
IJSART - Volume 4 Issue 2 – FEBRUARY 2018                                                                              ISSN [ONLINE]: 2395-1052 
 

Page | 1341                                                                                                                                                                   www.ijsart.com 
 

Deadlock Resolution Techniques: An Overview 

 
Bindu Singh 

Dept of Computer Engineering 
Vadodara Institute of Engineering 

 
Abstract- A deadlock occurs when there is a set of processes 
waiting for resource held by other processes in the same set. 
The processes in deadlock wait indefinitely for the resources 
and never terminate their executions and the resources they 
hold are not available to any other process. The occurrence of 
deadlocks should be controlled effectively by their detection 
and resolution, but may sometimes lead to a serious system 
failure. After implying a detection algorithm the deadlock is 
resolved by a deadlock resolution algorithm whose primary 
step is to either select the victim then to abort the victim. This 
step resolves deadlock easily. This paper describes deadlock 
detection using wait for graph and some deadlock resolution 
algorithms which resolves the deadlock by selecting victims 
using different criteria. 
 
Keywords- Deadlock, WFG, Processes, Resources, Release 
set,Transactions. 
 

I. INTRODUCTION 
 
 set of process is in a deadlock state if each process in 
the set is waiting for an event that can be caused by  only 
another process in the set[1][2][3][15]. In other words, each 
member of the set of deadlock processes is waiting for a 
resource that can be released only by a deadlock process. 
None of the processes can run, none of them can release any 
resources, andnone of them can be awakened. 
 

A deadlock occurs when there is a set of processes 
waiting for resource held by other processes in the same set. 
The processes in deadlock wait indefinitely for the resources 
and never terminate their executions and the resources they 
hold are not available to any other process [3]. A deadlock 
lowers the system utilization and hinders the progress of 
processes. Also the presence of deadlocks affects the 
throughput of the system. The dependency relationship among 
processes with respect to resources in a distributed system is 
often represented by a directed graph, known as the Wait for 
Graph (WFG). In the WFG each node represents a process and 
an arc is originated from a process waiting for a resource to a 
process holding the resource. 
 

In a distributed system, a deadlock occurs when there 
is a set of processes and each process in the set waits 
indefinitely for the resources from each other[15]. Therefore it 

is quite essential that a fast deadlock detection and resolution 
mechanism is applied otherwise the processes involved in the 
deadlock will wait indefinitely and will lower the system 
utilization and hinders the progress of processes. 
 

A deadlock needs to be resolved timely because if not 
resolved, the deadlock size will increase with the deadlock  
persistence time as more processes will be trapped in the 
deadlock where a deadlock size is defined as the total number 
of blocked processes(BP) involved in deadlock, where BP is 
the process that waits indefinitely on other processes. Because 
of deadlock none of the any processes involved can make any 
progress without obtaining the resources for which they are 
waiting. 
 

 
Figure1: A few processes in deadlock 

 

 
Figure 2: Increasing deadlock size as more processes trapped 

in deadlock 
 

Because distributed systems are vulnerable to 
deadlocks, the problems of deadlock detection and resolution 
have long been considered important problem in such systems. 
Several models have been proposed for the processes 



IJSART - Volume 4 Issue 2 – FEBRUARY 2018                                                                              ISSN [ONLINE]: 2395-1052 
 

Page | 1342                                                                                                                                                                   www.ijsart.com 
 

operating in distributed system. As per the AND model, a 
process sits idle until all of the requested resources are 
acquired. In the OR model, a process resumes execution if any 
of the requested resources is granted. In the P-out-of-Q model 
also known as the generalized model, a process makes Q 
resource requests and remains blocked until it obtains any P 
resources. A generalized model is found in many domains 
such as resource allocation in distributed operating systems 
and communicating processes. 
 

A deadlock is defined differently depending on the 
underlying model. Since a process becomes blocked if any of 
its resource requests is not granted, a deadlock in the AND 
model corresponds to a cycle in the WFG. In the OR model, 
the presence of a knot in the graph implies a deadlock. In the 
 generalized model a deadlock involves a more complex 
topology in the WFG. A cycle is a necessary but not sufficient 
condition for deadlock in this model. 
 

II. WAIT FOR GRAPH 
 
Deadlock detection is the process of actually 

determining that a deadlock exists and identifying the 
processes and resources involved in the deadlock. The basic 
idea is to check allocation against resource availability for all 
possible allocation sequences to determine if the system is in 
deadlocked state. Of course, the deadlock detection algorithm 
is only half of this strategy. Once a deadlock is detected, there 
needs to be a way to recover several alternatives exists: 
 
 Temporarily prevent resources from deadlocked 

processes. 
 Back off a process to some check point allowing 

preemption of a needed resource and restarting the 
process at the checkpoint later. 

