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Abstract- The signal processing scheme of a smart sensor 
node for the Internet-of-Elevators is presented. Features 
reflecting the elevator systems operation and health condition 
are calculated by evaluating the ride quality parameters 
defined by the ISO 18738-1 standards, the vibration versus 
frequency spectrum, and the vibration versus position 
spectrum. The sensor node is a self-contained black box unit 
only requiring power to be supplied, which enables a cost 
efficient way to modernize existing elevator systems in terms of 
condition monitoring capabilities. The sensor node monitors 
the position of the elevator using an inertial navigation system 
in conjugation with a simultaneous localization and mapping 
framework. Abnormal stops are identified by detecting 
decelerations that deviate from the typical deceleration 
pattern of the elevator or when the stopping position of the 
elevator does not match the learned floor levels. Further, the 
condition of the door system is monitored by tracking the 
magnetic field variations that the motion of the doors creates; 
the number of door openings and the time required for the 
doors to close is estimated. The capability and performance of 
the signal processing scheme are illustrated through a series 
of experiments. The experiments show, inter alia, that using 
low-cost sensors similar to those in a smartphone, the position 
of the elevator car can with 99.9% probability be estimated 
with an error of less than 1 meter for travels up to 43 seconds 
long. Experiments also indicate that small degradations in the 
doors closing time can be detected from the magnetic field 
measurements. 
 

I. INTRODUCTION 
 

Today more than 54% of the world population lives 
in urban areas – a figure that is continuously growing. The 
transport logistics problems arising from this urbanization call 
for intelligent transportation systems with increased efficiency, 
capacity, and reliability for not only horizontal but also 
vertical transportation. To illustrate, 325 million passengers 
per day are estimated to be transported by elevators in the 
United States and Canada alone. To adapt the vertical 
transportation systems to the demands of the future, the 
elevator industry has identified a need to move from today’s 
preventative and corrective maintenance strategies to 
predictive and pre-emptive maintenance strategies, and 

thereby maximize the uptime, prolong the lifetime, reduce 
repair costs, and improve the safety of the elevator systems. 
Accordingly, the latest generation of high-end elevator 
systems is frequently connected to the cloud, creating an 
Internet-of-Elevators, i.e., a subdivision of the emerging 
Internet-of-Things, where data from the elevator sensors and 
control systems is gathered, mined, and transformed into 
information about the elevator systems’ performance and any 
current or potential problems. However, the majority of 
today’s elevator systems are not equipped with sensors and 
control systems that support connection to the cloud for 
remote monitoring and fault diagnostics, and it will take 
decades before they are all renewed or upgraded with such 
systems. As an illustrative figure, there exist more than 4.3 
million elevators in Europe alone, and it is not uncommon for 
an elevator to be in service for 25 years or longer before a 
major modernization is undertaken. In the interim, there will 
be a need for easy-to-install sensor nodes by which existing 
elevator systems can be upgraded and connected to the 
Internet-of-Elevators for condition and fault monitoring. 
Therefore, we will in this paper present the signal processing 
scheme of a smart sensor node characterized by non-intrusive 
sensing via accelerometers and magnetometers; embedded 
data processing and storage; and wireless connectivity; 
enabling the construction of a truly ’plug-and-play’ node that 
can provide high-level elevator condition information. The 
envisioned sensor node and monitoring concept is illustrated 
.elevator car between different floor levels, and thereby 
change the potential energy of people and goods. The 
horizontal position of the elevators car is maintained through a 
set of guide rails against which the elevator car slides; see Fig. 
1 for an illustration. Frequently, the elevator car is equipped 
with a motorized or semi-motorized door system, which 
provides protection for the passenger while traveling. If the 
elevator system is well tuned, the acceleration and 
deceleration of the elevator car is smooth, the vertical and 
horizontal vibrations negligible, and the doors open and close 
smoothly at each stop. However, as system components such 
as engine bearings and roller guide shoes experience wear and 
tear, guide rails becomes displaced, dust and gravel 
accumulate in the door systems, etc., the vibration level 
increases and the system’s performance decreases. In general, 
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the initial effect is a reduced ride quality, and the long term 
effect a malfunctioning elevator1. Hence, by monitoring the 
usage and vibration levels of the elevator system, information 
about its condition and potential future faults can be extracted. 
Maintenance strategies can then be designed to maximize the 
system’s uptime, and services scheduled at time slots known 
to cause a minimum of interference in the usage of the 
elevator system. There exist a large number of publications on 
various techniques for condition monitoring, fault detection, 
and non-destructive testing in industrial process, machinery, 
and motors. See recent surveys and reviews on the topic. 
However, only a handful of publications exist about condition 
monitoring and fault detection techniques for elevator systems 
and elevator components such as the traction machine, the 
guide rails, the steel ropes (belts) and the door systems. 
Existing elevator condition monitoring techniques and systems 
can be broadly classified into two categories, those based on 
model-based and those based on data-driven condition 
monitoring methods. The benefit of model-based methods is 
that no training data is needed, but the drawback is that they 
require elevator system specific parameters to be known. Due 
to the large variety of elevator systems on the market, large 
scale deployment of after-market model-based condition 
monitoring systems is therefore considered infeasible. The 
benefit of the data driven method is that they do not require 
prior knowledge about the elevator system. However, their 
drawback is that large amounts of training data from a 
representative set of elevator systems and faults are needed 
before reliable condition information can be extracted. 
Acquiring this training data is time consuming and costly due 
to the large variety of elevator systems that exist and the 
infrequent occurrence of faults. An important aspect of the 
development of a large-scale condition monitoring system is 
therefore to have a strategy for how to finance the collection of 
the training data, and how to monetize the collected data at an 
early stage. A second aspect to be considered in the 
development of a large-scale condition monitoring system is 
the ease and cost by which the sensor nodes can be deployed. 
Most, if not all, of the elevator condition monitoring systems 
described in the literature, as well as the ones currently on the 
market, are based upon information from the elevator’s control 
and drive system, often in combination with additional sensors 
such as accelerometers. Therefore, the installation of these 
systems commonly takes 1-2 days and requires specially 
trained technicians with knowledge about the specific elevator 
control and drive system at hand. The deployment cost of 
existing systems is thus considerable and impedes the large 
scale deployment of these systems. A third aspect to consider 
is the amount of data which needs to be communicated and the 
cost associated with the data transfer. The result of a survey 
conducted by the authors with potential customers of an 
elevator monitoring system, such as building owners and 

