
IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1326 www.ijsart.com

Defending Web Application Against Xpath Injection
Attack

Prof. Krupa Trambadiya
Assistant Professor, Dept of IT

Vadodara Institute of Engineering, Kotambi

Abstract- Nowadays XML is used as communication protocol
in web applications. The expressiveness and flexibility of XML
gives opportunities for attackers to perform injection attacks.
By using XML databases instead of relational databases the
web applications are more vulnerable to injection attacks. In
this scheme, using dynamic analysis, XPath Injection attack
detection system is developed intended to scale up the
performance with reasonable response time and high
detection coverage with low false positives. Followed by this,
Attack Dataset Generation Phase generates number of
attacks. Attack set is expected to cover number of possible
attack strings in order to be useful in XML and XPath
injection Attack Detection Schemes, Researchers and
Vulnerability Scanners for testing purpose which is again used
as the training set for decision tree learning. Here decision
tree learning is used to detect new unknown attacks using
generated attack set of known attacks.

Keywords- XPath, Injection Attack, Attack Detection, Pattern
Matching, Regular Expression, Decision Tree Learning.

I. INTRODUCTION

 There is no doubt that web application security is
current and very news - worthy subject [1]. People throughout
the globe prefer to do their business, banking, shopping etc.
online. And to perform some analysis on the data, they access
a variety of information and transactions through Web sites
and Web applications. Web application is developed in a
programming language. It is a software application that runs in
a web browser. The web applications use a backend database
which stores data. In a service-based environment, providers
offer a set of services that relies on frequent access to backend
database for service consumer to discover and exploit [2].
Most of the Web applications use relational databases to store
and retrieve information. Instead of relational database web
applications are increasingly depending on XML database. It
understands different programming languages and is
supported by standard protocols such as Simple Object Access
Protocol (SOAP) for message exchange, Web Services
Description Language (WSDL) for interface description, and
Universal Description, Discovery, and Integration (UDDI) [2].
With the growing acceptance of XML technologies for

documents, it is reasonable that security should be integrated
with XML solutions [3]. The flexibility and expressiveness of
XML makes it prone to injection attacks. Unlike SQL
database, no access control mechanism is integrated there with
XML database. This is also one of the reasons for the XML to
be vulnerable against attacks and security threats. The main
focus of the work is on XML based vulnerability detection.
There are mainly two approaches of vulnerability detection,
static and dynamic. Static analysis is done by developers by
analyzing the source code which is not realistic but the
systematic way to test the system like white box testing. While
dynamic analysis does not need to have source code handed. It
gives more realistic view like black box testing. In this
scheme, the dynamic approach is used for injection attack
detection. Here pattern matching approach is used using
regular expressions of attack string. The performance is
expected to have high detection rate with low false positives
and reasonable response time.

If malicious value are inserted via application form
(for example, registration form), it can harm database in many
ways like, executing malicious scripts in the application,
making database invalid by exploiting XML meta-characters,
escalation of privileges by overwriting the XML tags,
unauthorized access of data and many more. The major focus
is on developing attack database for detecting number of XML
based Injection attacks. Using the attack database it can be
determined whether the XML query entered by the user of the
web application is valid query or an injection attack.

According to OWASP - Top Ten list, Injection attack
is most dangerous one [4]. The main focus of web application
developers is on fulfilling client requirements and to meet time
constraints. And thus they develop application in short time
and enough attention is not given to security constraints
resulting in the possibilities for existence of vulnerabilities in
the developed application [5] [6]. According to survey reports
many organizations suffer from financial losses due to the
exploitation of vulnerabilities in web applications. Most of the
vulnerabilities are due to improper input validations or
insecure programming practices [7].

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1327 www.ijsart.com

Analysis of web application is necessary in order to
mitigate security vulnerabilities. There are mainly two types of
analysis. The first type is Static Analysis which analyses the
source code of the web application for checking presence of
vulnerabilities. The second type is Dynamic Analysis which
analyses the web application during execution time. The
source code of the web application is not available for
dynamic analysis technique. The high rate of false positives is
a problem with the static analysis methods [4]. Static analysis
tools detect certain patterns that usually indicate
vulnerabilities, but many times they detect vulnerabilities that
do not exist, due to basic limitations of the static profile of the
code. In this scheme dynamic analysis of web application is
used due to its advantages it offers and to overcome the
shortcoming like performance of previously proposed
schemes. The major advantage is the low rate of false
positives when compared to static analysis. The second
advantage is that it checks a web application in the same way
an attacker would attack a web application. Thus by using
dynamic analysis, security vulnerabilities can be recognized
and fixed before it is exploited by malicious users.

