
IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 678 www.ijsart.com

Study By Detecting And Removing Web Application
Vulnerabilities With Static Analysis And Data Mining

Deepika.N1, Dr.V.Saravanan2

1 Dept of Information Technology
2Associate professor & HOD in PG dept of Information Technology

1, 2 Hindusthan college of arts and science,coimbatore,india

Abstract- Data mining, the extraction of undetected predictive
information from large databases, is a prevailing new
technology with great potential to help companies focus on the
most important information in their data warehouses. Data
mining tools expect future trends in addition behaviours,
allowing businesses to make proactive, knowledge-driven
decisions. The automated, prospective analyses offered by
data mining move beyond the analyses of past events provided
by retrospective tools typical of decision sustain systems. Data
mining tools can answer business questions that traditionally
were too time consuming to resolve. They scour databases
for hidden patterns, finding predictive information that experts
may miss because it lies outside their expectations . This
approach brings together two approaches that are apparently
orthogonal: humans coding the knowledge about
vulnerabilities (for taint analysis), joined with the seemingly
orthogonal approach of automatically obtaining that
knowledge (with machine learning, for data mining). A
major cause of this status is that many programmers do not
have adequate knowledge about secure coding, so they
leave applications with vulnerabilities This paper explores the
use of a hybrid of methods to detect vulnerabilities with less
false positives. Static analysis plays a great role in detecting
and removing these attacks, a large examine has been going
on that. Static analysis will often result in a great number of
false positives. They will negatively affect the precision of the
system. The approach was implemented in the WAP tool and
an experimental evaluation was performed with a large set of
open source PHP applications..

Keywords- Data mining, PHP source code, Software, security,
Input validation vulnerabilities, Web applications.

I. INTRODUCTION

 In two decades of existence, the Web evolved
from a platform to access hypermedia to a framework for
running complex web applications. These applications appear
in many forms, from small home-made to large-scale
commercial services such as Gmail, and Facebook.
Removing web application vulnerabilities and static analysis
approach for naturally protecting web applications while

keeping the software engineer the up and up. The approach
comprises in investigating the web application source code
looking for vulnerabilities and remedies the source code.
This last perspective is enabled by embeddings fixes that
common security coding practices, so developers can take in
these practices by observing the vulnerabilities and how they
were evacuated. A major reason behind the insecurity of these
applications is that most of the programmers have inaccurate
and improper knowledge relating to the source code, as a
reason of which the programmers leave web application with
defects and faults. PHP that are dimly typed and not formally
determined. In this manner, we supplement a type of static
examination – pollute investigation – with the utilization of
data mining to foresee the presence of false positives. We
demonstrate that the mix of the two broad approaches of
human-coded information and learning can be effective for
vulnerability detection. These web applications are easily
susceptible to the different vulnerabilities and attacks leading
to the various problems such as breaching of data integrity,
unauthorized access to the confidential data. This paper
explores an approach for automatically protecting web
applications while keeping the programmer in the loop. The
approach consists in analyzing the web application source
code searching for input validation vulnerabilities.The most
frequent and significant vulnerabilities.

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 679 www.ijsart.com

II. SYSTEM ARCHITECTURE:

Architecture including main modules, and data structures.

III. ALGORITHM

3.1 Graphical and representative Algorithms: This class
includes algorithms that represent using a graphical model.
Random Tree, and Random Forest classifiers, the graphical
model is a decision tree. They use the information gain rate
metric to decide how significant an trait is to classify an
instance in a class (a leaf of the tree). An attribute with a small
information gain has big entropy (degree of impurity of
attribute or information quantity that the attribute offers to the
obtaining the class), so it is less relevant for a class than
another with a elevated information gain.

3.2 Probabilistic Algorithms: This category includes Naïve
Bayes (NB), K-Nearest Neighbour (KNN), and Logistic
Regression (LR). They classify an instance in the class that
has the highest prospect. NB is a simple probabilistic classifier
based on Bayes theorem, based on the assumption of
conditional independence of the probability distributions of
the attributes. K-NN classifies an instance in the class of its
neighbours. LR uses regression study to classify an instance.
.
3.3 Neural Network Algorithms: This category has two
algorithms: Multi-Layer Perceptron (MLP), and Support
Vector Machine (SVM). These algorithms are inspired on the
functioning of the neurons of the human brain. MLP is an
artificial neural network classifier that maps sets of input data
(values of attributes) onto a set of appropriate outputs (our
class attributes, Yes or No). SVM is an evolution of MLP.