elevator service companies, suggest that they are not willing to 
pay for more than 10-50 MB of data per month and per 
elevator at current cellular data fees. One way to approach 
these practical aspects of deploying a large-scale elevator 
monitoring system is via sensor nodes that use non-intrusive 
sensing and locally extract high-level condition information, 
a.k.a. smart sensor nodes. Therefore, a signal processing 
scheme for a smart sensor node that from accelerometer and 
magnetometer data can extract information about the travel 
pattern and usage statistics of an elevator, detect abnormal 
(emergency) stops, detect abnormal door behaviour and 
changes in the closing time of the doors, measure the ride 
quality according to the ISO 18738-1 standards, and calculate 
high-level condition information such as frequency and 
position vibration spectrums, is presented. Using non-intrusive 
sensing, the node can be made self-contained (only requiring 
power to be supplied) and thereby easy and cost efficient to 
install, as well as interoperable with elevators of all types and 
makes, irrespective of their sensor and control system. Further, 
by locally extracting high level condition information the 
communication requirements can be kept at a minimum. 
Moreover, as the proposed signal processing scheme without 
training data can provide basic condition information that 
customers may purchase, revenues for financing the data 
collection needed for training of data driven condition 
monitoring methods can be obtained at an early stage. 

 
II. SIGNAL PROCESSING SCHEME DESIGN 

OVERVIEW 
 

An overview of the main building blocks and the 
information flow of the presented signal processing scheme is 
shown in Fig. 2. The specific force measured by the 
accelerometers is used as an input for a zero-speed aided 
inertial navigation system that estimates the motion dynamics 
of the elevator car, i.e., the travelled distance since last stop 
and the speed; see Section III-A. The estimated distances are 
used to drive a simultaneous localization and mapping 
(SLAM) framework that tracks the position of the elevator car 
and learns the floor levels; see Section III-B. The estimated 
motion dynamics and the measured specific force are also used 
to calculate the ride quality performance parameters defined in 
the ISO 18738-1, the vibration power versus frequency 
spectrum, and the vibration power versus position spectrum; 
see Section IV. Further, the measured deceleration pattern and 
the elevator car position together with the floor levels 
estimated by the SLAM framework are used to detect 
abnormal (emergency) stops; see Section V. The sensor node 
monitors the door openings and closings using a 
magnetometer that senses the changes in the local magnetic 
field caused by the doors’ motion; see Section VI. The signal 
processing scheme extracted condition information can either 
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be directly sent to the cloud for further analysis, or at the 
sensor node be compressed into daily or weekly condition 
statistics, depending on available communication resources 
and needed time resolution of the condition information. 