 Designing of dynamic XPath injection attack
detection scheme using regular expressions to detect the
queries passes from web application to database server for
XPath injection vulnerabilities in web application. Generating
attack set which is in order to be useful to researchers or
penetration testing tool developers to test their system. Using
the same attackset as the training set, the decision tree learner
is developed to detect new or unknown attacks like zero day
attacks. Improvement in performance maintaining high
detection coverage and low false positives with reasonable
response time is the main objective.

II. LITERATURE SURVEY

Many times developers pay their attention on implementing
functionalities and some constraints like time to market and
ignore security aspects. And thus, the security of web
applications is very poor. And web applications are so widely
exposed that any security vulnerability will most probably be
uncovered and exploited by hackers [5] [8].

Vulnerability detection is identifying loop holes or
semantic gaps in the application in various phases like
development or debugging where vulnerability is nothing but
a loop hole in the application or semantic gap between web
application front end and back end (database). There are two
types of vulnerability detection - Static analysis and Dynamic
analysis. In static code analysis, source code is analyzed in
order to find vulnerabilities which can be exploited.
Penetration testing is dynamic analysis which analyses the

response of web service at run time which is more realistic or
real time [HYPERLINK \l "Nun092" 5]6]}. Signature based
and knowledge based approach are widely used for
vulnerability detection. Signature is a payload that identifies
an attack through malicious context. It gives less false
positives but does not detect new unknown attacks having
small variations from a known payload. Another way is
knowledge based detection, which detects attacks based on
previously known attack behavior. They learn from known
attacks and can detect new unknown attacks. Strategy based
detection which combines both signature based and
knowledge based gives less false positives and more coverage
for unknown attacks [10].

 A. RELATED WORK

Nuno Antunes and his colleagues [5] proposed a
scheme for dynamic analysis. Hash value is calculated for
each valid command and compared with hash values of
incoming commands. If match does not found, vulnerability is
recognized and logged for future reference. There are two
performance metrics considered - Detection coverage and
False positive rate. Results show high detection coverage and
low false positives. Results obtained are only based on java
programming language. Not others like c++, c#.

T.M.Rosa et al. [10] developed a strategy based
scheme – a hybrid approach in which knowledge based is
derived from a signature based approach. Known attacks were
detected by ontology developed using known attack classes
and their instances and new or previously unknown attacks
were detected by reasoner which inferred based on the
behavior of known attacks.

Nuno Laranjeiro et al. [6] developed an approach for
anomaly detection to find deviation from historical learned
valid commands. Original workload is re-executed to verify
the working of the scheme and to make sure there is no
vulnerability remains. Performance of workload generation is
good in all cases. Learning process is fast and effective
consuming few seconds. The final stage which is the security
mechanism consumes hundredth of millisecond.

D. Mitropoulos et al. [12] have developed a proxy
library to implement security features of XPath. In this
approach a valid unique location identifier is generated from
each valid XPath query and is compared against the incoming
query’s identifiers. The prototype counters many forms of
XPath injection attacks which exploit the vulnerabilities like
incorrectly passed parameters, incorrect type handling and
incorrectly filtered quotation marks.

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1328 www.ijsart.com

V. Shanmughaneethi et al.[3] have developed XPath
injection prevention technique for user inputs. To analyze the
performance of the scheme, Response time of the query
execution in the presence of the system was compared against
response time of the query execution without this scheme. The
difference was very minimal i.e. in few milliseconds.

III. PROPOSED WORK

The proposed work is designed to defend against
XML injection attack techniques. Web applications which use
XML documents in backend are vulnerable to such injection
attacks through user supplied data from backend. In simple
terms, this approach is used between backend and web
application which uses XML documents as database instead of
/ along with relational database system to fill semantic gap
between them. The attack detection is done through the Error
Pattern Matching approach. Regular Expressions will be used
for pattern matching. Regular Expressions for attacks of each
type are constructed and user supplied input values are
checked against the pattern of regular expression if match
found, the input string is attack and in this case the execution
of query will be stopped otherwise it is legitimate input and
generated query will be executed on the database.

Construction of Regular Expressions for each XML
based injection attack type like Tag Injection, Tautology
Injection, Meta-character Injection, Comment Injection,
CDATA Injection attack, Alternate Encoding Injection,
External Entity Injection, Piggybacked Injection and Blind
XPath injection attack. Construct the code for Error Pattern
Matching using these Regular Expressions for all above
attacks. Construct Attack Dataset from Regular Expressions.
Taking generated attack set as training set generate Decision
tree learner to learn new unknown attacks like zero day attack.