 Successively kill processes until the system is deadlock 
free. These methods are expensive in the sense that each 
iteration calls the detection algorithm until the system 
proves to be deadlock free. The complexity of algorithm 
is O(N2) where N is the number of proceeds. Another 
potential problem is starvation; same process killed 
repeatedly. 

 
The simplest and easiest way to detect deadlock is 

wait for graph. A wait-for graph in computer science is a 
directed graph used for deadlock detection in operating 
systems and relational database systems. In computer science, 
a system that allows concurrent operation of multiple 
processes and locking of resources and which does not provide 
mechanisms to avoid or prevent deadlock must support a 
mechanism to detect deadlocks and an algorithm for 
recovering from them. One such deadlock detection  algorithm 

makes use of a wait-for graph to track which other processes a 
process is currently blocking on. A wait for graph is a graph 
that consists of set of edges (E) and vertices (V). Processes are 
represented by vertices. In a wait-for graph, an edge from 
process Pi to Pj implies Pj is holding a resource that Pineeds 
and thus Pi is waiting for Pj to release its lock on that resource. 
A deadlock exists if the graph contains any cycles. The wait 
for graph scheme is applicable to a resource allocation system 
with multiple instances of each resource type. 
 

 
Figure 3: Wait for graph for deadlock detection. 

 
In figure 3, Pi , Pj and Pk represents the processes in 

deadlock.  An edge from Pi to Pj represents that Pi is waiting 
for resource x that is currently hold by Pj and so on. 

 
III. DEADLOCK RESOLUTION 

 
detection is the process of actually determining that a 

deadlock exists and identifying the processes and resources 
involved in the deadlock. The basic idea is to check allocation 
against resource availability for all possible allocation 
sequences to determine if the system is in deadlocked state. 
The deadlock detection and resolution algorithm always 
require that transactions should be aborted .For this reason 
several issues must be carefully considered. 

 
1) Aborts are more expensive than waits. 
2) Unnecessary aborts result in wasted system 

resources. 
3) Optimal concurrency requires that the number of 

aborted transactions be minimized 
 

These factors must be considered so that the 
transaction being aborted will have the least impact on system 
performance and throughput[5]. Basically the deadlocks 
present in a system are detected by a periodic initiation of an 
effective deadlock detection algorithm and then resolved by a 
deadlock resolution algorithm and it is always tried that the 
resolution algorithm used does not cause any unnecessary 
aborts / roll backs. 

 



IJSART - Volume 4 Issue 2 – FEBRUARY 2018                                                                              ISSN [ONLINE]: 2395-1052 
 

Page | 1343                                                                                                                                                                   www.ijsart.com 
 

The appropriate scheme for handling deadlocks in 
distributed systems is detection and resolution. A typical 
method to resolve deadlock is to select a proper victim. The 
victim is to abort itself for deadlock resolution. 
 

The primary issue of deadlock resolution is to 
selectively abort a subset of processes involved in the 
deadlock so as to minimize the overall abortion cost. This is 
often referred to as the minimal abort set problem. The victim 
(aborted) processes need to cancel all pending requests and 
releases all acquired resources so that false deadlocks 
detection and resolution could be avoided. 
 

Usually, the deadlocks are resolved by aborting 
deadlocked processes. Therefore, two facts have to be 
considered when analyzing the cost associated to deadlock 
resolution algorithms: the cost of detecting a deadlock and the 
time that the aborted processes have wasted. Deadlock 
situations when detected should be resolved as soon as 
possible but ensuring a minimum number of abortions and 
only those processes should be aborted which has been 
selected as victim. Thus, algorithms (safe- resolution 
algorithms) verifying the safety correctness criterion of 
resolving only true deadlocks should be designed 
 

In fact the deadlock detection using wait for graph is 
safe detection algorithm and it is considered correct because 
they detect in finite time, all deadlock of the system and do not 
detect false deadlock[5]. Generally this algorithm doesn’t take 
into account how a detected deadlock is resolved. It is only 
assumed that it is properly resolved. The algorithms do not 
explicitly model the resolution of detected deadlocks. Neither 
the system nor the code of the algorithm includes the effect of 
resolutions. Most of deadlock resolution algorithms abort or 
terminate the victim process. The only ways in which they 
differ is how theyselect the victim. Most of the strategies of 
victim selection have been reviewed in the literature, the only 
drawback of such strategies is that it leads to abort of the 
victim, or they restart the victim which leads to wastage of 
resources, wastage of the work done by the aborted process, 
low throughput of system and it makes execution time of 
processes unpredictable. May be sometimes the aborted 
process have to be restarted in order to complete their work. 
Restarting a transaction is more expensive than waiting; 
therefore aborting a transaction needs to be avoided. In this 
paper algorithms for deadlock resolution have been discussed 
that uses different approaches for selecting a victim. 
 

