
IJSART – Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1353 www.ijsart.com

Linked Implementation of Queue And Stack

Bindu Singh

1, 2 Dept of Computer Engineering Department
1, 2 Vadodara Institute of Engineering

Abstract- a linked list is a linear collection of data elements,
in which linear order is not given by their physical placement
in memory. Each pointing to the next node by means of a
pointer. It is a data structure consisting of a group of nodes
which together represent a sequence

Keywords- Stack,Queue,Linked List

I. INTRODUCTION

 Linked list is used to implement other data structures
also. A stack is created using an array. This technique of
creating a stack is easy, but the drawback is that the array must
be declared to have some fixed size. In case the stack is a very
small one or its maximum size is known in advance, then the
array implementation of the stack gives an efficient
implementation. But if the array size cannot be determined in
advance, then the other alternative, i.e., linked representation,
is used. The storage requirement of linked representation of
the stack with n elements is O(n), and the typical time
requirement for the operations is O(1).In a linked stack, every
node has two parts—one that stores data and another that
stores the address of the next node. The START pointer of the
linked list is used as TOP. All insertions and deletions are
done at the node pointed by TOP. If TOP = NULL, then it
indicates that the stack is empty.

II. OPERATIONS ON A LINKED STACK

A linked stack supports all the three stack operations that is,
push, pop.

PUSH OPERATION

The push operation is used to insert an element into
the stack. The new element is added at the topmost position of
the stack.

To insert an element we first check if TOP=NULL.

If this is the case, then we allocate memory for a new node,
store the value in its DATA part and NULL in its NEXT part.
The new node will then be called TOP. However, if
TOP!=NULL, then we insert the new node at the beginning of
the linked stack and name this new node as TOP here is an
algorithm to push an element into a linked stack.

Step1:Allocate memory for new node and name it as
NEW_NODE
Step 2:new_node->data=val
Step 3:if top==NULL
Set new_node->next=NULL
Set top=new_node
Else
Set new_node->next=top
Set top=new_node
[end of if]
Step 4:End

In Step 1, memory is allocated for the new node. In
Step 2, the DATA part of the new node is initialized with the
value to be stored in the node. In Step 3, we check if the new
node is the first node of the linked list. is done by checking if
TOP = NULL. In case the IF statement evaluates to true, then
NULL is stored in the NEXT part of the node and the new
node is called TOP. However, if the new node is not the first
node in the list, then it is

1) added before the first node of the list (that is, the TOP

node) and termed as TOP.
2) POP OPERATION
3) The pop operation is used to delete the topmost element

from a
4) stack. However, before deleting the value, we must first

check
5) if TOP=NULL, because if this is the case, then it means

that the
6) stack is empty and no more deletions can be done. If an

attempt is made to delete a value from a stack that is
already empty, an UNDERFLOW message is printed. In
case TOP!=NULL, then we will delete the node pointed
by TOP, and make TOP point to the second element of
the linked stack.

7) Step1:if top=NULL
8) Print”underflow” goto step5
9) Step 2:set ptr=top
10) Step 3:set top=top->next
11) Step 4: free ptr
12) Step 5:end

13) In Step 1, we first check for the UNDERFLOW

condition.

IJSART – Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1354 www.ijsart.com

14) In Step 2, we use a pointer PTR that points to TOP. In
Step 3, TOP is made to point to the next node in
sequence. In Step 4 In Step 4, the memory occupied by
PTR is given back to the free pool.

III. LINKED REPRESENTATION OF QUEUES

We have seen how a queue is created using an array.

Although this technique of creating a queue is easy, its
drawback is that the array must be declared to have some fixed
size. If we allocate space for 50 elements in the queue and it
hardly uses 20–25 locations, then half of the space will be
wasted. And in case we allocate less memory locations for a
queue that might end up growing large and large, then a lot of
re-allocations will have to be done, thereby creating a lot of
overhead and consuming a lot of time. In case the queue is a
very small one or its maximum size is known in advance, then
the array implementation of the queue gives an efficient
implementation. But if the array size cannot be determined in
advance, the other alternative, i.e., the linked representation is
used. The storage requirement of linked representation of a
queue with n elements is O(n) and the typical time
requirement for operations is O(1).In a linked queue, every
element has two parts, one that stores the data and another that
stores the address of the next element. The START pointer of
the linked list is used as FRONT. Here, we will also use
another pointer called REAR, which will store the address of
the last element in the queue. All insertions will be done at the
rear end and all the deletions will be done at the front end. If
FRONT = REAR = NULL, then it indicates that the queue is
empty.