Figure 1.1: Flow of Proposed Scheme

A. WORK FLOW

Construction of Regular Expressions for each type of
attack and Implement Error Pattern Matching approach using
Java is done here. Matcher class and Pattern of REGEX
Packages are used for the same. DFA is constructed from
Regular Expressions and Traverse it to get possible strings
from Current Regular Expression. Output them to a file of
Attack set. A decision tree learner has been developed using
generated attack set as training set in Weka Explorer.Decision
tree algorithm C4.5 (improved ID3) is implemented by J48.

B. REGULAR EXPRESSIONS

A Regular Expression defines a search pattern for
strings. The abbreviation for regular expression is regex. The
search pattern can be anything from a simple character, a fixed
string or a complex expression containing special characters
which describes the pattern. The pattern defined by the regex
may match one or several times or not at all for a given string.
Regular expressions can be used to search, edit and
manipulate text. At first, regular expressions were written for
each type of attack. The regular expression based solution was
written in such a way that it covers all possible cases of attack
that can happen in web application.

a) Regular Expression for Tautology Injection Attack

In tautology injection attack the main attack string
used for attack contains the logical OR and AND symbol. The
equal operator (=) is also used mostly in this type of attack
which is used to construct tautology expressions like 1=1,
‘a’=’a’ etc. So the following regular expression can be used
for detecting Tautology Injection Attacks.
(\s*\d+\s*\=\s*\d+\s*)|(\s*\w*('|")\s*\=\s*('|")\w*('|")\s*)|(\s*\
w*('|")\s*)|(\s*('|")\w*('|")\s*\=\s*('|")\w*\s*)(\s*(OR|or|AND|a
nd)\s*)*

b) Regular Expression for Comment Injection Attack

In comment injection attack the comment symbol <!-
- > is used to comment out the remaining part of an xml
document. So the regular expression for detecting comment
injection attack should be like below.
 (\w*\s*)*('*\s*\w*"*)*(\s*\w*)*\<\!\-\-\w*(\-\-)*(\>)*\w*

c) Regular Expression for Tag Injection Attack

In tag injection attack tag names and values are
inserted in user input fields to manipulate existing values in
xml document and overwriting existing tags and their values.

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1329 www.ijsart.com

So the following regular expression can be used to detect tag
injection attack.
d) Regular Expression for Meta-Character Injection
Attack

Meta-characters are used by attackers in order to
perform meta-character injection. Meta-characters like <, &, ‘,
“ etc.
are mostly used for performing meta-character injection. The
regular expression for meta-character injection detection is
\s*[a-zA-Z0-9]*\s*('|"|&|<|>|.)|(('|"|&|<|>|.)\s*[a-zA-Z0-9]*\s*)

e) Regular Expression for Meta-Character Injection
Attack

Meta-characters are used by attackers in order to
perform meta-character injection. Meta-characters like <, &, ‘,
“ etc. are mostly used for performing meta-character injection.
The regular expression for meta-character injection detection
is
\s*[a-zA-Z0-9]*\s*('|"|&|<|>|.)|(('|"|&|<|>|.)\s*[a-zA-Z0-9]*\s*)

f) Regular Expression for CDATA Injection Attack

CDATA Injection can be detected with the help of
following regular expression
 (\s*\w*\s*\<!\[CDATA\[\s*('|"|<|>)*\w*('|"|<|>)*\s*\]\]\>)+

g) Regular Expression of Alternate encoding Injection
Attack

 (\w*\s*\'*\"*)*\;*exec(\w*)\-*(\w*\s*)*

h) XML External Entity Attack

\w*\s*(!ENTITY|&)\W*\S*

i) Piggybacked Injection Attack

 (\w*\s*\'*\"*)*\;(\w*\s*\'*\"*)*

j) Blind XPath Injection Attack

ischildnode(\w*)|count(\w*)|strlen(\w*)|substring(\w*)

IV. ATTACK DETECTION

Regular Expressions were written for detecting
XPath Injection Attacks like Tautology Injection, Meta-
character Injection, Tag Injection, Comment Injection and
CDATA Injection, Alternate Encoding, External Entity
Injection, Piggybacked Injection and Blind XPath Injection

attacks. The Java code is written for Error Pattern Matching
Approach using Regular expressions for web applications and
detects attacks that can attack Web Application.

A. DETECTION OF INJECTION ATTACKS

Fig 4.1: Detection of Tautology Injection for attack string

Fig 4.2: Detection of Comment Injection for malicious Input

B. ATTACK SET GENERATION AND DECISION TREE
LEARNING FOR NEW UNKNOWN OR ZERO - DAY
ATTACKS

As any injection attack is detected, it is automatically
added to attack dataset called attack Set here. Attack dataset is
the set of attack strings which represents all the XPath
Injection attacks implemented in the scheme. The generated
attack Set is in the form of Notepad file. Attack Set is shown
in below figure.