IV. RESOLUTIONALGORITHMS 
 

Here we will discuss two algorithms for deadlock 
resolution which uses different criterion for victim selection 

A. Resolution by using Timestamp 
 

One of the most commonly used technique for 
deadlock resolution is timestamp based approach for selecting 
the victim. In this approach, a timestamp is allocated to each 
process as soon as it enters the system. The timestamp of the 
younger process is greater than the timestamp of older 
process. According to this approach, the victim is selected on 
this timestamps, the process with the higher timestamp is 
aborted, that is the youngest process is selected as the victim 
and is aborted in order to break the deadlock cycle. The goal 
behind choosing the youngest process as victim is that the 
youngest process would have used less resources and less 
CPU time as compared to older process. One problem with 
this technique is that it can cause starvation problem because 
every time a younger process is aborted which can starve the 
younger process from completion. 
 
B. Resolution by using Burst time 

 
Another approach for selecting a victim to break 

deadlock cycle is considering the burst time of each process. 
Burst time means the CPU time needed by any process for its 
execution. This can also be considered as one parameter for 
selecting a victim. The process with maximum burst time can 
be aborted in order to break cycle. The problem with this 
technique is that it can abort the process with high burst time 
which has been in the system for very long i.e. an older 
process with high burst time can be aborted which is 
inefficient approach. 
 
C. Resolution by Degree 

 
In a wait-for-graph for any system, the degree of any 

vertex denoting a process determines how many resources a 
process is holding and how many resources a process is 
requesting. There are two types of degrees in a directed WFG: 

 
1. In-degree: In-degree means the number of edges 

coming to any node of WFG and it denotes number 
of request for resources held by a process. 

2. Out-degree: Out-degree means the number of edges 
going out of a node in WFG denoting number of 
request for resources done by the node. 

  
In resolution by degree, degree of each process is 

calculated and process having highest degree is aborted. 
Degree of any process can be calculated by taking sum of in-
degree and out-degree. 
 
D. Resolution by combination of Timestamp and Burst 
time 



IJSART - Volume 4 Issue 2 – FEBRUARY 2018                                                                              ISSN [ONLINE]: 2395-1052 
 

Page | 1344                                                                                                                                                                   www.ijsart.com 
 

Another approach for selecting victim for deadlock is 
using both timestamp and burst time in combination. Select a 
process as victim which is younger and has high burst time for 
resolving deadlock. The advantage with this approach is 
younger process which will take maximum execution time 
will be aborted to allow processes with less execution time to 
complete first. 

 
E. Resolution by combination of Burst time and Degree 

 
Another combination for resolving deadlock is 

considering Burst time and Degree both for selecting a victim. 
Process with high burst time and high degree should be 
aborted that means a process which is having more resource 
request and will take high time to complete will be aborted. 
Although, there is still the problem of older process to be 
aborted but the advantage with this approach is aborting 
process with high burst time and high degree will release 
maximum resources needed for completion of other process 
with less execution time needed. 
 
F. Resolution by combination of Degree and Timestamp 

 
Taking degree and timestamp both in combination for 

resolving deadlock can prove to be another technique for 
deadlock resolution. A younger transaction with high degree 
will be aborted.The problem of starvation in considering only 
timestamp will be avoided in this case as degree of the node is 
also considered along with timestamp in order to select victim 
for resolving deadlock in the system. 
 
 
G. Time Efficient Deadlock Resolution 
Algorithm 

 
Deadlock is a major concern in a distributed system, 

since resources are shared among processes at sites distributed 
across a network. One of the most accepted methods of 
deadlock handling is detection and resolution. Both deadlock 
prevention and avoidance strategies are conservative solutions, 
whereas deadlock detection is optimistic[15]. In deadlock 
detection and resolution, deadlocks are allowed to 
occur[3][15]. Periodically, or on certain conditions, a 
detection algorithm is executed; if any deadlock state is found, 
resolution is undertaken. To resolve a detected deadlock, the 
system must abort one or more processes involved in the 
deadlock and release the resources allocated to the aborted 
processes. Here deadlock resolution with reusable resources is 
considered. In resolving a deadlock state, it is desirable to 
minimize the number of processes to abort to make the system 
deadlock-free. Concept of release set is introduced here. A 
release set is a set of one or more processes that can be 

reduced if a process is aborted and its resources are 
released[15]. The release set is represented by R(pi). For 
example release set of process P7 and P5 in figure 4 is R(P7)= 
{P8} and R(P5)= {P6 ,P7, P8}. 
 