 
III. POSITIONING AND MOTION DYNAMICS 

ESTIMATION 
  
The position and motion dynamics of the elevator car 

are estimated using a two-stage filtering framework. In the 
first stage the travelled distances and motion dynamics of 
individual trips are estimated from the accelerometer 
measurements, and in the second stage the position of the 
elevator car, as well as the floor levels, are estimated using a 
SLAM algorithm measurement update equations can be 
formulated for the state-space model (2). However, the fact 
that the elevator car becomes stationary or moves at constant 
speed on a regular basis, and that these events can be detected 
from the accelerometer measurements can be used to 
overcome this problem. Assuming that the time instants when 
the elevator car is stationary or moves at constant speed are 
given, then the following pseudo measurements for the state 
space model can be formulated.  

  
Here v(c) d (k) and v(z) d (k) denote the pseudo 

measurement errors for the cases when the elevator is moving 
at constant speed and is stationary, respectively. These pseudo 
measurement errors are assumed to be white processes with 
variance σ2 c and σ2 z, respectively. Note that the constant 
speed observation model, i.e., (4), implies that the current 
speed is approximately equal to the one at the previous time 
instance. The auxiliary state s(k−1) was introduced in the state 
vector (1) to facilitate this type of pseudo observation. A large 
variety of algorithms has been proposed in the literature on 
how to detect uniform linear motion (stationarity being a 
special case) from accelerometer measurements. See e.g. [28] 
and the references therein. Since the elevator car is known to 
move only in the vertical direction and within a limited range, 
the mean of the vertical accelerometer measurements can be 
estimated by time averaging the measurements. The mean of 
the accelerometer measurements when the elevator car is in 
uniform linear motion can thus be considered known, and the 
detection of when the elevator car accelerates or decelerates 
can be formulated as a problem of detecting local changes (of 
unknown amplitude) in the mean of the accelerometer 
measurements. The generalized likelihood ratio test for this 
detection problem is derived in and is used as a uniform linear 
motion detector in the proposed signal processing scheme. 
Given the state-space model defined by (1)–(4), the Kalman 
filter based algorithm presented in Alg. 1, for estimation of the 
travelled distance δp(l) and the motion dynamics, can be 
constructed. The algorithm takes the measured vertical axis 

acceleration ˜ uz(k) as an input, and propagates the state 
vector. Since the uniform linear motion detector can only 
determine whether the elevator car is in uniform linear motion 
or not, the choice between the constant and zero speed 
observation model is made based on the magnitude of the 
normalized prediction error ξd obtained when fitting the zero 
speed hypothesis to the observed data. If the magnitude of the 
normalized prediction error is below the threshold γd, a zero 
speed measurement update is done, otherwise a constant speed 
update is applied (see line 14-27). Whenever the algorithm 
detects that the elevator car has become stationary and has 
traveled a distance longer than γδp, it outputs the traveled 
distance estimate δˆ p(l) and the estimated variance ˆ σ2 δp(l) 
of the distance estimation error. Thereafter, the distance state 
d(k), and the corresponding elements of the covariance matrix 
are set to zero by multiplication with natural basis vector e1; 
see line 31-40. The effect of such a reset on the propagation of 
the covariance estimate Pd(k) is analyzed in [30]. (8) One way 
to obtain a good initial state estimate is to have technician that 
install the monitoring system conduct a training trip, where the 
elevator car sequentially travels from the lowest to the highest 
floor. Other predefined travel patterns may also be used as 
long as they includes a stop at least every floor. A Kalgan filter 
based SLAM algorithm for the positioning of the elevator car 
and the estimation of the floor-level heights, that uses the 
suggested data association method, is presented in Alg. 2. The 
algorithm also includes an outlier detection step, which rejects 
the measurement update in the case that the normalized 
prediction error ξs exceeds the threshold γs. In case of 
rejection, a flag is set to indicate that the stop may have been 
an abnormal (emergency) stop; see Section V for details. 
 
