Fuzzy Regular generalized Super Open Sets In Fuzzy Topological Space

M.K. Mishra¹, D. Anandhi², M.Prabhavathy³, R.Vishalatchi⁴

Director R&D,Asst. Prof, E.G.S. ^{1, 2, 3, 4} Pillay Arts and Science College Nagapattinam

Abstract- In this paper we introduce and study fuzzy regular generalized super open (fuzzy rg- super open) sets in topological fuzzy topological space and obtain some of their properties. Also, studythe fuzzyrg-neighborhood (fuzzy rgnbhd)and explorefuzzy rg-super closed sets and introduce fuzzy rg-super closure and discuss some its basic properties in fuzzy topological fuzzy spaces.

Keywords- Fuzzy super closure, fuzzy super interior, fuzzy super open set, fuzzy super closed set, fuzzy rg- super open sets,, fuzzy rg-nbhd, fuzzy rg-closure.

I. INTRODUCTION

Throughout this paper (X,τ) represents a fuzzy topological space on which no separation axiom is assumed unless otherwise mentioned. For a subset A of a fuzzy topological space X, cl(A) and int(A) denote the super closure of A and the super interior of A respectively. X\A or A^c denotes the complement of A in X. We recall the following definitions and results.

1.1. Definition

A subset A of a fuzzy topological space X is called

- 1. Fuzzy pre super open set if $A \le int(cl (A))$ and a presuper closed set if $cl(int (A)) \le A$.
- Fuzzy semi super open set if A ≤clint (A) and a semisuper closed set if int(cl (A))≤A.
- 3. Fuzzy regular super open set if A = int(cl (A)) and a regular super closed set if A = cl(int (A)).
- 4. Fuzzy π super open set if A is a finite union of regular super open sets.
- 5. Fuzzy regular semi super open if there is a regular super open U such that $U \le A \le cl(U)$.

1.2. Definition: A subset A of (X,τ) is called

 Fuzzy generalized super closed set (fuzzy g-super closed) if cl (A)≤ U whenever A≤U and U is super open in X.

- Fuzzy regular generalized super closed set (fuzzy rgsuper closed)if cl (A)≤U whenever A≤U and U is fuzzy regular super open in X.
- Fuzzy generalized preregular super closed set (fuzzy gpr-super closed) if pcl (A)≤U whenever A ≤ U and U is fuzzy regular super open in X.
- Fuzzy weakly generalized super closed set (fuzzy wg-super closed) if clint (A) ≤U whenever A≤ U and U is fuzzy super open in X.
- Fuzzyπ-generalized super closed set (fuzzy πg-super closed) if cl(A)≤U whenever A≤U and U is fuzzy πsuper open in X.
- Fuzzy weakly super closed set (fuzzy w-super closed)if cl(A) ≤U whenever A≤U and U is fuzzy semi super open in X.
- Fuzzy regular weakly generalized super closed set (fuzzy rwg-super closed) if clint(A)≤U whenever A ≤U and U is fuzzy regular super open in X.
- Fuzzyrw-super closed ifcl(A)≤U whenever A≤U and U is fuzzy regular semi super open.
- Fuzzy*g-super closed ifcl(A)≤U whenever A≤U and U is fuzzy w- super open.
- 10. Fuzzyrg-super closed ifcl(A)≤U whenever A≤U and U is fuzzyrw- super open.

II. FUZZYREGULAR GENERALIZED NEIGHBOURHOODS

2.1. Definition: A subset A of a fuzzy space X is called fuzzyregular generalized super open (briefly fuzzyrg- super open) set if its complement is fuzzyrg-super closed. The family of all fuzzyrg– super open sets in X is denoted by FRGSO(X).

2.1. Remark: $cl(X \setminus A) = X \setminus int(A)$.

2.1. Theorem:A subset A of X is fuzzyrg- super open if and only if $F \le int(A)$ whenever F is fuzzy rw-super closed and $F \le A$.

 $\label{eq:proof:} Proof:(\textit{Necessity}):- \mbox{ Let } A \mbox{ be fuzzyrg- super open }. \mbox{ Let } F \mbox{ be fuzzyrw-super closed and } F \le A \mbox{ then } X \mbox{ A \le X \ } F, \mbox{ whenever } X \mbox{ F}$

is fuzzyrw- super open. Since X\A is fuzzyrg-super closed,cl(X\A) \leq X\F. By Remark 2.2, X\int(A) \leq X\F. That is F \leq int(A).

(Sufficiency):- Suppose F is fuzzyrw-super closed and F \leq A implies F \leq int(A). Let X\A \leq U where U is fuzzyrw-super open. Then X\U \leq A, where X\U is fuzzyrw-super closed. By hypothesis X\U \leq int(A). That is X\int(A) \leq U, so cl(X\A) \leq U, implies, X\A is fuzzyrg-super closed and A is fuzzyrg-super open.