Figure 4.3: Generated .ARFF file of Attack Set

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1330 www.ijsart.com

The generated ARFF file acts as a training set for
learning process. Decision tree analysis is applied on this file
in order to learn unknown attacks from set of known attacks.

Figure 4.4: Generated Confusion Matrix

a) Analyzing Confusion Matrix

The row indicates the true class and the column
indicates the classifier output. So, each entry indicates the
number of instances of row classified as column. In this
example, 0 “Nos” were incorrectly classified as “Yes”, 6
“Nos” were correctly classified as “No”, etc. So there is zero
false positive rate yielded. As a result,
all correct classifications are on the top-left to bottom-right
diagonal. Other values than that diagonal is an incorrect
classification which may yield false positives.

Figure 4.5: Visualizing Decision Tree

Figure 4.6: Visualizing Classifier errors

C. EXPERIMENTAL RESULTS OF ERROR PATTERN
MATCHING APPROACH

Table 4.1 Experimental Results classified by attack type

V. CONCLUSION

The study of the related work done for the XPath
injection detection reveals that there is a need to fulfill all the
desired performance metrics like high detection rate, lower
false positives and reasonable response time. The proposed
scheme for XPath Injection detection is intended to meet all
these important criteria by building a system which detects
number of XPath injection attacks using Error Pattern
Matching approach. Followed by this, XPath attack set is
generated which can be useful as the attack set to researchers,
Detection scheme developers or vulnerability scanners in
order to test their system to check functionality. Using this
attack set as training set the decision tree learner is developed
to learn from known attack set and detect new unknown
attacks like zero day attacks and enhance detection coverage
and false positive rates.

REFERENCES

[1] Marcus Pinto Dafydd Stuttard, The Web Application

Hacker’s Handbook: Discovering and Exploiting Security
Flaws.: Wiley Publishing, Inc., 2007.

IJSART - Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1331 www.ijsart.com

[2] Lilly Suriani Affendey, Nur Izura Udzir, Ramlan
Mahmod Aziah Asmawi, "XIPS: A Model-based
Prevention Mechanism for Preventing Blind XPath
Injection in Database-Centric Web Services
Environment," International Journal of Advancements in
Computing Technology, vol. 5, no. 10, pp. 69-77, June
2013.

[3] R.Ravichandran, S.Swamynathan V.Shanmughaneethi,
"PXpathV: Preventing XPath Injection Vulnerabilities in
Web Applications," International Journal on Web Service
Computing, vol. 2, no. 3, pp. 57-64, September 2011.

[4] (2014, August) Open Web Application Security Project.
[Online].
https://www.owasp.org/index.php/Top_10_2017-Top_10

[5] Nuno Laranjeiro, Marco Vieira, Henrique Madeira Nuno
Antunes, "Effective Detection of SQL/XPath Injection
Vulnerabilities in Web Services," in International
Conference on Services Computing, University of
Coimbra – Portugal, 2009.

[6] Marco Vieira and Henrique Madeira Nuno Laranjeiro,
"Protecting Database Centric Web Services against
SQL/XPath Injection Attacks," in Database and Expert
Systems Applications. Coimbra, Portugal: Springer, 2009.

[7] M. Zulkernine H. Shahriar, "Mitigating and Monitoring
Program Security Vulnerabilities," School of Computing,
Queen‟s University, Kingston, Canada, Technical Report
2010-572, 2010.

[8] Marco Vieira, Henrique Madeira Nuno Laranjeiro, "A
Learning-Based Approach to Secure Web Services from
SQL/XPath Injection Attacks," in Dependable Computing
(PRDC), Tokyo, December 2010.

[9] Amit Klein, "Blind XPath Injection," White Paper, 2005.
[10] Altair Olivo Santin and Andreia Malucelli Thiago Mattos

Rosa, "Mitigating XML Injection 0-Day Attacks through
Strategy-Based Detection Systems," Security & Privacy,
vol. 11, no. 4, pp. 46-53, August 2013.

[11] Nils Gruschka, Ralph Herkenhoner Meiko Jensen, "A
Survey of Attacks on Web Services," Computer Science-
Research and Development, vol. 24, no. 4, pp. 185-197,
May 2009.

[12] Vassilios Karakoidas and Diomidis Spinellis Dimitris
Mitropoulos, "Fortifying Applications Against Xpath
Injection Attacks," in MCIS 2009 Proceedings, Athens,
2009.

[13] OWASP Testing Guide V 4.
[14] http://docs.oracle.com/javase/7/docs/api/java/util/regex/pa

ckage-summary.html
[15] http://stackoverflow.com

