread has finished its work, it can exit by 
calling a library procedure, say, thread-exit. It then vanishes 
and is no longer schedulable. In some thread systems, one 
thread can wait for a (specific) thread to exit by calling a 
procedure, for example, thread-join. This procedure blocks the 
calling thread until a (specific) thread has exited. In this 
regard, thread creation and termination is very much like 
process creation and termination, with approximately the same 
options as well. Another common thread call is thread-yield, 
which allows a thread to voluntarily give up the CPU to let 
another thread run. Such a call is important because there is no 
clock interrupt to actually enforce multiprogramming as there 
is with processes. Thus it is important for threads to be polite 
and voluntarily surrender the CPU from time to time to give 
other threads a chance to run. Other calls allow one thread to 
wait for another thread to finish some work, for a thread to 
announce that it has finished some work, and so on.While 
threads are often useful, they also introduce a number of 
complications into the programming model. To start with, 
consider the effects of the UNDC fork system call. If the 
parent process has multiple threads, should the child also have 

them? If not, the process may not function properly, since all 
of them may be essential.However, if the child process gets as 
many threads as the parent, what happens if a thread in the 
parent was blocked on a read call, say, from the keyboard? 
Are two threads now blocked on the keyboard, one in the 
parent and one in the child? When a line is typed, do both 
threads get a copy of it? Only the parent? Only the child? The 
same problem exists with open network connections. Another 
class of problems is related to the fact that threads share many 
data structures. What happens if one thread closes a file while 
another one is still reading from it? Suppose that one thread 
notices that there is too little memory and starts allocating 
more memory. Partway through, a thread switch occurs, and 
the new thread also notices that there is too little memory and 
also starts allocating more memory. Memory will probably be 
allocated twice. These problems can be solved with some 
effort, but careful thought and design are needed to make 
multithreaded programs work correctly. 

 
II. IMPLEMENTING THEAD IN USER SPACE 

 
There are two main ways to implement a threads 

package: in user space and in the kernel. The choice is 
moderately controversial, and a hybrid implementation is also 
possible. We will now describe these methods, along with 
their advantages and disadvantages. The first method is to put 
the threads package entirely in user space. The kernel knows 
nothing about them. As far as the kernel is concerned, it is 
managing ordinary, single-threaded processes. The first, and 
most obvious, advantage is that a user-level threads package 
can be implemented on an operating system that does not 
Support threads. All operating systems used to fall into this 
category, and even now some still do. With this approach, 
threads are implemented by a library.All of these 
implementations have the same general structure.The threads 
run on top of a run-time system, which is a collection of 
procedures that manage threads. We have seen four of these 
already:pthread_create, pthread^exit, pthread_join, and 
pthread^yield,(a) A ttser-levei threads package, (b) A threads 
package managed by the kernel.When threads are managed in 
user space, each process needs its own private thread table to 
keep track of the threads in that process. This table is 
analogous to the kernel's process table, except that it keeps 
track only of the per-thread properties,such as each thread's 
program counter, stack pointer, registers, state, and so forth. 
The thread table is managed by the run-time system. When a 
thread is moved to ready state or blocked state, the 
information needed to restart it is stored in the thread table, 
exactly the same way as the kernel stores information about 
processes in the process table. When a thread does something 
that may cause it to become blocked locally,for example, 
waiting for another thread in its process to complete some 
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work, it calls a run-time system procedure. This procedure 
checks to see if the thread must be put into blocked state. If so, 
it stores the thread's registers (i.e., its own) in the thread table, 
looks in the table for a ready thread to run, and reloads the 
machine registers with the new thread's saved values. As soon 
as the stack pointer and program counter have been switched, 
the new thread comes to life again automatically. If the 
machine has an instruction to store all the registers and 
another one to load them all, the entire thread switch can be 
done in just a handful of instructions. Doing thread switching 
like this is at least an order of magnitude—maybe ore-—faster 
than trapping to the kernel and is a strong argument in favor of 
user-level threads packages. However, there is one key 
difference with processes. When a thread is finished running 
for the moment, for example, when it calls thread-.yield, the 
code of thread_yield can save the thread's information in the 
thread table itself. Furthermore, it can then call the thread 
scheduler to pick another thread to run. The procedure that 
saves the thread's state and the scheduler are just local 
procedures, so invoking them is much more efficient than 
making a kernel call. Among other issues, no trap is needed, 
no context switch is needed, the memory cache need not be 
flushed, and so on. This makes thread scheduling very fast. 

 
User-level threads also have other advantages. They 

allow each process to have its own customized scheduling 
algorithm. For some applications, for example, those with a 
garbage collector thread, not having to worry about a thread 
being stopped at an inconvenient moment is a plus. They also 
scale better, since kernel threads invariably require some table 
space and stack, space in the kernel,which can be a problem if 
there are a very large number of threads. 

 
Despite their better performance, user-level threads 

packages have some major problems. First among these is the 
problem of how blocking system calls are implemented. 
Suppose that a thread reads from the keyboard before any keys 
have been hit. Letting the thread actually make the system call 
is unacceptable, since this will stop all the threads. One of the 
main goals of having threads in thefirst place was to allow 
each one to use blocking calls, but to prevent one blocked 
thread from affecting the others. With blocking system calls, it 
is hard to see how this goal can be achieved readily. 