OPERATIONS ON LINKED QUEUES

A queue has two basic operations: insert and delete.
The insert operation adds an element to the end of the queue,
and the delete operation removes an element from the front or
the start of the queue. Apart from this, there is another
operation peek which returns the value of the first element of
the queue.

INSERT OPERATION

The insert operation is used to insert an element into
a queue. The new element is added as the last element of the
queue. To insert an element , we first check if
FRONT=NULL. If the condition holds, then the queue is
empty. So, we allocate memory for a new node, store the
value in its data part and NULL in its next part. The new node
will then be called both FRONT and rear. However, if
FRONT!= NULL, then we will insert the new node at the rear
end of the linked queue and name this new node as rear.

Step 1:Allocate memeory for new node and name it as PTR
Step 2:setr ptr->data=val
Sterp 3:if front=NULL
Set front=rear=ptr
Set front->next=rear->next=NULL
Else
Set rear->n0065xt=ptr
Set rear=ptr
Set rear->next=NULL
[end of if]
Step 4:end

In Step 1, the memory is allocated for the new node.
In Step2, the DATA part of the new node is initialized with
the value to be stored in the node. In Step 3, we check if the
new node is the first node of the linked queue. This is done by
checking if RONT = NULL. If this is the case, then the new
node is tagged as FRONT as well as REAR. Also NULL is
stored in the NEXT part of the node (which is also the
FRONT and the REAR node). However, if the new node is not
the first node in the list, thenit is added at the REAR end of the
linked queue (or the last node of the queue.

DELETE OPERATION

The delete operation is used to delete the element that
is first inserted in a queue, i.e., the element whose address is
stored in FRONT. However, before deleting the value, we
must first check if FRONT=NULL because if this is the case,
then the queue is empty and no more deletions can be done. If
an attempt is made to delete a value from a queue that is
already empty, an underflow message is printed. To delete an
element, we first check if FRONT=NULL. If the condition is
false, then we delete the first node pointed by FRONT. The
FRONT will now point to the second element of the linked
queue. In Step 1, we first check for the underflow condition. If
the condition is true, then an appropriate message is displayed,
otherwise in Step 2, we use a pointer PTR that points to
FRONT. In Step 3, FRONT is made to point to the next node
in sequence. In Step 4In Step 4, the memory occupied by PTR
is given back to the free pool.

Step 1:if front=NULL
Write “overflow” goto step 5
[end f if]
Step 2:set ptr=front
Step 3:front=front->next
Step 4:free ptr
Step 5:end

IJSART – Volume 4 Issue 2 – FEBRUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 1355 www.ijsart.com

IV. CONCLUSION

This paper gives brief introduction about linked list
can be used to implement other data structures like stack and
queue and how to perform various operations in stack and
queue.

REFERENCES

[1] G. O. Young, ―Synthetic structure of industrial plastics

(Book style with paper title and editor),‖ in Plastics, 2nd
ed. vol. 3, J. Peters, Ed. New York: McGraw-Hill, 1964,
pp. 15–64.

[2] W.-K. Chen, Linear Networks and Systems (Book style).
 Belmont, CA:
Wadsworth, 1993, pp. 123–135.

[3] H. Poor, An Introduction to Signal Detection and
Estimation. New York: Springer-Verlag, 1985, ch. 4.

[4] B. Smith, ―An approach to graphs of linear forms
(Unpublished work style),‖ unpublished.

[5] E. H. Miller, ―A note on reflector arrays (Periodical
style—Accepted for publication),‖ IEEE Trans. Antennas
Propagat., to be published.

[6] J. Wang, ―Fundamentals of erbium-doped fiber
amplifiers arrays (Periodical style—Submitted for
publication),‖ IEEE J. Quantum Electron., submitted for
publication.