C. Example: Position and motion dynamics estimation 

  
To illustrate the positioning and motion dynamics 

estimation capability, the algorithms Alg. 1 and Alg. 2 were 
used to process data recorded in an elevator within a seven-
floor building. The data was recorded using an inertial sensor 
array consisting of 32 Invensense MPU-9150 sensor modules 
(see [34] for details of the array), which was attached to one of 
the sides of the elevator car. The position estimates calculated 
from the 32 sensor modules (accelerometer triads) can be seen 
in Fig. 3, together with the mean of the position estimates and 
the three standard deviations (3σ) confidence interval 
calculated from the filter’s covariance estimate. From Fig. 3 it 
can be seen that all the estimated positions are within the 
confidence interval, which indicates that the filter is 
reasonably tuned and provides consistent estimates. Further, it 
can be seen that after the initial training sequence, the SLAM 
framework efficiently limits the position error growth; the 
floor levels to which the elevator travels can readily be 
determined from the filtered data. Moreover, when the SLAM 
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framework detects that the elevator car has stopped in between 
two floor levels, it signals that an abnormal stop has occurred; 
see Section V for further details. In Fig. 4 the speed estimates 
for a single journey, together with the mean of the speed 
estimates and the 3σ confidence interval, are shown. Also 
shown are the time instances when the detector has decided 
that the elevator car is moving at constant speed or is 
stationary. From the figure it can be seen that once the elevator 
have reached a steady-state speed, after some time the uniform 
linear motion detector detects this and constant speed pseudo 
measurements are applied. The result is that the speed 
uncertainty ceases to grow and the position error growth 
becomes linear in time instead of quadratic. At the end of the 
trip, when the elevator car has become stationary, it can be 
seen how the zero speed pseudo measurements correct the 
speed estimates. The importance of the constant speed updates 
is best seen in the case of high-rise buildings where the travel 
time of the red square. 

  
Elevator car can be long. For the SLAM algorithm to 

be able to associate the position of the elevator car after a 
travel with the correct floor, the error in the estimated travelled 
distance should be much smaller than the distances between 
the floors. The elevator systems for which the proposed 
positioning method can be used are thus determined by the 
maximum travel time, the distances between the floors, and 
the quality of the accelerometer sensor. Fig. 5a shows the 
theoretical root mean square error in the distance estimates as 
a function of the travel time. The theoretical values were 
calculated from the discrete-time algebraic Riccati equations 
used in the distance estimation filter. A speed profile was 
assumed where the acceleration and deceleration of the 
elevator car takes four seconds in total and the remaining time 
the car keeps a constant speed. The process noise and 
measurement noise were set to Fig. 5a also shows the 
empirically calculated root mean square error of the distance 
estimates, obtained using the inertial sensor array together 
with Alg. 1. As can be seen there is a good agreement between 
the theoretical and empirical results. Assuming the distance 
estimation error to be Gaussian distributed, then the 
probability of the distance estimation error being larger than a 
certain value as a function of the travel time can be calculated. 
In Fig. 5b the probability of the error exceeding 0.5, 1.0, 1.5, 
and 2.0 meters are shown. Consider for example a building in 
which the distance between sequential floors is three meters. 
Then Fig. 5b shows that if the probability of the distance 
estimation error exceeding 1.5 meters should be less than 
10−3, the travel time of the elevator car should not exceed 43 
seconds; a modern elevator system in a high-rise building 
travels around 25 floors in 40 seconds. 

 
 

IV. VIBRATION AND RIDE QUALITY MONITORING 
  
To encourage industry-wide uniformity in evaluation 

of elevator ride quality, the standards ISO 18738-1 – 
measurement of ride quality – has been developed. The 
standards defines a set of vibration and noise parameters that 
describe the elevator ride quality, and methods to measure and 
calculate these parameters. Despite the fact that the standards 
specifies that the vibration monitoring sensor should be placed 
on the car floor and no more than two persons (assumed to 
remain still) should be in the elevator car during the 
performance evaluation, indicative ride quality vibration 
values may be calculated using a sensor node mounted on 
e.g.,.the car roof. Vibration values that can be used by elevator 
service companies and building owners to objectively evaluate 
the performance of a group of elevators within a property 
portfolio. An example of peak-to-peak (P2P max) sideways 
vibration values calculated according to the ISO 18738-1 
standards from an elevator in a high-rise building is shown in 
Fig. 6. Of note is the correlation between the maximum speed 
and the vibration magnitude; the elevator car travels at a 
higher speed during longer trips. The elevator speed must thus 
also be considered if the ISO 18738-1 standard vibration 
parameters should be used for condition monitoring. Although 
the ride quality parameters defined in the ISO 18738-1 
standards provide information about the health condition of 
the elevator system and can be used as data features in a 
predictive maintenance system [8], it is difficult to directly 
map these measures to certain faults. However, by monitoring 
the vibration power versus frequency and vibration power 
versus position spectrums of the elevator car, a more direct 
insight into the health condition of the elevator system can be 
obtained. 
 