 
The system calls could all be changed to be 

nonblocking (e.g., a read on the keyboard would just return 0 
bytes if no characters were already buffered), but requiring 
changes to the operating system is unattractive. Besides, one 
of the arguments for user-level threads was precisely that they 
could run with existing operating systems. In addition, 
changing the semantics of read will require changes tomany 
user programs.Another alternative is possible in the event that 

it is possible to tell in advance if a call will block. In some 
versions of UNIX, a system call, select, exists, which allows 
the caller to tell whether a prospective read will block. When 
this call is present, the library procedure read can be replaced 
with a new one that first doesa select call and then only does 
the read call if it is safe (i.e., will not block). If the read call 
will block, the call is not made. Instead, another thread is run. 
The next time the run-dme system gets control, it can check 
again to see if the read is now safe. This approach requires 
rewriting parts of the system call library, is inefficientand 
inelegant, but there is little choice. The code placed around the 
system call to do the checking is called a jacket or wrapper. 

 
Somewhat analogous to the problem of blocking 

system calls is the problem of page faults.. It is sufficient to 
say that computers can be set up in such a way that not all of 
the program is in main memory at once. If the program calls or 
jumps to an instruction that is not in memory, a page fault 
occurs and the operating system will go and get the missing 
instruction (and its neighbors) from disk. This is called a page 
fault. The process is blocked while the necessary instruction is 
being located and read in. If a thread causes a page fault, the 
kernel, not even knowing about the existence of threads, 
naturally blocks the entire process until the disk I/O is 
complete, even though other threads might be runnable. 
Another problem with user-level thread packages is that if a 
thread starts running,no other thread in that process will ever 
run unless the first thread voluntarilygives up the CPU. Within 
a single process, there are no clock interrupts,making it 
impossible to schedule processes round-robin fashion (taking 
turns). Unless a thread enters the run-time system of its own 
free will, the scheduler will never get a chance. One possible 
solution to the problem of threads running forever is to have 
therun-time system request a clock signal (interrupt) once a 
second to give it control,but this, too, is crude and messy to 
program. Periodic clock interrupts at a higher frequency are 
not always possible, and even if they are, the total overhead 
may be substantial. Furthermore, a thread might also need a 
clock interrupt, interfering with the run-time system's use of 
the clock.Another, and really the most  evastating, argument 
against user-level threads is that programmers generally want 
threads precisely in applications where the threads block often, 
as, for example, in a multithreaded Web server. These threads 
are constantly making system calls. Once a trap has occurred 
to the kernel to carry out the system call, it is hardly any more 
work for the kernel to switch threads if the old one has 
blocked, and having the kernel do this eliminates the need for 
constantly making select system calls that check to see if read 
system calls are safe. For applications that are essentially 
entirely CPU bound and rarely block, what is the point of 
having threads at all? No one would seriously propose 
computing the first n prime numbers or playing chess using 
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threads because there is nothing to be gained by doing it that 
way. 
 

III. IMPLEMENTING THEAD IN KERNEL SPACE 
 
Now let us consider having the kernel know about 

and manage the threads. No run-time system is needed in 
each, as shown in Fig. 2-16(b). Also, there is no thread table in 
each process. Instead, the kernel has a thread table that keeps 
track of all the threads in the system. When a thread wants to 
create a new thread or destroy an existing thread, it makes a 
kernel call, which then does the creation or destruction by 
updating the kernel thread table. The kernel's thread table 
holds each thread's registers, state, and other information. 

 
The information is the same as with user-level 

threads, but now kept in the kernel instead of in user space 
(inside the run-time system). This information is a subset of 
the information that traditional kernels maintain about their 
single threaded processes, that is, the process state. In 
addition, the kernel also maintains the traditional process table 
to keep track of processes. Ail calls that might block a thread 
are implemented as system calls, at considerably greater cost 
than a call to a run-time system procedure. When a thread 
blocks, the kernel, at its option, can run either another thread 
from the same process (if one is ready) or a thread from a 
different process. With user-level threads, the run-time system 
keeps running threads from its own process until the kernel 
takes the CPU away from it (or there are no ready threads left 
to run) Due to the relatively greater cost of creating and 
destroying threads in the kernel, some systems take an 
environmentally correct approach and recycle their threads. 
When a thread is destroyed, it is marked as not runnable, but 
its kernel data structures are not otherwise affected. Later, 
when a new thread must be created, an old thread is 
reactivated, saving some overhead. Thread recycling is also 
possible for user-level threads, but since the thread 
management overhead is much smaller, there is less incentive 
to do this. Kernel threads do not require any new, nonblocking 
system calls. In addition, if one thread in a process causes a 
page fault, the kernel can easily check to see if the process has 
any other runnable threads, and if so, run one of them while 
waiting for the required page to be brought in from the disk. 
Their main disadvantage is that the cost of a system call is 
substantial, so if thread operations (creation, termination, etc.) 
are common, much more overhead will be incurred. While 
kernel threads solve some problems, they do not solve all 
problems. For example, what happens when a multithreaded 
process forks? Does the new process have as many threads as 
the old one did, or does it have just one? In many cases, the 
best choice depends on what the process is planning to do 
next. If it is going to call exec to start a new program, 

probably one thread is the correct choice, but if it continues to 
execute, reproducing all the threads is probably the right thing 
to do. Another issue is signals. Remember that signals are sent 
to processes, not to threads, at least in the classical model. 
When a signal comes in, which thread should handle it? 
Possibly threads could register their interest in certain signals, 
so when a signal came in it would be given to the thread that 
said it wants it. But what happens if two or more threads 
register for the same signal.  

 
IV. CONCLUSION 

 
This paper gives brief introduction about various 

terms used in thread.These terms are useful to get the detail of 
thread .Threads are minute processes that are working in 
coordination with each other  involved in any process. 
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