 
Figure 4: Deadlock cycle 

 
Here two criterions for victim selection are 

considered. According to criterion 1 abort P such that | R(p)| = 
max{| R(pi)|, 1<= i<=Np} where Np is the number of 
processes that are reduced. Using Criterion 1 in the example of 
figure 4, P6or P6 is chosen. 
 

The second criterion for deadlock resolution that is 
present concerns counting the number of cycles that involve 
resources hold by a process i.e resources hold by a process is 
involved in how many deadlock cycles. A deadlock vector d is 
defined such that di = c represents that vertex i is involved in c 
different cycles. Now according to criterion 2 for each process 
in the RAG, we sum the numbers of cycles to which the 
resources held by the process are bound. A good victim 
candidate is then a process which maximizes deadlock vector. 
In figure 4, p6 holds two resources, each of which are 
involved in one cycle. All other processes in figure 4 hold one 
resource, each of which are involved in one cycle. Thus, P6 
with d6 = 2 would unambiguously be chosen by Criterion 2. 
 

 
Figure 5: Deadlock Cycle 

 
In figure 5, P8holds one resource which is involved in 

two cycles, P9 holds two resources, each of which are involved 
in one cycle, and P7 holds two resources, one which is 
involved in one cycle and one which is involved in two cycles. 
In other words, d7 = 2 and P7 = 3; thus, P7 would be selected 
by Criterion 2. In both our example RAGS, only a single 
process is aborted by Criterion 2. 
 
h. VGS Algorithm for Deadlock Resolution 



IJSART - Volume 4 Issue 2 – FEBRUARY 2018                                                                              ISSN [ONLINE]: 2395-1052 
 

Page | 1345                                                                                                                                                                   www.ijsart.com 
 

This section describes the solution to deadlocks in 
distributed systems i.e. VGS Algorithm an efficient deadlock 
resolution algorithm. In a distributed system if deadlock is 
detected at a site, then the site coordinator can apply VGS 
algorithm to resolve the deadlock[15]. This algorithm is based 
on the mutual cooperation of the transactions and is described 
as follows: 
 

 
Figure 6: A deadlock cycle 

 
Ti REQUESTS Ri+1  
Ti+1 REQUESTS Ri+2 
. 
. 
Tn-1 REQUESTS Rn  
TN REQUESTS Ri 
 

 
Figure 7: Transaction Ti+1, Tn suspended and release 

resources 

 
Figure 8: Ti, Tn-1 executing successfully. 

Suppose Ti, Ti+1, Ti+2………Tn are the transactions 
involved in a deadlock. They form a deadlock cycle such that 
Ti holds resource Ri, Ti+1 holds resource Ri+1, Ti+2 holds 
resource Ri+2…………..Tn holds Rn and Ti is requesting for 
resource Ri+1 , Ti+1 is requesting for resource Ri+2 ……,Tn 
is  requesting for Ri. Since each transaction is holding a 
resource and waiting indefinitely for other resource held by 
the othertransaction, they form a deadlock cycle and none of 
them is being able to proceed ahead. 

 
In the proposed deadlock resolution algorithm 

transaction, coordinator observes the scenario and it suspends 
Ti+1 for some random t seconds and it releases resource Ri+1 
which is acquired by the requesting transaction Ti. It has been 
allotted the resource for the t seconds which is the time for 
which Ti+1 has been suspended. Ti is supposed to utilize Ri+1 
and execute successfully in t seconds. 
 

If Ti successfully executes before t seconds it sends a 
message to coordinator that it has successfully executed and to 
resume transaction Ti+1 and gives its resource Ri+1 back to 
Ti+1. If Ti is not able to complete its execution within t 
second coordinator preempts resource Ri+1 from Ti and 
provides it back to Ti+1. The value Ri+1 is the value partially 
updated by Ti. Now Ti+1 will check whether Ti is still 
requesting for Ri+1. If it is requesting ,Ti+1 informs 
coordinator and is suspended again for some random t seconds 
and resource Ri+1 is again allotted to Ti, Ti acquires it and 
resumes its execution and when completed before t seconds Ti 
informs coordinator to resume Ti+1  and gives back resource 
Ri+1 to Ti+1. 