2.2. Theorem: If $int(A) \le B \le A$ and A is fuzzyrg- super open, then B is fuzzyrg- super open.

Proof :Let A be fuzzyrg- super open set and int(A) $\leq B \leq A$. Now int(A) $\leq B \leq A$ implies X\A $\leq X \setminus B \leq X \setminus (A)$. That is X\A $\leq X \setminus B \leq cl(X \setminus A)$. Since X\A is fuzzyrg-super closed, X\B is fuzzyrg-super closed and B is fuzzyrg- super open.

2.2. Remark:For any $A \le X$, $int(cl(A) \setminus A) = \phi$.

2.3. Theorem: If $A \le X$ is fuzzyrg-super closed thencl(A)\A is fuzzyrg- super open.

Proof: Let A be fuzzyrg-super closed. Let F be rw-super closed set such that $F \le cl(A) \setminus A$. Then , $F=\phi$. So, $F \le int(cl(A) \setminus A)$. This shows $cl(A) \setminus A$ is fuzzyrg- super open.

2.4. Theorem:Every super open set in X is fuzzyrg- super open but not conversely.

Proof:Let A be a fuzzy super open set in a fuzzy topological space X. Then X\A is super closed set. so, X\A is fuzzyrg-super closed. Therefore A is fuzzyrg- super open set in X. The converse of the theorem need not be true, as seen from the following example.

2.1. Corollary:-Every regular super open set is fuzzyrg – super open but not conversely.

Proof: Easy

2.2. Corollary:-Every π - super open set is fuzzyrg- super open but not conversely.

Proof: Easy

2.5.Theorem: Everyfuzzyrg- super open sets in X is rg- super open set in X, but not conversely.

Proof:Let A be fuzzyrg- super open set in fuzzy topological space X. Then $X \setminus A$ is fuzzyrg-super closed set in X. So $X \setminus A$ is fuzzy rg-super closed set in X. Therefore A is fuzzy rg- super open in X. The converse of the above theorem need not be true as seen from the following example.

2.6. Theorem: Every fuzzyrg- super open set in X is fuzzy g* –super open set in X, but not conversely.

Proof :Let A be fuzzyrg- super open set in fuzzy topological space X. Then X\A is fuzzyrg-super closed set in X. So, X\A is fuzzy g*-super closed set in X. Therefore A is g*- super open in X. The converse of the above theorem need not be true as seen from the following example

2.7. Theorem:Everyfuzzyrg- super open set in X is fuzzy g-super open, but not conversely.

Proof.:Let A be fuzzyrg- super open set in X. Then A^c is fuzzyrg-super closed set in X. and if A^c is fuzzy g-super closed set in X. Hence A is fuzzy g- super open in X. The converse of the above theorem need not be true as seen from the following example.

2.8. Theorem: If a subset A of a fuzzy topological space X is fuzzyrg- super open then it is π g- super open set in X.

Proof:Let A be fuzzyrg- super open set in fuzzy topological space X. Then X\A is fuzzyrg-super closed set in X. so , X\A is fuzzy π g-super closed set in X. Therefore A is π g- super open in X.The converse of the above theorem need not be true as seen from the following example.

2.9. Theorem: If A and B are fuzzyrg- super open set in a fuzzy topological space X. Then $A \cap B$ is also fuzzyrg- super open set in X.

Proof: If A and B are fuzzyrg- super open sets in a fuzzy topological space X. Then X\A and X\A are fuzzyrg-super closed sets in a fuzzy topological space X. and $(X\setminus A) \cap (X\setminus B)$ is also fuzzyrg-super closed sets in X. Therefore $A \cap B$ is fuzzyrg- super open set in X.

2.10.Theorem:If a subset A of a topological fuzzy topological space X is both fuzzy rw-super closed and fuzzyrg- super open then it is fuzzy super open.

Proof.Let A be fuzzyrw-super closed and fuzzyrg- super open set in X. Now $A \leq A$. but $A \leq int(A)$. Hence A is fuzzy super open.

2.11.Theorem :If a set A is fuzzyrg- super open in X, then G=X, whenever G is fuzzy rw- super open and $(int(A)\leq (X\setminus A))\leq G$.

Proof: Suppose that A is fuzzyrg- super open in X. Let G is fuzzy rw- super open and $(int(A) \le (X \setminus A)) \le G$. Thus $Gc \le (int(A) \le A^c)^c = (int(A))^c \le A$. That is $G^c \le (int(A))^c \setminus A^c$. Since $(int(A))^c = cl(A^c)$, $G^c \le cl(Ac) \setminus A^c$. Now, G^c is fuzzyrw-super closed and A^c is fuzzyrg-super closed , then $G^c = \phi$. Hence G=X.