IV. VALIDATION VULNERABILITIES

4.1 INPUT

The main problem in web application security lies in
the offensive validation of user input, so this is the kind of
vulnerabilities we currently consider . A remote file Iinclusion
(RFI) vulnerability allows attackers to embed a remote file
containing PHP code in the vulnerable program. Local file
inclusion (LFI) differs from RFI by inserting in a script also
from the file system of the web application, not a remote file.
Input validation vulnerability is regarded as by the ability to
decide at each step of the execution whether or not the
program is in a safe state. Input validation refers to how your
application filters, scrubs, or rejects input before additional
processing. A directory traversal or path traversal (DT/PT)
attack consists in an attacker accessing unpredicted les,
possibly outside the web site directory.

V. PREDICTING FALSE POSITIVES

 The static analysis problem is known to be related to
Turing's halting problem, so undecidable for non-trivial
languages. In practice this difficulty is solved by making only
partial analysis of some language constructs, tools to be
unsound. This affirmation is finished by checking if these
experiments basis incorrect or surprising comportment or
yields. We picked to give the string a chance to be corrupted,
which may prompt duplicitous positives yet not deceiving
negatives. However, coding explicitly more knowledge in a
static analysis tool is hard, and on average has to be done for
each class of vulnerabilities follows this direction, but
considers a single class of vulnerabilities, SQLI.

VI. TAINT ANALYSIS

 Taint analysis is nothing but parsing the source
code, generating an abstract syntax tree (AST), doing taint
analysis based on the AST, and generating trees describing
candidate vulnerable control-flow paths. The taint analyzer is
a static analysis tool that operates over an AST created by a
lexer and a parser, for PHP 5 in our case (in WAP we
implemented it using ANTLR. In the beginning of the
analysis, all symbols (variables, functions) are untainted unless
they are an entry point. The corrupt analyzer is a static
investigation execute that works over an AST induced by a
lexer and a parser, for JAVA 5 for our situation. Positive
tainting mainly goes for trusted data .Trusted data can be
easily and accurately identified compare to the untrusted data
sources results in better automation.

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 680 www.ijsart.com

VII. CODE CORRECTION

WAP does code correction automatically after the
detection of the vulnerabilities is performed by the taint
analyzer and the data mining component. After detecting
vulnerabilities and checking it for false positives each real
Vulnerability is removed by correction of its source code.
This module for the type of vulnerability selects the fix that
removes the vulnerability and signalizes the places in the
source code where the fix will be inserted. This is done by
accepting user inputs as security tactful functions such as code
execution function, directory creating functions and so on.

VIII. IMPLEMENTATION

The approach can be implemented as a sequence of steps.

8.1 Ruin analysis: The job of this module is to parse the
source code. This also gives the trees which describe more
about candidate vulnerable control flow paths. If the variables
are not checked properly they May ledto development of
vulnerabilities. So the variables need to check before reaching
the sensitive sinks. Input to the module of taint analysis is a
PHP source code and the output of this module will be the
candidate vulnerabilities. The first step will be parsing of the
source code which will generate an Abstract Syntax Tree i.e.
AST. Lexer and Parser will do the job of creating AST. In
the Fig 3 shows the Abstract Syntax Tree for $b=$_GET[‘v’].
All the variables that act as entry points are marked tainted in
the beginning. A symbol table will be generated which will
have tainted variables. Taint analysis travels through this
Tainted Symbol Table. If a variable is marked as tainted then
the symbols depending on this variable are checked.the
Tainted Symbol Table for specific symbols having name, line
number, and tainted flag as its variables. In this way, all the
candidate vulnerabilities are marked which will be checked by
a false positive predictor to make sure about the real
vulnerability.

Testing: In this module testing will be performed on the
corrected code to check for more bugs. We will perform
manual testing on the source code .In manual testing. testing is
done without using automation tools. Test cases are executed
manually. Different manual testing tools are Selenium ,QTP,
Jmeter, Loadrunner.