 
Similarly coordinator blocks Tn for some random t 

seconds and it releases resource Rn which is acquired by the 
requesting transaction Tn-1. It has been allotted the resource 
for the t seconds which is the time for which Tn has been 
suspended. Tn- 1 is supposed to utilize Rn and execute 
successfully in t seconds. If Tn-1 successfully executes before 
t seconds it sends a message to coordinator that it has 
successfully executed and to resume transaction Tn and gives 
its resource Rn back to Tn. If Tn-1 is not able to complete its 
execution within t seconds coordinator preempts resource Rn 
from Tn-1 and provides it back to Tn. The value of Rn is the 
value partially updated by Tn-1. Now Tn checks whether Tn-1 
is still requesting for Rn. If it is requesting Tn informs 
coordinator and is suspended again for some random t seconds 
and resource Rn is again allotted to Tn-1, Tn-1 acquires it and 
resumes its execution and when completed before t seconds 
Tn-1 informs coordinator to resume Tn and gives back 
resource Rn to Tn. 
 

V. CONCLUSION 



IJSART - Volume 4 Issue 2 – FEBRUARY 2018                                                                              ISSN [ONLINE]: 2395-1052 
 

Page | 1346                                                                                                                                                                   www.ijsart.com 
 

Deadlock is a major problem in operating systems. 
However there are several techniques to dead with deadlock 
such as deadlock avoidance, prevention etc. but still deadlock 
can occur. The only way to deal with deadlock when it occurs 
is to detect and resolve it as soon as possible. Several 
techniques to resolve deadlock are mentioned above. One can 
use any of the above technique to resolve deadlock and 
deadlock will be resolved. 

 
REFERENCES 

 
[1] Yan Cai, k.Zhai, Shngru wu, W.k. Chan,” Synchronizing 

Threads Globally to Detect Real Deadlocks For 
Multithreaded Programs”, 
ACM 2013 

[2] Jeremy D.Buhler, Kunal Agrawal, Peng Li, Roger D. 
Chamberlain, “Efficient Deadlock Avoidance For 
Streaming Computation With Filtering”, 2012 ACM, 
February 2012. 

[3] Kunwar Singh Vaisla, Menka Goswami, Ajit Singh, 
“VGS Algorithm - an Efficient Deadlock Resolution 
Method”, 
International Journal of Computer Applications (0975 – 
8887), Vol.44- No. 1,April 2012. 

[4] Selvaraj Srinivasan, R. Rajaram, “A decenreralized 
deadlock detection and resolution algorithm for 
generalized model in distributed systems”, january 2011. 

[5] Selvaraj Srinivasan, R. Rajaram, “A decenreralized 
deadlock detection and resolution algorithm for 
generalized model in distributed systems”, January 2011. 

[6] Iryna Felko, TU Dortmund, “Simulation based  Deadlock 
Avoidance and Optimization in Bidirectional AGVS”, 
2011 ACM, march 2011. 

[7] Prodromos Gerakios, Nikolaso Papaspyrou, Konstantinos, 
Vekris,”Dynamic Deadlock Avoidance in System Code 
Using Statically Inferred Effects”, 2011 ACM, October 
2011. 

[8] Peng Li, kunal agrawal, JeremyBuhler, Roger D. 
Chamberlain,”Deadlock Avoidance for Streaming 
Computations with Filtering”, 2010 ACM, June 2010. 

[9] Srinivasan Selvaraj, R. Ramasamy, “An Efficient 
Detection and Resolution of Generalised Deadlocks in 
Distributed Systems”, 
International Journal of Computer Applications, vol 1- no. 
19 

[10] Hari K. Pyla, Srinidhi Varadarajan, “Avoiding Deadlock 
Avoidance”, 2010 ACM, September 2010. 

[11] Pallavi Joshi, Mayur Naik, “A randomized Dynamic 
Program Analysis Technique for Detecting Read 
Deadlocks”, 2009 ACM, June 2009. 

[12] Yibei Ling, Shigang Chen and Cho-Yu Jason Chiang, 
“On Optimal Deadlock Detection Scheduling”, IEEE 

Transactions On Computers, Vol. 55, No. 9, September 
2006. 

[13] Lee, S., “Fast, Centralized Detection and Resolution of 
Distributed Deadlocks in the Generalized Model”, IEEE 
Trans. On Software Engineering, Vol. 30, NO. 9, 561-
573, 2004 

[14] D. Manivannan and Mukesh Singhal, “An Efficient 
Distributed Algorithm for Detection of Knots and Cycles 
in a Distributed Graph”, IEEE Transactions on Parallel 
And Distributed Systems, Vol. 14, No. 10, October 2003. 

[15] Terekhov, T. Camp, “Time efficient deadlock resolution 
algorithms”, June 1998. 