A. Vibration power versus position 

  
Guide rail misalignment and displacement may cause 

the elevator car to vibrate abnormally at certain locations. A 
vibration power versus position spectrum can therefore 
provide valuable information about the condition of the guide 
rails and potential faults for discussions on various guide rail 
faults. With the elevator car positioning estimation framework 
presented in Sec. III it is straightforward to calculate such a 
spectrum. Fig. 7 shows an example of a vibration power 
versus position spectrum from an elevator system where there 
is a misalignment between two guide rail sections. Every time 
the elevator car passes the intersection between the two 
misaligned guide-rail sections, the roller guide momentarily 
becomes stuck and causes the car to vibrate excessively. These 
vibrations are seen as a peak in the spectrum at a height of 3.8 
meters. Leaving the guide rails in this condition will cause an 
increased wear on the roller guide shoes and shorten their 
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lifetime. Of note is the fact that the displayed spectrum is 
calculated using only those accelerometer measurements that 
correspond to time instants when the elevator car is moving at 
constant speed. The vibration levels close to the lowest and 
highest floor can therefore not be estimated using this method. 
 
B. Vibration power versus frequency  

    
Valuable information about the condition of the 

elevator system can also be gained via a traditional vibration 
power versus frequency spectrum. The frequency spectrum of 
the vertical vibration levels in the elevator car can, when 
evaluated while the car is traveling at constant speed, be 
related to the condition of the traction system. In Fig. 8 the 
vibration power versus frequency spectrum form a gearless 
traction elevator system, is shown. There are two peaks in the 
spectrum, corresponding to the first and third harmonic of the 
speed of the engine. The magnitude of the third harmonic 
being stronger than the first one due to the frequency response 
of the rope. Changes in the magnitude of these frequency 
peaks can be related to the condition of the engine, gears 
system, bearings etc., in the traction system. 
 

V. ABNORMAL STOP DETECTION 
 

Due to faults in the elevator system, or in the case 
when a passenger presses the emergency stop button, the 
elevator car may come to an abnormal halt. In either case it is 
important to immediately notify the person responsible for the 
elevator system about the situation. The signal processing 
scheme therefore constantly monitors the motion of the 
elevator car to detect if it stops at a position other than that of 
the floor levels, or decelerates abnormally. The monitoring of 
the stop position is done within the SLAM algorithm, i.e., Alg. 
2, where an abnormal stop is declared if the normalized 
prediction error of the Kalman filter exceeds a predefined 
threshold. To monitor for abnormal decelerations of the 
elevator car, the sensor node learns (assuming that abnormal 
stops are rare) the typical deceleration pattern and checks for 
deviations from this pattern. This is achieved using Alg. 3, 
where first the maximum deceleration within each trip is 
calculated (lines 4-5). These values are then fed into two 
Kalman filters (lines 10-12), which tracks the mean of the 
decelerations peaks while going up and down, respectively. If 
the normalized prediction error of an observed deceleration 
peak is larger than a predefined outlier threshold4, an 
abnormal stop is declared (line 17). In Fig. 9 the measured 
vertical accelerations from two elevator systems are shown. 
Also shown are the tracked deceleration peak values while 
going up and down, respectively. Elevator #1 is an old 
elevator system with deceleration peaks whose magnitude 
varies with the travel direction. Elevator #2 is a modern 

elevator system with deceleration peaks of uniform 
magnitude. As can be seen from the figures, the magnitude of 
the deceleration peaks varies significantly among different 
elevator systems, and direct thresholding of the deceleration 
signal cannot be used to detect abnormal stops. Instead the 
peak tracking filter in Alg. 3 checks if the deceleration signal 
deviates from the learned mean deceleration value. In the data 
set associated with the elevator system #2 there is a large 
deceleration peak at t = 164 seconds caused by a forced 
emergency stop. This abnormal deceleration is detected by the 
algorithm (indicated by a black star in Fig. 9) as it falls outside 
the 3σ uncertainty regions of the deceleration peak tracking 
filter. The same emergency stop, but detected by the SLAM 
algorithm, is also indicated in the position trajectory plotted. 