8.1 Sorting of vulnerabilities:

 Some process of sorting involves two aspects: the
attributes that allow classifying a sample, and the classes in
which these samples are classified. We identified the attributes
by analyzing manually a set of vulnerabilities found by

WAP’s taint analyzer. We studied these vulnerabilities to
recognize if they were false positives. This involved both
reading the source code and executing attacks against each
vulnerability found to understand if it was attackable (true
positive) or not (false positive). This data set is extra discussed
in Section V-C. From this analysis we found three main sets of
attributes that led to false positives: String manipulation:
attributes that represent PHP functions or operators that
control strings. These are: substring extraction, concatenation,
addition of characters, replacement of characters, and deletion
of white spaces. Recall that a dataflow starts at an entry point,
where it is marked tainted, and ends at a sensitive sink. The
taint analyzer flags a vulnerability if the data flow is not
untainted by a sanitization function before reaching the
sensitive sink. These string manipulation functions may result
in the sanitization of a data flow, but the taint analyzer does
not have enough knowledge to change the status from tainted
to untainted, so if a vulnerability is flagged it may be a false
positive. The combinations of functions/operators that
untainted a data flow are hard to establish, so this knowledge
is not simple to retrofit into the taint analyzer.

Validation: set of attributes related to the validation of user
Inputs, often involving an if-then-else construct. We define the
following attributes: data type (calls to is_int(), is_string()), is
value set (isset()), control pattern (preg_match()), test of
belong to a white-list, test of belong to a black-list, error and
exit functions that output an error if the user inputs do not pass
a test. Similarly to what happens with string manipulations
any of these attributes can sanitize a data flow and lead to a
false positive.

IX. CONCLUSION

 The approach and the tool search for vulnerabilities
using a combination of two techniques: static source code
analysis, and data mining. It was able to find 388
vulnerabilitiesin 1.4 million lines of code. Its accuracy and
precision were approximately 5% better than PHP MinerII's,
and 45% better than Pixy's. A single tool consumes a lot of
amount and resources which is not worthy as the amount of
resources and time available is limited to an extent.

Due to which the disadvantages of one will be
overcome by another. Data mining approach for false positive
prediction is selected after considering alternative algorithms
using the metrices. The tool corrects the code by inserting
fixes, i.e., purification and approval capacities. This evaluation
suggests that the tool can detect and correct the vulnerabilities
of the classes it is programmed to handle.. All classifiers were
selected after a thorough comparison of several alternatives. It
is important to note that this combination of detection

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 681 www.ijsart.com

techniques cannot provide entirely correct results. Data mining
approach for false positive prediction is selected after
considering alternative algorithms using the metrices, which
will ensure the choice of our algorithm. Rather than a Web
application Protection Tool. This evaluation suggests that the
tool can detect and correct the vulnerabilities of the classes it
is programmed to handle.

REFRENCES

[1] Wang, B. Li, and H. Li, "Oruta: Privacy-preserving public

auditing for shared data in the cloud," IEEE Trans. Cloud
Computing, vol. 2, no. 1, pp. 43–56, 2014

[2] Wang, K. Ren, W. Lou, and J. Li, "Toward publicly
auditable secure cloud data storage services," Network,
IEEE, vol. 24, no. 4, pp. 19–24, 2010.

[3] Halfond, A. Orso, and P. Manolios, “WASP: protecting
web applications using positive tainting and syntax aware
evaluation,” IEEE Trans. Softw. Eng., vol. 34, no. 1, pp.
65–81, 2008.

[4] Shankar, K. Talwar, J. S. Foster, and D. Wagner,
“Detecting format string vulnerabilities with type
qualifiers,” in Proc. 10th USENIX Security Symp., Aug.
2001, vol. 10, pp. 16–16

[5] Felmetsger, Viktoria, Ludovico Cavedon, Christopher
Kruegel, and Giovanni Vigna. "Toward automated
detection of logic vulnerabilities in web applications." In
USENIX Security Symposium, vol. 58.

[6] Keir, Robin M., and Stephen A. Ecker. "System and
method for network vulnerability detection and
reporting." U.S. Patent 7,673,043, issued March 2, 2010.

[7] Salas, Palma, Marcelo Invert, and Eliane Martins. "A
Black-Box Approach to Detect Vulnerabilities in Web
Services Using Penetration Testing." Latin America
Transactions, IEEE (Revista IEEE America Latina) 13,
no. 3 (2015): 707-712.

[8] Q. Zheng and S. Xu, "Fair and dynamic proofs of
retrievability," in Proc. 1st ACM Conf. Data and
Application Security and Privacy (CODASPY 11), 2011,
pp. 237–248.

[9] Sommer, R., Paxson, V.: Outside the closed world: On
using machine learning for network intrusion detection.
in Proceedings of the 30th IEEE Symposium on Security
and Privacy. pp. 305 316. IEEE (2010).

[10] Shar, L.K., Tan, H.B. K.: 10 predicting common web
application vulnerabilities from input validation and
sanitization code patterns. In: Proceedings of the 27th
IEEE/ACM International Conference on Automated
13.Software Engineering. pp. 310 313 (2011) .