2.2. Definition:Let X be a fuzzy topological space and let $x \in X$. A subset N of X is said to be a fuzzyrg-nbhd of x iff there exists a fuzzyrg- super open set U such that $x \in U \le N$.

2.3. Definition :A subset N of fuzzy topological space X, is called a fuzzyrg-nbhd of A \leq X iff there exists a fuzzyrg- super open set U such that A \leq U \leq N.

2.12. Theorem: Every fuzzynbhd N of $x \in X$ is a fuzzyrg-nbhd of X, but not conversely.

Proof:Let N be a fuzzynbhd of point $x \in X$. Then there exists a fuzzy super open set U such that $x \in U \leq N$. Since every fuzzy super open set is fuzzyrg- super open set, U is a fuzzyrg-super open set such that $x \in U \leq N$. This implies N is fuzzyrg-nbhd of X. The converse of the above theorem need not be true as seen from the following example.

2.13. Theorem: Everyfuzzyrg- super open set is fuzzyrg-nbhd of each of its points, but not conversely.

Proof: Suppose N is fuzzyrg- super open. Let $x \in N$. For N is a fuzzyrg- super open set such that $x \in N \le N$. Since x is an arbitrary point of N, it follows that N is a fuzzyrg-nbhd of each of its points. The converse of the above theorem is not true in general.

2.3. Remark: Thefuzzyrg-nbhd N of $x \in X$ need not be a fuzzyrg- super open in X. It is seen from the following example.

III. FUZZYRG-SUPERCLOSURE AND ITS PROPERTIES

3.1. Definition: For a subset A of X, fuzzyrg-scl(A)= \cap {F : A ≤ F , F is fuzzyrg super closed in X}.

3.2. Definition:Let (X,τ) be a topological fuzzy topological space and τ fuzzyrg = {V $\leq X$: fuzzyrg-scl(X\V)=X\V}.

3.3. Definition:For any $A \le X$, fuzzyrg-int(A) is defined as the union of all fuzzyrg- super open set contained in A.

3.1. Remark: If $A \le X$ is fuzzyrg-super closed then fuzzyrg-scl(A) = A, but the converse is not true.

3.1. Theorem: Suppose fuzzyrg is a fuzzy topology. If A is fuzzyrg-super closed in (X,τ) , then A is fuzzysuper closed in (X,τ) .

Proof: Since A is fuzzyrg-super closed in (X,τ) , fuzzyrgscl(A)=A. This implies X\A \in τ fuzzyrg. That is X\A is super open in (X, τ fuzzyrg). Hence A is super closed in (X, τ fuzzyrg).

3.2. Remark :(i) fuzzyrg-scl(ϕ) = ϕ and fuzzyrg-scl(X)=X

(ii) A \leq fuzzyrg-scl(A).

3.2. Theorem :For any $x \in X$, $x \in fuzzyrg\text{-scl}(A)$ if and only if $V \cap A \neq \phi$ for every fuzzyrg- super open set V containing x.

Proof :(Necessity).: Suppose there exists a fuzzyrg- super open set V containing x such that $V \cap A = \phi$. Since $A \leq X \setminus V$, fuzzyrg-scl(A) $\leq X \setminus V$ implies $x \in fuzzyrg$ -scl(A) a contradiction.

(Sufficiency):.Suppose $x \in fuzzyrg-scl(A)$, then there exists a fuzzyrg-super closed subset F containing A such that $x \in F$. Then $x \in X \setminus F$ and $X \setminus F$ is fuzzyrg- super open. Also $(X \setminus F) \cap A = \phi$, a contradiction.

3.3. Remark: Let A and B be subsets of X, if $A \le B$ then fuzzyrg-scl(A) \le fuzzyrg-scl(B).

3.3. Theorem: Let A and B be subsets of X, then fuzzyrg-scl($A \cap B$) \leq fuzzyrg-scl(A) \cap fuzzyrg-scl(B).

3.4. Theorem :If A and B are fuzzyrg-super closed sets then fuzzyrg-cl($A \cup B$) = fuzzyrg-scl(A) \cup fuzzyrg-scl(B).

Proof :Let A and B be fuzzyrg-super closed in X. Then $A \cup B$ is also fuzzyrg-super closed. Then fuzzyrg-scl $(A \cup B) = A \cup B$ = fuzzyrg-scl $(A) \cup$ fuzzyrg-scl(B).

3.5. Theorem : $(X \setminus fuzzyrg-sint(A)) = fuzzyrg-scl(X \setminus A).$

Proof :Let $x \in X \setminus fuzzyrg-int(A)$, then $x \in fuzzyrg-sint(A)$. Thus every fuzzyrg- super open set B containing x is such that $B \not\subset A$. This implies every fuzzyrg- super open set B containing x intersects $X \setminus A$. This means $x \in fuzzyrg-scl(X \setminus A)$. Hence $(X \setminus fuzzyrg-sint(A)) \leq fuzzyrg-scl(X \setminus A)$. Conversely, let $x \in fuzzyrg-scl(X \setminus A)$. Then every fuzzyrg- super open set U containing x intersects X \A. That is every fuzzyrg- super open set U containing x is such that $U \not\subset A$, implies $x \in fuzzyrg-sint(A)$. Thence $(X \setminus A) \leq (X \setminus fuzzyrg-sint(A)) = fuzzyrg-scl(X \setminus A)$.