 
VI. DOOR CONDITION MONITORING 

 
 Malfunctioning doors is one of the most frequent 
faults of an elevator system [8], and there exist several studies 
on elevator door condition monitoring. The methods proposed 
in these studies all rely on measurements from door mounted 
sensors or signals from the door control system, which makes 
them unsuitable for a non-intrusive conditioning monitoring 
systems. However, as most elevator doors contain some 
ferromagnetic material, the motion of the doors will cause a 
change in the local magnetic field and a magnetic field sensor, 
a.k.a. magnetometer, can be used to remotely monitor the 
motion. Fig. 10 illustrates how the magnetic field (along one 
sensitivity axis) changes at the opening and closing of the 
doors in an elevator with an automatic door system; 

  
The magnetometer (Invensense MPU-9150 sensor 

module) was mounted on the roof of the elevator car at a 
distance of approximately 30 cm from the door5. As can be 
seen, the door motion creates a distinct pattern in the measured 
magnetic field, and the door opening and closing is clearly 
observed. Although the magnetic field pattern displayed in 
Fig. 10 is typical for an elevator with an automatic door 
system, the absolute shape and amplitude depend not only on 
the door system and the sensor location, but they also vary 
between different floors in the same elevator system and with 
time. Predefined magnetic field levels can therefore not be 
used to determine when the doors are opened or closed. 
Instead, at every stop, the sensor node first determines the time 
instances when the magnetic field is constant by evaluating the 
variance of the measured field over a short time window. If the 
variance falls below a threshold, the magnetic field is 
classified as constant, and the doors considered stationary. In 
Fig. 10, the data points classified to correspond to a constant 
magnetic field are marked by green squares. To determine the 
magnetic field levels corresponding to open and closed doors, 
a two component multivariate Gaussian mixture model is 
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fitted to the constant field data points using an expectation-
maximization (EM) algorithm [42]. In Fig. 10, the estimated 
mean and covariance values are indicated in blue, red, and 
gray colors. Once the magnetic field levels corresponding to 
the open and closed door conditions have been identified, the 
sensor node can calculate the number of door openings and 
closings. This information can be used to detect abnormal 
door behaviour, such as a sequence of repeated door openings 
and closings.  

 
VII. CONCLUSIONS AND OUTLOOK 

  
Condition monitoring techniques, already widely 

used in other industries, have to date been largely neglected in 
elevators. Those condition systems that exist are generally 
tailored to elevator systems of certain makes or are costly and 
labour intensive to install. Therefore, their deployment has 
been limited to high-end and prestige elevator systems. To 
change this, a signal processing scheme for elevator condition 
monitoring using easy-to-install smart sensor nodes has been 
proposed. 

  
The proposed signal processing scheme can, using 

data from an accelerometer and a magnetometer, (i) track the 
position of the elevator car, (ii) determine the ride quality 
according to the ISO 18738-1 standards, (iii) calculate 
vibration spectrums that provide information about the 
condition of the engine system and the guide rails, (iv) detect 
abnormal stops, and (v) detect abnormal door operations. The 
functionality and performance of the proposed scheme have 
been illustrated through a set of experiments, where data was 
recorded from different elevator systems using ultra-low-cost 
accelerometers and magnetometers of the same kind as those 
found in current smartphones; the Invensense MPU-9150 
sensor module was used in the experiments. The results show, 
inter alia, that the elevator car can, for travels up to 43 seconds 
long, be tracked with an error of less than 1.5 meters in 99.9% 
of the travels. Furthermore, the experiments illustrate how 
information about the condition of the traction and guide rail 
system can be monitored via vibration power versus frequency 
and vibration power versus position spectrums. Moreover, the 
experiments indicate that degradations and faults in the door 
system of the elevator can be detected by monitoring the 
variations in the magnetic field that the doors’ motions cause. 
The described signal processing scheme has been integrated 
into a commercial elevator monitoring system and field tests 
of the system are currently being undertaken. Our future 
research will therefore focus on the development on high-level 
data driven condition monitoring methods. Furthermore, as the 
proposed signal processing scheme already makes use of data 
from both accelerometers and magnetometers, we will in our 
future research look at how magnetic-field SLAM strategies 

can be adapted to the positioning of the elevators. This would 
make the elevator positioning more robust and enable 
positioning of the elevator car for travel of unlimited duration. 
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