REFERENCES

- B. Ghosh, Semi-continuous and semi-closed mappings and semi-connectedness in fuzzy setting, Fuzzy Sets and Systems 35(3) (1990), 345–355.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- [3] C.W. Baker on Preserving g-super closed sets Kyungpook Math. J. 36(1996), 195-199.
- [4] G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems 86(1) (1997), 93–100.
- [5] G. Balasubramanian and V. Chandrasekar, Totally fuzzy semi continuous functions, Bull. CalcuttaMath. Soc. 92(4) (2000), 305–312.
- [6] K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1) (1981), 14–32.
- [7] K. M. Abd El-Hakeim, Generalized semi-continuous mappings in fuzzy topological spaces, J. Fuzzy Math. 7(3) (1999), 577–589.
- [8] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.
- [9] Levine. N., Generalized super closed sets in topology, Rend. Circ. Mat. Palermo 19(1970), 89–96.
- [10] Maki. H, Devi. R and Balachandran. K., Associated topologies of generalized □-super closed sets and □generalized super closed sets, Mem. Sci. Kochi Univ. Ser. A. Math. 15(1994), 51–63.
- [11] Levine. N., Semi- super open sets and semi-continuity in topological fuzzy space s, Amer. Math. Monthly,70(1963), 36–41.
- [12] M.K. Mishra et all on "Fuzzy super continuity" International Review in Fuzzy Mathematics July – December2012.
- [13] M.K. Mishra M. Shukla M. Fuzzy Regular Generalized Super Closed Set" International Journal of Scientific and Research December issue July December 2012.

- [14] M.K. Mishra, et all on "Fuzzy super closed set" International Journal International Journal of Mathematics and applied Statistics.
- [15] Mashhour. A.S., Abd. El-Monsef. M. E. and El-Deeb S.N., On pre continuous mappings and weak precontinuous mappings, Proc Math, Phys. Soc. Egypt 53(1982), 47–53.
- [16] Nagaveni. N., Studies on Generalizations of Homeomorphisms in Topological Fuzzy space s, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
- [17] P. M. Pu and Y. M. Liu Fuzzy topology I Neighborhood structure of a fuzzy point and More-Smith Convergence. J. Math. Anal. Appl. 76(1980) ,571-594.
- [18] P. M. Pu and Y. M. Liu Fuzzy topology II Product and quotient spaces J.Math. Anal. Appl. 77(1980) 20-37.
- [19] P. M. Pu, and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76(2) (1980), 571–599.
- [20] Palaniappan. N., and Rao. K. C., Regular generalized super closed sets, Kyungpook Math. J. 33(1993), 211– 219.
- [21] Park. J. K. and Park. J.H., mildly generalized super closed sets, almost normal and mildly normal fuzzy space s, Chaos, Solutions and Fractals 20(2004), 1103–1111.
- [22] Pushpalatha. A., Studies on Generalizations of Mappings in Topological Fuzzy space s, Ph.D. Thesis, Bharathiar University, Coimbatore, 2000.
- [23] R. K. Saraf and M. Khanna, Ongs-closed sets in fuzzy topology, J. Indian Acad. Math. 25(1),(2003), 133–143.
- [24] R. K. Saraf, and M. Khanna, Fuzzy generalized semipreclosed sets, J. Tripura Math. Soc.3(2001) 59–68.
- [25] R. K. Saraf, and S. Mishra, Fg_-closed sets, J. Tripura Math. Soc. 2 (2000) 27–32.
- [26] R. K. Saraf, M. Caldas and S. Mishra, Results via Fg_closed sets and Fg-closed sets, Pre print.
- [27] Stone. M., Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 374–481..
- [28] Sundaram.P and Sheik John.M., On w-super closed sets in topology, ActaCienciaIndica 4(2000), 389–392.
- [29] Syed Ali Fathima. S and Mariasingam. M, On fuzzyregular generalized super closed sets in topological fuzzy space s, International journal of mathematical archive-2(11), 2011, 2497 – 2502.
- [30] T. H. Yalva, c, Semi-interior and semi closure of a fuzzy set, J. Math. Anal. Appl. 132(2) (1988),356–364.
- [31] Veera Kumar M.K.R.S., Between g* super closed sets and g-super closed sets, Mem.Fac.Sci.Kochi Univ. Ser .App .Math .,21 (2000),1-19.